24bit 192khz что это

Вся правда о Hi-Res: что скрывают аудиоформаты высокого разрешения

Одно из самых интересных событий, которые произошли в мире аудио за последние годы — небывалый рост популярности форматов высокого разрешения (Hi-Res). Среди причин появления в своё время новых форматов — неудовлетворённость качеством звучания CD, ведь на заре эпохи компакт-дисков все звукозаписывающие лейблы спешили переиздать свой аналоговый каталог на цифровом носителе, мало заботясь о качестве: хотя бы плюс-минус привлекательное и лишённое всевозможных щелчков и прочих шероховатостей звучание уже казалось победой.

Таким образом, производители аппаратуры и звукозаписывающие лейблы начали выполнять свои обещания о высочайшем качестве звучания CD далеко не сразу. В результате, в умах многих аудиофилов формату был нанесен непоправимый ущерб, а CD превратились в этакого цифрового «злодея». Впрочем, забегая вперёд, стоит отметить, что компакт-диски способны звучать совершенно замечательно — при условии высочайшего качества исходной записи, а также при должном внимании к мастерингу и продюсированию. Но обо всём по порядку.

24bit 192khz что это

В последнее время мы стали свидетелями возвращения к винилу, а также отмечаем рост интереса к цифровым файлам высокого разрешения. Но не подстерегает ли нас опасность угодить в ловушку 1970-х, когда всё внимание было приковано только к техническим характеристикам? Чтобы ответить на этот вопрос, порассуждаем о том, как и что именно мы слышим, а также о реалиях хайрез-записи.

Для начала, затронем техническую сторону вопроса. Формат CD с 16-битным квантованием и частотой дискретизации 44,1 кГц позволяет записать аудио в диапазоне частот от 0 Гц примерно до 22 кГц (то есть, чуть шире возможностей человеческого слуха) и динамическим диапазоном порядка 95 дБ, чего вполне достаточно для подавляющего большинства музыкальных инструментов. При этом формат 24 бит 48 кГц расширяет динамический диапазон до 150 дБ, а верхнюю частоту — до 24 кГц. Более того, многие аудиофилы предпочитают 24 бит 96 кГц, с верхней частотой до 48 кГц, а также 24 бит 192 кГц, с верхней планкой в районе 96 кГц. Столь высокие звуковые частоты оказываются далеко за пределами возможностей человеческого слуха, так что здесь напрашивается простой и резонный вопрос: для чего же собственно всё это нужно?

Некоторые сторонники Hi-Res скажут, что хоть ничего и не слышат на этих частотах, но всё же могут «почувствовать» разницу, зачастую преподнося это как более высокую «воздушность» звучания. При этом любопытно, каким именно органом чувств они ощущают эту воздушность? В общем-то, мы и вправду можем «почувствовать» очень низкие частоты — при условии, что они воздействуют с высокой амплитудой и с относительно близкого расстояния. Ну а что же касается поклонников Hi-Res, скорее всего, они воспринимают звучание более плавным и слитным из-за высокой частоты дискретизации. К тому же, АЦП и другие компоненты, используемые во время записи в 192 кГц, скорее всего, будут высокого качества, что само по себе повлияет на впечатления от прослушивания.

24bit 192khz что это

Для того, чтобы проверить на практике преимущества Hi-Res, все желающие могут провести любопытный тест — послушать в случайном порядке несколько записей с разной частотой дискретизации на хорошем цифровом аудиоплеере. Заклейте чем-нибудь подручным дисплей проигрывателя, чтобы не иметь представления о том, с каким именно разрешением в данный момент воспроизводится файл. Вооружитесь ручкой и блокнотом (ну или приложением «заметки» в смартфоне), прослушайте все записи и отметьте, что именно вы слышите и какой трек звучит лучше. Если у вас получается точно определить более высокие частоты дискретизации, можно с уверенностью заявить, что вы обладаете необыкновенным слухом.

Большинство людей старше среднего возраста способны услышать тон на частоте максимум до 15 кГц. К возрасту 60 лет эта частота может снизиться примерно до 12-13 кГц для среднестатистического мужчины (и, возможно, будет немного выше для женщин). Таким образом, звуковой сигнал с частотой 96 кГц мало что значит для восприятия звука. Однако вполне вероятно, что многие слушатели почувствуют дополнительную плавность и слитность на средних частотах, которой может похвастаться Hi-Res. Впрочем, на качество звучания записей влияет и множество других факторов, некоторые из них играют очень важную роль.

24bit 192khz что это

К примеру, можно задаться вопросом, с помощью какого оборудования осуществляется запись. Ведь, по иронии судьбы, многие профессиональные конденсаторные микрофоны от Sennheiser, Beyerdynamic, AKG, Neumann, Shure, Rode и Audio Technica обладают частотными характеристиками, которые стремительно снижаются сразу после 20 кГц. Более того, у некоторых популярных микрофонов заметный спад начинается уже после 18 кГц: таким образом, они вряд ли будут улавливать что-либо на частоте 48 или 96 кГц, и в большинстве случаев это как раз хорошо, ибо не очень-то и хочется вводить высокочастотный шум в цепь микширования.

Итак, для того, чтобы записать аудио с действительно «высоким разрешением», в первую очередь, потребуются специальные микрофоны, способные улавливать очень высокие частоты, не внося при этом слишком много собственного шума. Далее нам необходимы микрофонные предусилители и микшеры с расширенной частотной характеристикой и сверхнизким уровнем шума, а также высококлассный аналого-цифровой преобразователь. Предположим, что у нас есть микрофоны с равномерной частотной характеристикой от 20 Гц до 96 кГц и сверхнизким уровнем шума, подключенные специальными аудио кабелями к сверхмалошумящему предусилителю. Далее мы отправим этот сигнал в секцию микширования и высококлассный аналого-цифровой преобразователь, который передаёт аудиосигнал высокого разрешения в цифровой рекордер или компьютер с аналогичными улучшенными характеристиками.

24bit 192khz что это

И в общем-то, да, всё это действительно осуществимо. Более того, записав таким образом соло скрипки в 24 бит 96 кГц, можно заметить, что на самых высоких нотах некоторые гармоники достигают частоты приблизительно 28 кГц. Подобные гармоники может давать и флейта сопрано, но вот способны ли мы их услышать — это уже другой, не менее интересный вопрос. В конечном итоге, практически весь значимый для нашего слуха звуковой сигнал в записях соло скрипки вполне может содержаться на 16-битном CD с частотой дискретизации 44,1 кГц.

Вдвойне удивительно, что даже полноценный оркестр, с его широчайшим динамическим диапазоном, вполне можно записать в 16 битах, при условии изначально правильной настройки уровней (не прибегая к компрессии). Безусловно, не стоит забывать, что вполне возможно сгенерировать электронные звуки, которые выходят за пределы частотного диапазона человеческого слуха и динамического диапазона в 100 дБ. Но всё это остаётся, как правило, на уровне теории.

24bit 192khz что это

В заключение стоит отметить, что благодаря более высокой плавности и слитности звучания в среднечастотном диапазоне, Hi-Res записи однозначно достойны внимания слушателей, но только при условии, что аудиосистема позволяет воспроизвести все эти нюансы.

Любопытно, что у многих аудиофилов есть любимые записи классической музыки, сделанные в конце 50-х и начале 60-х годов. Ведь музыка — это не только технические характеристики, а определяющим фактором зачастую является исполнение и профессионализм звукорежиссёра, что позволяет сделать хорошую запись даже с минимальным набором микрофонов. А послушав некоторые джазовые записи, сделанные в начале 60-х годов, нельзя не отметить, что они звучат очень живо и музыкально: может быть, не так уж и важно, что они не в Hi-Res.

Источник

Цифровой аудиоформат 24/192, и почему в нем нет смысла. Часть 2 [Перевод]

Сохранить и прочитать потом —

24bit 192khz что это

Прим. перев.: Это перевод второй (из четырех) частей развернутой статьи Кристофера «Монти» Монтгомери (создателя Ogg Free Software и Vorbis) о том, что, по его мнению, является одним из наиболее распространенных и глубоко укоренившихся заблуждений в мире меломанов.

Частота 192 кГц считается вредной

Музыкальные цифровые файлы с частотой 192 кГц не приносят никакой выгоды, но всё же оказывают кое-какое влияние. На практике оказывается, что их качество воспроизведения немного хуже, а во время воспроизведения возникают ультразвуковые волны.

И аудиопреобразователи, и усилители мощности подвержены влиянию искажений, а искажения, как правило, быстро нарастают на высоких и низких частотах. Если один и тот же динамик воспроизводит ультразвук наряду с частотами из слышимого диапазона, то любая нелинейная характеристика будет сдвигать часть ультразвукового диапазона в слышимый спектр в виде неупорядоченных неконтролируемых нелинейных искажений, охватывающих весь слышимый звуковой диапазон. Нелинейность в усилителе мощности приведет к такому же эффекту. Эти эффекты трудно заметить, но тесты подтвердили, что оба вида искажений можно расслышать.

24bit 192khz что это

График выше показывает искажения, полученные в результате интермодуляции звука частотой 30 кГц и 33 кГц в теоретическом усилителе с неизменным коэффициентом нелинейных искажений (КНИ) около 0.09%. Искажения видны на протяжении всего спектра, даже на меньших частотах.

Неслышимые ультразвуковые волны способствуют интермодуляционным искажениям в слышимом диапазоне (светло-синяя зона). Системы, не предназначенные для воспроизведения ультразвука, обычно имеют более высокие уровни искажений, около 20 кГц, дополнительно внося вклад в интермодуляцию. Расширение диапазона частот для включения в него ультразвука требует компромиссов, которые уменьшат шум и активность искажений в пределах слышимого спектра, но в любом случае ненужное воспроизведение ультразвуковой составляющей ухудшит качество воспроизведения.

Все эти способы нацелены на решение одной проблемы, но только 4 способ имеет какой-то смысл.

Если вам интересны возможности вашей собственной системы, то нижеследующие сэмплы содержат: звук частотой 30 кГц и 33 кГц в формате 24/96 WAV, более длинную версию в формате FLAC, несколько мелодий и нарезку обычных песен с частотой, приведенной к 24 кГц так, что они полностью попадают в ультразвуковой диапазон от 24 кГц до 46 кГц.

Предположим, что ваша система способна воспроизводить все форматы с частотами дискретизации 96 кГц [6]. При воспроизведении вышеуказанных файлов, вы не должны слышать ничего, ни шума, ни свиста, ни щелчков или каких других звуков. Если вы слышите что-то, то ваша система имеет нелинейную характеристику и вызывает слышимые нелинейные искажения ультразвука. Будьте осторожны при увеличении громкости, если вы попадете в зону цифрового или аналогового ограничения уровня сигнала, даже мягкого, то это может вызвать громкий интермодуляционный шум.

В целом, не факт, что нелинейные искажения от ультразвука будут слышимы на конкретной системе. Вносимые искажения могут быть как незначительны, так и довольно заметны. В любом случае, ультразвуковая составляющая никогда не является достоинством, и во множестве аудиосистем приведет к сильному снижению качества воспроизведения звука. В системах, которым она не вредит, возможность обработки ультразвука можно сохранить, а можно вместо этого пустить ресурс на улучшение качества звучания слышимого диапазона.

Недопонимание процесса дискретизации

Теория дискретизации часто непонятна без контекста обработки сигналов. И неудивительно, что большинство людей, даже гениальные доктора наук в других областях, обычно не понимают её. Также неудивительно, что множество людей даже не осознают, что понимают её неправильно.

24bit 192khz что это

Дискретизированные сигналы часто изображают в виде неровной лесенки, как на рисунке выше (красным цветом), которая выглядит как грубое приближение к оригинальному сигналу. Однако такое представление является математически точным, и когда происходит преобразование в аналоговый сигнал, его график становится гладким (голубая линия на рисунке).

Наиболее распространенное заблуждение заключается в том, что, якобы, дискретизация – процесс грубый и приводит к потерям информации. Дискретный сигнал часто изображается как зубчатая, угловатая ступенчатая копия оригинальной идеально гладкой волны. Если вы так считаете, то можете считать, что чем больше частота дискретизации (и чем больше бит на отсчет), тем меньше будут ступеньки и тем точнее будет приближение. Цифровой сигнал будет все больше напоминать по форме аналоговый, пока не примет его форму при частоте дискретизации, стремящейся к бесконечности.

По аналогии, множество людей, не имеющих отношения к цифровой обработке сигналов, взглянув на изображение ниже, скажут: «Фу!» Может показаться, что дискретный сигнал плохо представляет высокие частоты аналоговой волны, или, другими словами, при увеличении частоты звука, качество дискретизации падает, и частотная характеристика ухудшается или становится чувствительной к фазе входного сигнала.

24bit 192khz что это

Это только так выглядит. Эти убеждения неверны!

Комментарий от 04.04.2013: В качестве ответа на всю почту, касательно цифровых сигналов и ступенек, которую я получил, покажу реальное поведение цифрового сигнала на реальном оборудовании в нашем видео Digital Show & Tell, поэтому можете не верить мне на слово.

Все сигналы частотой ниже частоты Найквиста (половина частоты дискретизации) в ходе дискретизации будут захвачены идеально и полностью, и бесконечно высокая частота дискретизации для этого не нужна. Дискретизация не влияет на частотную характеристику или фазу. Аналоговый сигнал может быть восстановлен без потерь – таким же гладким и синхронным как оригинальный.

С математикой не поспоришь, но в чем же сложности? Наиболее известной является требование ограничения полосы. Сигналы с частотами выше частоты Найквиста должны быть отфильтрованы перед дискретизацией, чтобы избежать искажения из-за наложения спектров. В роли этого фильтра выступает печально известный сглаживающий фильтр. Подавление помехи дискретизации, на практике, не может пройти идеально, но современные технологии позволяют подойти к идеальному результату очень близко. А мы подошли к избыточной дискретизации.

Частоты дискретизации свыше 48 кГц не имеют отношения к высокой точности воспроизведения аудио, но они необходимы для некоторых современных технологий. Избыточная дискретизация (передискретизация) – наиболее значимая из них [7].

Идея передискретизации проста и изящна. Вы можете помнить из моего видео «Цифровое мультимедиа. Пособие для начинающих гиков», что высокие частоты дискретизации обеспечивают гораздо больший разрыв между высшей частотой, которая нас волнует (20 кГц) и частотой Найквиста (половина частоты дискретизации). Это позволяет пользоваться более простыми и более надежными фильтрами сглаживания и увеличить точность воспроизведения. Это дополнительное пространство между 20 кГц и частотой Найквиста, по существу, просто амортизатор для аналогового фильтра.

24bit 192khz что это

На рисунке выше представлены диаграммы из видео «Цифровое мультимедиа. Пособие для начинающих гиков», иллюстрирующие ширину переходной полосы для ЦАП или АЦП при частоте 48 кГц (слева) и 96 кГц (справа).

Это только половина дела, потому что цифровые фильтры имеют меньше практических ограничений в отличие от аналоговых, и мы можем завершить сглаживание с большей точностью и эффективностью. Высокочастотный необработанный сигнал проходит сквозь цифровой сглаживающий фильтр, который не испытывает проблем с размещением переходной полосы фильтра в ограниченном пространстве. После того, как сглаживание завершено, дополнительные дискретные отрезки в амортизирующем пространстве просто откидываются. Воспроизведение передискретизированного сигнала проходит в обратном порядке.

Это означает, что сигналы с низкой частотой дискретизации (44.1 кГц или 48 кГц) могут обладать такой же точностью воспроизведения, гладкостью АЧХ и низким уровнем наложений, как сигналы с частотой дискретизации 192 кГц или выше, но при этом не будет проявляться ни один из их недостатков (ультразвуковые волны, вызывающие интермодуляционные искажения, увеличенный размер файлов). Почти все современные ЦАП и АЦП производят избыточную дискретизацию на очень высоких скоростях, и мало кто об этом знает, потому что это происходит автоматически внутри устройства.

ЦАП и АЦП не всегда умели передискретизировать. Тридцать лет назад некоторые звукозаписывающие консоли использовали для звукозаписи высокие частоты дискретизации, используя только аналоговые фильтры. Этот высокочастотный сигнал потом использовался для создания мастер-дисков. Цифровое сглаживание и децимация (повторная дискретизация с более низкой частотой для CD и DAT) происходили на последнем этапе создания записи. Это могло стать одной из ранних причин, почему частоты дискретизации 96 кГц и 192 кГц стали ассоциироваться с производством профессиональных звукозаписей.

16 бит против 24 бит

Хорошо, теперь мы знаем, что сохранять музыку в формате 192 кГц не имеет смысла. Тема закрыта. Но что насчет 16-битного и 24-битного аудио? Что же лучше?

16-битное аудио с импульсно-кодовой модуляцией действительно не полностью покрывает теоретический динамический звуковой диапазон, который способен слышать человек в идеальных условиях. Также есть (и будут всегда) причины использовать больше 16 бит для записи аудио.

Ни одна из этих причин не имеет отношения к воспроизведению звука – в этой ситуации 24-битное аудио настолько же бесполезно, как и дискретизация на 192 кГц. Хорошей новостью является тот факт, что использование 24-битного квантования не вредит качеству звучания, а просто не делает его хуже и занимает лишнее место.

Примечания к Части 2

6. Многие из систем, которые неспособны воспроизводить сэмплы 96 кГц, не будут отказываться их воспроизводить, а будут незаметно субдискретизировать их до частоты 48 кГц. В этом случае звук не будет воспроизводиться совсем, и на записи ничего не будет, вне зависимости от степени нелинейности системы.

7. Передискретизация – не единственный способ работы с высокими частотами дискретизации в обработке сигналов. Есть несколько теоретических способов получить ограниченный по полосе звук с высокой частотой дискретизации и избежать децимации, даже если позже он будет субдискретизирован для записи на диски. Пока неясно, используются ли такие способы на практике, поскольку разработки большинства профессиональных установок держатся в секрете.

8. Неважно, исторически так сложилось или нет, но многие специалисты сегодня используют высокие разрешения, потому что ошибочно полагают, что звук с сохраненным содержимым за пределами 20 кГц звучит лучше. Прямо как потребители.

Источник

Цифровой аудиоформат 24/192, и почему в нем нет смысла. Часть 1 [Перевод]

Сохранить и прочитать потом —

24bit 192khz что это

В прошлом месяце [оригинальная статья написана в марте 2012] заголовки в прессе сообщали о том, что музыкант Нил Янг и основатель компании Apple Стив Джобс обсуждали возможный запуск сервиса для скачивания музыкальных форматов «бескомпромиссного студийного качества». Большинство газет, журналов и пользователей были настроены достаточно оптимистично касательно перспектив цифрового музыкального формата c квантованием сигнала в разрядность 24 бита, при частоте дискретизации 192 кГц.

К сожалению, нет никакого смысла записывать музыку в формате 24/192. Его точность воспроизведения кардинально не превосходит форматы 16/44 или 16/48, но при этом он занимает в 6 раз больше места.

На сегодняшний день существует несколько проблем, связанных с качеством аудио и «применением» распространяемой цифровой музыки. Формат 24/192 не решает ни одну из них. Пока все считают этот формат панацеей, мы не увидим никаких улучшений в музыкальной сфере.

Начнем с плохих новостей

В течение прошедших нескольких недель я общался с разумными, не обделенными научными знаниями людьми, которые верят в музыкальный формат 24/192 и не понимают, как кто-то может не соглашаться с этим. Они задавали хорошие вопросы, которые стоят того, чтобы на них ответили подробно.

Я также задался вопросом, что могло вызвать такую активную поддержку цифрового аудио с высокой частотой дискретизации. Ответы показали, что немногие из людей понимают основы теории сигналов или теорему отсчетов (теорему Котельникова или Найквиста — Шеннона), что неудивительно. Недопонимание математики, технологий и физиологии проявлялись в речах многих профессионалов, которые обладают большим опытом сфере аудиотехнологий. Некоторые даже утверждали, что теорема Котельникова не объясняет, как работает цифровое аудио[1].

Дезинформация и предрассудки на руку только шарлатанам. Давайте разберем основы того, почему же распространение формата 24/192 не имеет смысла, перед тем как выдвигать другие, более обоснованные идеи.

Господа, встречайте! Ваши уши!

Ухо слышит с помощью волосковых клеток, которые расположены на резонансной базилярной мембране в улитке внутреннего уха. Каждая волосковая клетка точно настроена на определенный узкий частотный диапазон, который определяется положением клетки на мембране. Пик чувствительности находится в середине частотного диапазона, который постепенно спадает в обоих направлениях и принимает ассиметричную конусовидную форму, перекрывающую частотные диапазоны соседних клеток. Мы не слышим звук, если нет волосковых клеток, настроенных на эту частоту.

24bit 192khz что это

С левой стороны рисунка изображена человеческая улитка с базилярной мембраной (она окрашена бежевым цветом) в разрезе. Мембрана устроена так, что она резонирует в различных местах на протяжении своей длины, в зависимости от входящей частоты: высокие частоты резонируют ближе к основанию, а низкие у противоположного конца. На рисунке отмечены приблизительные расположения нескольких частот.

На правой стороне схематически изображена диаграмма реакции волосковых клеток вдоль базилярной мембраны, в виде группы перекрывающихся сигналов.

Процесс схож с аналоговым радиоприемником, принимающим частотный сигнал, на который он настроен, с близлежащей радиостанции. Чем сильнее не совпадают частоты приемника и станции, тем более неустойчивым и искаженным будет сигнал, вне зависимости от его силы. Существуют верхний (и нижний) уровни частотного диапазона, за пределами которого волосковые клетки не способны принимать сигналы, и мы ничего не слышим.

Частота дискретизации и спектр слышимых частот

Я уверен, вы слышали множество раз, что частоты от 20 Гц до 20 кГц являются диапазоном слышимости человеческого уха. Очень важно понять, как ученые пришли именно к таким цифрам.

Сначала мы измеряем «порог слышимости» по всему звуковому диапазону у группы слушателей. Это дает нам возможность построить кривую, представляющую самый тихий звук, который может услышать человеческое ухо при любой заданной частоте, измеренной в идеальных условиях на здоровых ушах. Безэховое окружение, точность калибровки оборудования воспроизведения и строгость статистического анализа – это легкая часть эксперимента. Слуховая концентрация теряется очень быстро, поэтому тестирование нужно проводить, пока испытуемый не утомлен. Как следствие, возникает множество перерывов и пауз, и тестирование может занимать от нескольких часов до многих дней, в зависимости от методологии.

Затем мы собираем информацию в другой крайности – о «болевом пороге». В этой точке на графике амплитуда настолько высока, что перепонки и нервный аппарат уха перегружаются входным сигналом, и испытуемый начинает испытывать боль. Нужно следить, чтобы в ходе эксперимента не повредить никому слух, поэтому собрать эти данные гораздо сложнее.

24bit 192khz что это

На рисунке выше изображены аппроксимированные кривые равной громкости, которые получили Флетчер и Мансон (Fletcher and Munson) в 1933 году, а также показания для частот более 16 кГц, полученные из современных источников. Порог слышимости и болевой порог обозначены красными линиями. Ученые, занимающиеся этим вопросом в последующем, уточняли эти показания. Результатом стала единица измерения «фон» и стандарт ISO 226 для кривых равной громкости. Последние собранные данные показывают, что ухо значительно хуже воспринимает низкие частоты, чем считали Флетчер и Мансон.

Верхний предел диапазона слышимости человеческого уха находится в том месте, где кривая болевого порога пересекает кривую слышимости. В этой точке, или за её пределами, звук резко становится невыносимо громким.

На низких частотах улитка уха работает как рефлексный низкочастотный динамик. Геликотрема представляет собой отверстие на конце базилярной мембраны, которое выступает в роли канала, принимающего частоту от 40 Гц до 65 Гц, у разных людей по-разному. Ниже этой частоты характеристика реакции резко скатывается вниз.

Диапазон от 20 Гц до 20 кГц – это стандартный диапазон слышимости. Он полностью перекрывает слышимый звуковой спектр, что подтверждено практически столетним сбором экспериментальных данных.

Идеальный слух или наследственный дар

Получая множество писем, я вижу, что множество людей верит в существование уникумов с исключительным слухом. Действительно ли существуют такие люди с «золотыми ушами»?

Зависит от того, что называть исключительным слухом.

Здоровые уши молодых людей слышат лучше, чем уши пожилых людей или поврежденные уши. Некоторые люди исключительно хорошо натренированы слышать все нюансы звука и музыки, о существовании которых большинство людей даже не догадывается. Когда-то в 90х я мог распознать каждый mp3-кодировщик (в то время все они были довольно плохими) и мог продемонстрировать это в двойном слепом тесте[2].

Если человек обладает здоровыми ушами и хорошо натренирован на распознавание звуков, я бы назвал его слух исключительным. Тем не менее, люди со слухом ниже среднего могут быть обучены замечать детали, которые ускользают от неподготовленных слушателей. Исключительный слух, по большей части, вопрос тренировки, а не способности слышать за пределами слухового диапазона обычных смертных.

Исследователи слуха очень бы хотели найти кого-либо как с исключительным слухом, так и со способностью слышать за пределами слухового диапазона, чтобы протестировать и записать результаты исследования. Ничего не имею против обычных людей, но каждый ученый хочет найти человека с генетическими причудами, чтобы написать первоклассную статью. Мы не нашли таких людей за 100 лет проведения испытаний, так что, вероятно, их не существует. Так что извините. Но мы продолжим искать дальше.

Любовь к цветовому спектру

Возможно, вы отнеслись скептично ко всему, что я только что написал, потому что это идет вразрез со всеми маркетинговыми ходами. Вместо этого, давайте предположим, что у людей возникла мания на расширение цветового диапазона, и отвлечёмся от звуковой тематики.

24bit 192khz что это

На рисунке выше изображена приблизительная шкала чувствительности палочек и колбочек человеческого глаза, сопоставленная с видимым спектром. Эти органы чувств реагируют на свет в перекрывающихся спектральных полосах, также как волосковые ячейки в ушах настроены на восприятие перекрывающихся полос звуковых частот.

Человеческий глаз видит ограниченный диапазон световых волн, называемый видимым излучением. Здесь прослеживается прямая аналогия с диапазоном слышимости звуковых волн. Также как и ухо, глаз имеет чувствительные клетки (палочки и колбочки) которые улавливают свет в различных, но перекрывающихся полосах частот.

Видимое излучение начинается с частоты около 400 ТГц (темно-красный) и простирается до 850 ТГц (темно-фиолетовый) [3], но острота зрения падает с течением жизни. За пределами этого приблизительного диапазона сила света, попадающая в глаза, может выжечь вам сетчатку. Таким образом, получается, что диапазон довольно приличный даже для молодых, здоровых, генетически одаренных личностей – диапазон, который аналогичен широкому диапазону звукового спектра.

Давайте предположим, что в нашем гипотетическом мире, где происходит повальное увлечение расширением видимого спектра видеозаписей, существует группа людей, которые считают, что эти ограничения недостаточно щедры. Они полагают, что видеозапись представляет собой не только зрительный спектр, но еще и инфракрасное и ультрафиолетовое излучения. Продолжив сравнение, предположим, что наиболее активная часть группы (которая гордится этим!) утверждает также, что и этого расширенного спектра недостаточно, и видео будет казаться наиболее естественным, если туда будут попадать микроволны и рентгеновское излучение. Для тех у кого «глаз – алмаз» разница будет огромная, просто день и ночь!

Разумеется, это просто смешно.

Никто не может увидеть рентгеновское излучение (или инфракрасное, или ультрафиолетовое, или микроволны). Неважно, насколько сильно человек верит в то, что он может, сетчатка просто не имеет необходимых инструментов для того, чтобы их воспринимать.

Вот эксперимент, который каждый может провести: сходите и возьмите ИК пульт от Apple [TV]. Светодиод излучает волны длиной 980 нм, примерно равные частоте в 306 ТГц, что близко к инфракрасному спектру. Волны такой длины находятся не так уж и далеко за пределами видимого диапазона. Возьмите пульт в подвал или в самую темную комнату с выключенным светом в своем доме посреди ночи и дайте своим глазам привыкнуть к темноте.

24bit 192khz что это

На картинке выше изображен инфракрасный пульт Apple TV, сфотографированный с помощью цифровой камеры. Хотя излучатель достаточно яркий и частота излучения подходит довольно близко к частоте красной части видимого спектра, инфракрасное излучение абсолютно невидимо для человеческого глаза.

Можете ли вы увидеть, как загорается светодиод пульта, когда вы нажимаете на кнопку[4]? Нет? Даже небольшой проблеск? Попробуйте несколько других пультов, во многих из них используется инфракрасное излучение диапазона 310-350 ТГц, подходящее немного ближе к видимой полосе частот, но вы не сможете разглядеть и его тоже. Остальные пульты излучают свет на частотах 350-380 ТГц, находящихся прямо на краю видимого диапазона, и он едва различим в абсолютной темноте, когда глаза к ней привыкнут [5]. Если бы их частоты совпадали с частотами видимого диапазона, то они были бы ослепительно и болезненно яркими.

Спектр инфракрасных светодиодов составляет максимум 20% от видимого диапазона и находится за его пределами. Частота 192 кГц выходит за рамки диапазона слышимости на 400%. Чтобы меня не обвиняли в сравнении яблок с апельсинами, напомню, что звуковое и зрительное восприятие одинаково ухудшается на границах своих спектров.

Примечания к Части 1

1. Как написал один разочарованный блогер: «Теорема Котельникова не объясняет, как работает цифровое аудио, наоборот, цифровое аудио было изобретено как следствие теоремы, если вы не верите теореме, то вы не можете верить и в существование цифрового звука».

2. Если это и не был самый скучный трюк, чтобы хвастаться им на вечеринках, то он был достаточно близок к этому.

3. Более характерно говорить о видимом излучении как о длинах волн, измеренных в нанометрах или ангстремах. Я использую частоту, чтобы как-то сопоставить ее со звуком. Эти величины эквиваленты, потому что частота обратно пропорциональна длине волны.

5. В оригинальной версии статьи говорится, что ИК-светодиоды работают на частотах 300-325 ТГц (около 920-980 нм) длин волн, которые невидимы. Довольно много читателей написали мне, что они могут видеть слабое свечение в некоторых (или всех) их пультах. Некоторые из этих людей были достаточно любезны, и сообщили мне модели пультов. Кое-какие из них я проверил на спектрометре. И смотрите-ка! Эти пульты используют высокочастотные светодиоды, работающие на частотах 350-380 ТГц (800-850 нм), а они как раз перекрывают границы видимого диапазона.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *