1 2ab формула чего

Формула площади.

Формула площади необходима для определения площадь фигуры, которая является вещественнозначной функцией, определённой на некотором классе фигур евклидовой плоскости и удовлетворяющая 4м условиям:

Формулы площади геометрических фигур.

Результат сложения расстояний между серединами противоположных сторон выпуклого четырехугольника будут равна его полупериметру.

1 2ab формула чего

Сектор круга.

Площадь сектора круга равна произведению его дуги на половину радиуса.

1 2ab формула чего

1 2ab формула чего

Сегмент круга.

Чтобы получить площадь сегмента ASB, достаточно из площади сектора AOB вычесть площадь треугольника AOB.

1 2ab формула чего

Площадь эллипса равна произведению длин большой и малой полуосей эллипса на число пи.

1 2ab формула чего

Эллипс.

Еще один вариант как вычислить площадь эллипса – через два его радиуса.

1 2ab формула чего

Треугольник. Через основание и высоту.

Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты.

1 2ab формула чего

Треугольник. Через две стороны и угол.

Площадь треугольника равна половине произведения двух его сторон, умноженного на синус угла между ними.

1 2ab формула чего

Треугольник. Формула Герона.

Площадь треугольника можно определить при помощи формулы Герона.

1 2ab формула чего

1 2ab формула чего

Треугольник. Через радиус вписанной окружности.

Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

1 2ab формула чего

1 2ab формула чего

Треугольник. Через радиус описанной окружности.

Площадь треугольника можно определить по радиусу описанной окружности.

1 2ab формула чего

1 2ab формула чего

Треугольник.

Площадь прямоугольного треугольника.

1 2ab формула чего

Треугольник.

Площадь прямоугольного треугольника через вписанную окружность.

1 2ab формула чего

Треугольник.

Формула Герона для прямоугольного треугольника.

1 2ab формула чего

Треугольник.

Площадь равнобедренного треугольника.

1 2ab формула чего

Трапеция.

Площадь трапеции равна произведению полусуммы ее оснований на высоту.

1 2ab формула чего

Ромб. По длине стороны и высоте.

Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

1 2ab формула чего

Ромб. По длине стороны и углу.

Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

1 2ab формула чего

Ромб.

Формула площади ромба по длинам его диагоналей.

1 2ab формула чего

1 2ab формула чего

Формула площади круга через его радиус и диаметр.

1 2ab формула чего

1 2ab формула чего

Квадрат. Через его сторону.

Площадь квадрата равна квадрату длины его стороны.

1 2ab формула чего

Квадрат. Через его диагонали.

Площадь квадрата равна половине квадрата длины его диагонали.

1 2ab формула чего

Правильный многоугольник.

Для определения площади правильного многоугольника необходимо разбить его на равные треугольники, которые бы имели общую вершину в центре вписанной окружности.

1 2ab формула чего

Сфера.

Площадь поверхности сферы равна учетверенной площади большого круга.

1 2ab формула чего

Площадь поверхности куба равна сумме площадей шести его граней.

1 2ab формула чего

Конус.

Боковая площадь поверхности круглого конуса равна произведению половины окружности основания (C) на образующую (l).

1 2ab формула чего

Усеченный конус.

Боковая площадь поверхности усеченного конуса.

1 2ab формула чего

Цилиндр.

Площадь боковой поверхности круглого цилиндра.

1 2ab формула чего

Сегмент шара.

Площадь поверхности шарового сегмента равняется произведению его высоты на окружность большого круга шара.

1 2ab формула чего

Поверхность шарового слоя.

Кривая поверхность шарового слоя равна произведению его высоты на окружность большого круга шара.

Источник

1 2ab формула чего

1 2ab формула чего

§2. Площадь треугольника. Метод площадей

В школьном курсе геометрии доказано несколько формул площади треугольника. Напомним их.

При вычислении площади из этих формул следует выбрать ту, которая в условиях конкретной задачи приводит к более простому решению.

Для примера, рассмотрим два треугольника:

1 2ab формула чего

1 2ab формула чего

`DeltaABC:` `AB=13`, `BC=14`, `AC=15`;

`DeltaKML:` `KL=sqrt(13)`, `LM=sqrt(14)`, `KM=sqrt(15)`;

Надо найти площадь и радиус описанной окружности.

Для треугольника `ABC` удобен ход решения такой:

`p=1/2(AB+BC+AC)=21`, по формуле Герона

`S_(ABC)=sqrt(21*6*7*8)= ul(84)` и по формуле (5)

тогда `sinM=sqrt(1-64/(210))=(sqrt(146))/(sqrt(14)*sqrt(15))` и по формуле (2):

тогда `R=(KL)/(2sinM)=ul((sqrt(13)*sqrt(14)*sqrt(15))/(2*sqrt(146)))=(sqrt(13)*sqrt7*sqrt(15))/(2*sqrt(73))` (точно также по формуле 5).

Сравнение площадей треугольников обычно опирается на одно из следующих утверждений:

$$ 2.<1>^<○>$$. Площади треугольников с одинаковой высотой относятся как длины соответствующих оснований. В частности, если точка `D` лежит на основании `AC` (рис. 6а), то

1 2ab формула чего1 2ab формула чего

$$ 2.<2>^<○>$$. Площади треугольников с общим углом относятся как произведения сторон, заключающих этот угол (см. рис. 6б):

$$ 2.<3>^<○>$$. Площади подобных треугольников относятся как квадраты их

сходственных сторон, т. е. если `Delta ABC

DeltaA_1B_1C_1`, то `(S_(A_1B_1C_1))/(S_(ABC))=((A_1B_1)/(AB))^2`.

Все эти утверждения легко доказываются с использованием соответственно формул площади (1) и (2).

Обратим внимание на важное свойство медиан треугольника.

Три медианы треугольника разбивают его на `6` треугольников с общей вершиной и равными площадями.

1 2ab формула чего

Докажем, например, для треугольника `BOM`, что `S_(BOM)=1/6S_(ABC)`.

Дан треугольник `ABC`. Точка `D` лежит на стороне `AB`, `AD:DB=1:2`, точка `K` лежит на стороне `BC`, `BK:KC=3:2` (рис. 8а). Отрезки `AK` и `CD` пересекаются в точке `O`. Найти отношение площади четырёхугольника `DBKO` к площади треугольника `ABC`.

1 2ab формула чего

2. Через точку `D` проведём прямую `DL«|\|«AK`. По теореме о пересечении сторон угла параллельными прямыми (`/_ABC`, `DL«|\|«AK`) имеем `(BL)/(LK)=(BD)/(AD)`, откуда `LK=y`.

По той же теореме (`/_DCB`, `OK«|\|«DL`) получим `(DO)/(DC)=(LK)/(LC)`, `DO=1/3DC`.

3. Теперь находим `S_(ADO):S_(ADC)=DO:DC`, `a=1/3(1/3S)=1/9S`.

(Можно по теореме Менелая для треугольника `BCD` и секущей `CD:`

`(BK)/(KC)*(CO)/(OD)*(DA)/(AB)=1 iff 3/2*(CO)/(OD)*1/3=1 iff CO=2OD=>OD=1/3DC`).

Находим площадь: `sigma=3/5S-a=(3/5-1/9)S=22/45S`.

Найти площадь треугольника, две стороны которого равны `3` и `7`, а медиана к третьей стороне равна `4` (рис. 9).

1 2ab формула чего

Пусть `AB=3`, `BC=7`, `AM=MC` и `BM=4`. Достроим треугольник `ABC` до параллелограмма, для этого на прямой `BM` отложим отрезок `MD=BM` и соединим точки: `A` с `D` и `C` с `D`. Противоположные стороны параллелограмма равны: `(DC=AB)` и равны площади треугольников `ABC` и `DBC` (общее основание `BC` и равные высоты из вершин `A` и `D`).

В треугольнике `DBC` известны все три стороны: `BC=7`, `DC=3`, `BD=2BM=8`.

Находим его площадь по формуле Герона: `p=9`, `S_(BCD)=6sqrt3`.

Значит и `S_(ABC)=6sqrt3`.

В решении этой задачи дополнительным построением получен треугольник, площадь которого равна площади заданного и легко вычисляется по данным задачи. Приведём ещё одну задачу, где сначала вычисляется площадь дополнительно построенной фигуры, а затем легко находится искомая площадь.

Найти площадь треугольника, если его медианы равны `3`, `4` и `5`.

По свойству медиан `AO=2/3m_a`, `CO=2/3m_c` и `ON=1/3m_b`. В треугольнике `AOC` известны две стороны `AO` и `CO` и медиана третьей стороны `ON`. Площадь этого треугольника найдём как в предыдущей задаче.

Достроим треугольник `AOC` до параллелограмма `AOCD`, `S_(AOC)=S_(DOC)`, в треугольнике `DOC` известны три стороны:

`DO=2ON=2/3m_b`, `OC=2/3m_c`, `DC=AO=2/3m_a`.

Площадь треугольника `DOC` вычисляем по формуле Герона `S_1=S_(AOC)=S_(DOC)=8/3`. Сравним теперь площадь треугольника `ABC` (обозначим её `S`) с площадью треугольника `AOC`. Из теоремы 2 о медианах и площадях следует `S_(AOC)=S_(AON)+S_(NOC)=2*1/6S=1/3S`.

1 2ab формула чего

В следующей задаче докажем лемму об отношении площади треугольника к площади другого треугольника, построенного из медиан первого.

Найти отношение площади `S` треугольника к площади `S_0` треугольника, составленного из медиан первого.

Рассмотрим рис. 10. В построенном треугольнике `OCD` стороны таковы: `OC=2/3m_c`, `OD=2/3m_b`, `CD=2/3m_a`. Очевидно, что треугольник со сторонами `m_a`, `m_b`, `m_c` подобен (по третьему признаку) треугольнику со сторонами `2/3m_a`, `2/3m_b`, `2/3m_c`.

Геометрическая фигураФормулаЧертеж
`S_(m_am_bm_c)=3/4S_(abc)`.

Около окружности радиуса `sqrt3` описан треугольник. Найти его площадь, если одна из его сторон точкой касания делится на отрезки `9` и `5`.

Пусть `AP=9`, `PC=5` (рис. 11) и пусть `BM=x`. По свойству касательных `AM=AP`, `CN=CP` и `BN=BM`, поэтому стороны треугольника таковы: `AC=14`, `AB=9+x`, `BC=5+x`, тогда `p=14+x`. (Заметим, что `p=AC+BM`!). По формулам площади (3) и (4) имеем: `S=pr=(14+x)sqrt3` и `S=sqrt((14+x)x*5*9)`. Приравниваем правые части, возводим в квадрат, приводим подобные члены, получаем `x=1`. Вычисляем площадь треугольника:

1 2ab формула чего

Приём, применённый в решении этой задачи, когда площадь фигуры выражается двумя различными способами, часто используется в задачах на доказательство.

Проведём два примера, в каждом выведем полезную формулу.

В треугольнике `ABC` угол `C` равен `varphi`, `AC=b`, `BC=a` (рис. 12). Доказать, что биссектриса `CD` равна `(2ab)/(a+b) cos varphi/2`.

1 2ab формула чего

Обозначим `CD=x`. Очевидно, что `S_(ABC)=S_(ACD)+S_(DCB)`. По формуле (2) `S_(ABC)=1/2 ab sin varphi`, `S_(ACD)=1/2 bx sin varphi/2`, `S_(BDC)=1/2 ax sin varphi/2`. Таким образом, имеем: `1/2 ab sin varphi=1/2(a+b)x sin varphi/2`. Используем формулу синуса двойного угла `sin varphi=2sin varphi/2 cos varphi/2`, получим:

называется окружность, касающаяся одной из сторон треугольника и продолжений двух других сторон. Таких окружностей, очевидно, три (рис. 13). Их радиусы обычно обозначаются `r_a`, `r_b`, `r_c` в зависимости от того, какой стороны окружность касается.

1 2ab формула чего

Вневписанная окружность касается стороны `a=BC` треугольника `ABC` (рис. 14). Доказать, что `S_(ABC)=r_a(p-a)`, где `2p=a+b+c`.

1 2ab формула чего

Считаем площадь `S_0` четырёхугольника `ABI_aC`:

`S_0=S_(ABC)+S_(BCI_a)` и `S_0=S_(ABI_a)+S_(ACI_a)`, откуда

Источник

Формула площади.

Формула площади необходима для определения площадь фигуры, которая является вещественнозначной функцией, определённой на некотором классе фигур евклидовой плоскости и удовлетворяющая 4м условиям:

Формулы площади геометрических фигур.

Результат сложения расстояний между серединами противоположных сторон выпуклого четырехугольника будут равна его полупериметру.

1 2ab формула чего

Сектор круга.

Площадь сектора круга равна произведению его дуги на половину радиуса.

1 2ab формула чего

1 2ab формула чего

Сегмент круга.

Чтобы получить площадь сегмента ASB, достаточно из площади сектора AOB вычесть площадь треугольника AOB.

1 2ab формула чего

Площадь эллипса равна произведению длин большой и малой полуосей эллипса на число пи.

1 2ab формула чего

Эллипс.

Еще один вариант как вычислить площадь эллипса – через два его радиуса.

1 2ab формула чего

Треугольник. Через основание и высоту.

Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты.

1 2ab формула чего

Треугольник. Через две стороны и угол.

Площадь треугольника равна половине произведения двух его сторон, умноженного на синус угла между ними.

1 2ab формула чего

Треугольник. Формула Герона.

Площадь треугольника можно определить при помощи формулы Герона.

1 2ab формула чего

1 2ab формула чего

Треугольник. Через радиус вписанной окружности.

Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

1 2ab формула чего

1 2ab формула чего

Треугольник. Через радиус описанной окружности.

Площадь треугольника можно определить по радиусу описанной окружности.

1 2ab формула чего

1 2ab формула чего

Треугольник.

Площадь прямоугольного треугольника.

1 2ab формула чего

Треугольник.

Площадь прямоугольного треугольника через вписанную окружность.

1 2ab формула чего

Треугольник.

Формула Герона для прямоугольного треугольника.

1 2ab формула чего

Треугольник.

Площадь равнобедренного треугольника.

1 2ab формула чего

Трапеция.

Площадь трапеции равна произведению полусуммы ее оснований на высоту.

1 2ab формула чего

Ромб. По длине стороны и высоте.

Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

1 2ab формула чего

Ромб. По длине стороны и углу.

Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

1 2ab формула чего

Ромб.

Формула площади ромба по длинам его диагоналей.

1 2ab формула чего

1 2ab формула чего

Формула площади круга через его радиус и диаметр.

1 2ab формула чего

1 2ab формула чего

Квадрат. Через его сторону.

Площадь квадрата равна квадрату длины его стороны.

1 2ab формула чего

Квадрат. Через его диагонали.

Площадь квадрата равна половине квадрата длины его диагонали.

1 2ab формула чего

Правильный многоугольник.

Для определения площади правильного многоугольника необходимо разбить его на равные треугольники, которые бы имели общую вершину в центре вписанной окружности.

1 2ab формула чего

Сфера.

Площадь поверхности сферы равна учетверенной площади большого круга.

1 2ab формула чего

Площадь поверхности куба равна сумме площадей шести его граней.

1 2ab формула чего

Конус.

Боковая площадь поверхности круглого конуса равна произведению половины окружности основания (C) на образующую (l).

1 2ab формула чего

Усеченный конус.

Боковая площадь поверхности усеченного конуса.

1 2ab формула чего

Цилиндр.

Площадь боковой поверхности круглого цилиндра.

1 2ab формула чего

Сегмент шара.

Площадь поверхности шарового сегмента равняется произведению его высоты на окружность большого круга шара.

1 2ab формула чего

Поверхность шарового слоя.

Кривая поверхность шарового слоя равна произведению его высоты на окружность большого круга шара.

Источник

По какой формуле вычисляется объем прямоугольного параллелепипеда?

Содержание:

Параллелепипед – многогранник, состоящий из шести четырехугольных поверхностей с попарно параллельными сторонами. Различают несколько видов параллелепипедов в зависимости от вида четырехугольников, лежащих в их основе. Рассмотрим, какими они бывают, чем отличаются. Научимся находить площадь и объем прямоугольного и наклонного параллелепипедов по известным формулам.

Прямоугольный параллелепипед

Кубоидом или прямоугольным называется шестигранный многогранник с прямоугольниками в основании. Его противоположные поверхности взаимно параллельны, а сходящиеся в одной вершине – перпендикулярны. Ребра, выходящие из одной вершины, называются измерениями.

Свойства геометрического тела:

1 2ab формула чего

Рассмотрим формулы объема прямоугольного параллелепипеда и его площади.

Как найти площадь параллелепипеда

Площадью называется численная характеристика плоской фигуры, показывающая, сколько квадратов со стороной, равной единице, поместятся на её поверхности. Вычисляется как сумма площадей шести поверхностей в виде прямоугольников.

1 2ab формула чего

где: ab, bc и ac – площади поверхностей.

Так как стороны парные, получившуюся сумму умножают на два.

Для примера, имеем тело с размерами:

a = 3, b = 4 и c = 5 см.

Полная площадь поверхности равна:

S = 2 * (3*4 + 4*5 + 5*3) = 2 * (12 + 20 +15) = 2 * (47) = 94 см.

Объем параллелепипеда

Объемом называется численная характеристика тела, отражающая занимаемое им пространство. Определяется как количество кубов со стороной единица, которое поместится в многоугольнике.

Объем прямоугольного параллелепипеда вычисляется по формуле: V = a * b * c, где

a, b, c – размеры измерений, выходящих из одной точки, или длина, ширина и высота многогранника.

1 2ab формула чего

Чтобы найти объем прямоугольного параллелепипеда по приведенной формуле, в нее подставляют размеры граней многоугольника, например:

Измеряется в кубических единицах – сантиметрах, метрах и т.д. либо литрах: 1 литр равен 1 дециметру кубическому.

Физический смысл объема прост:

Вторая формула понадобится, когда в исходных данных есть площадь одной из поверхностей (Sосн) и длина третьей грани (h) или высота.

Смысл вычислений остается прежним – перемножить площадь поверхности на длину третьей стороны тела.

Объем наклонного параллелепипеда

К наклонным параллелепипедам относят четырехугольные призмы с параллелограммом в основании, боковые грани которого относительно него расположены под углом, отличным от 90°.

1 2ab формула чего

Площадь и объем наклонного параллелепипеда вычисляются по тем формулам, что и прямоугольного: V = Sосн * h или V = a * b * c.

Площадь определяются иначе, хоть и равна сумме поверхностей боковых граней и оснований.

1 2ab формула чего

S = S1 + S2 +Sосн. Боковые поверхности – прямоугольники, их площади S1 b S2 равны производным ширины на длину прямоугольников, которыми они представлены: a*c и a*b. Размеры оснований – параллелограммов – вычисляются так: Sосн = b * h.

Мы рассмотрели способы, как найти объем основных параллелепипедов по разным формулам в зависимости от исходных данных. В сложных задачах придется применять иные геометрические и тригонометрические формулы для определения требуемых данных.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Геометрическая фигураФормулаЧертеж