3440×1440 что за разрешение
Стоит ли связываться с мониторами 21:9?
Широкоформатные мониторы с соотношением сторон 21:9 становятся все популярнее. На них удобно монтировать видео и смотреть кино, а многие любители собирать себе системы с двумя мониторами уже всерьез думают заменить их на один широкоформатный.
Для игр такая перспектива тоже кажется заманчивой: изгиб экрана создает атмосферную панораму, картинка обволакивает зрителя и целиком захватывает его внимание.
Постановка задачи
Для тестов мы запросили у компании LG монитор 34UC98-W с диагональю 34 дюйма. Родное разрешение — 3440×1440. Именно на нем мы будем тестировать разные проекты.
Даже без тестов уже можно сказать, что игры ведут себя в таком разрешении по-разному. Некоторые идут без проблем и дают обзор на всю ширину монитора. Другие рисуют по центру экрана обычную картинку 16:9 (чаще всего это касается соревновательных игр и сделано нарочно, чтобы не дать преимущества отдельным игрокам) и добавляют по бокам черные полосы. Наконец, часть игр не подготовлена к UltraWide и поначалу капризничает, но их довольно легко уболтать с помощью патча или простенькой утилиты.
В процессе тестирования мы будем проверять на конкретных примерах, как поведет себя конкретная игра и какое поведение скорее в порядке вещей, а какое — редкое исключение из правил.
Очумелые ручки
The Elder Scrolls: Skyrim — непростой пациент. Хотя это самая свежая часть серии, разработчики так и не разрешили запускать ее в 21:9. Мы довольно быстро нашли способ это исправить. В Steam есть программа Skyrim Script Extender (SKSE): благодаря ей можно играть без «полей», следует только вручную поменять разрешение игры в одном файле и запускать игру напрямую, без предварительного экрана с выбором модификаций и настроек. Если же запускать игру через лончер, черные поля останутся.
Подобные трюки придется проворачивать и с другими играми Bethesda — черные полосы встретили нас и в Fallout 4. Решение схожее, результат впечатляющий. Хотя внутриигровые ролики идут в прежнем разрешении, а некоторые элементы интерфейса отображаются с небольшими огрехами (например, экран управления силовой броней).
Metal Gear Solid V: The Phantom Pain тоже отказался запускаться без полей. Но народные умельцы уже решили проблему: небольшой патч позволяет игре раскрыть во всей своей красоте. Скачиваем программу, нажимаем пару кнопок, и перед вами — Афганистан в разрешении 3440×1440.
Программным ограничением нас обидели и создатели Mortal Kombat X. Последняя часть культового файтинга упорно не хотела показываться в 21:9. Помогла универсальная программа Flawless Widescreen, решающая проблему не только этой игры, но и многих других. Мы еще пару раз помянем ее добрым словом — всего одно нажатие перед запуском, и черных полос как не бывало. Главное — не выходить с ней в онлайн в соревновательных играх, а то за подобное неучтенное преимущество могут и забанить.
Ведь, если вдуматься, есть игры, в которых лишние сантиметры обзора могут существенно повлиять на исход боя. В свете этого удивительно, что, например, Dota 2 исправно работает на UltraWide безо всякого ручного вмешательства и выдает полноценную картинку 21:9. Ну, почти полноценную — чуть-чуть глючит. Карта упорно не желает занимать часть выделенного ей пространства внутри рамки, а текстовые сообщения по ходу игры частично перекрываются изображениями. Один из пользователей форума WideScreen Gaming даже выпустил исправление, устраняющее баг с картой, но каждый новый официальный патч возвращает ошибку. Так тоже бывает.
Без шансов
Broken Age от Double Fine — одна из немногих игр, где решить проблему черных полос не удалось вовсе. С любовью нарисованный мир нельзя перенести в 21:9, разве что растянуть на весь экран, исказив пропорции. А этого, конечно, делать не надо.
Еще есть серия игр, в которые никак нельзя поиграть в 21:9 по другой причине: у них это категорически запрещено. StarCraft 2 принципиально пойдет только в 16:9, с полосами по бокам. Согласитесь, это тот случай, когда дополнительное пространство обзора — огромное преимущество.
Похожая ситуация сложилась и с другим проектом Blizzard — командным боевиком Overwatch. На наш взгляд, тут преимущество обладателей широкоформатной техники было бы не таким уж значительным. Но разработчики, похоже, всерьез метят в киберспорт и настаивают: все должны быть в равных условиях.
Идеально на 21:9
Подавляющее большинство игр не просто идет в пропорциях 21:9, но и делает это безо всяких проблем. И выглядит при этом потрясающе. Например, нам очень понравилось, как смотрится Hitman: Absolution. Он с ходу идет в нужном разрешении.
Приятно удивили Grand Theft Auto V, SOMA и Cities: Skylines. Порадовала Banner Saga 2, мигом запустившаяся в 3440х1440. Шикарно смотрится новый Doom (мы даже включили его сразу на трех мониторах LG, образующих полукруглую панораму, — и это вообще нечто невероятное). Из новых проектов без проблем запустился и работал Homefront: Revolution.
В некоторых из этих игр заранее отснятые кат-сцены отображались с черными полосами по бокам. Однако там, где эти сцены рисуются самим движком (как в GTA V), даже такой проблемы, естественно, не было. Flawless Widescreen делает свое дело, а мы только задаемся риторическим вопросом: почему Rockstar, огромная технологичная компания, изначально не внедрила полноценную поддержку UltraWide?
Новые широкоформатные мониторы совместимы не со всеми играми, особенно это касается старых. Часть проектов пойдет в пропорциях 16:9, оставив слева и справа пустые поля. Однако чем новее игра, тем вероятнее, что она уже умеет рисовать картинку во всю ширину монитора.
И вот тогда вы получите игровой опыт и глубину погружения, которые не даст вам ни один традиционный экран. Это более всего касается игр на высоких скоростях (гонки, симуляторы) и со сногсшибательными пейзажами — в диапазоне от GTA до третьего «Ведьмака».
Стоит ли покупать? Еще год назад мы сказали бы вам «нет». А вот сегодня уже неплохо бы задуматься. Чем дальше, тем лучше будет поддерживаться формат 21:9. Скоро никому уже не понадобятся любительские патчи, приучающие игру к UltraWide.
Ультраширокие экраны давно не экзотика: продаются в любом магазине, активно рекламируются, да и в статистике Steam выбрались из зоны 0,01%. Неудивительно, ведь на них удобнее работать, да и фильмы можно смотреть без чёрных полос. Но вот беда: говорят, UltraWide-дисплеи плохо подходят для гейминга. Проверим?
Почему игры могут работать хуже?
Тут всё одновременно и просто, и сложно. Начнём с того, что некоторые блокбастеры не поддерживают сверхширокие мониторы. Например, Metal Gear Solid V не знает о существовании 3440×1440, идёт ли речь об оконном или полноэкранном режиме. Никакими ухищрениями в таком формате его не запустить. Ряд хитов нетрудно адаптировать к экзотическому разрешению благодаря пользовательским патчам (а заодно получить бан в мультиплеере). Какие-то релизы без «костылей» запускаются в 21:9, но с проблемами: сдвигается интерфейс, криво отображается меню. А ведь есть ещё один нюанс — производительность.
Если сравнивать 1920×1080 и 2560×1080, любому понятно: во втором случае возрастает нагрузка на видеокарту. Но что, если сопоставить 2560×1440 и 2560×1080? Казалось бы, ответ очевиден: меньше пикселей — выше значение fps. Но и тут всё не так просто.
Производительность зависит не только от разрешения, но и от оптимизации движка.
Существует популярный миф о том, что разработчики тратят уйму времени и денег на адаптацию проектов под возможности популярного железа. С одной стороны, логично: если у большинства игра будет «летать», то и отзывы окажутся положительными. С другой — без смелых экспериментов банально остановится прогресс. Поэтому появляются блокбастеры с трассировкой лучей, поддержкой свежих DirectX и сверхшироких разрешений. Само собой, всё это высокотехнологичное добро может работать не так шустро, как раньше. Технологии нужно время, чтобы устояться и избавиться от «детских болезней», а студиям — научиться правильно применять новые фишки.
Что влияет на производительность при супершироком мониторе?
Предположим, ААА-хит нормально запускается с соотношением сторон 21:9. Либо худо-бедно поддерживает отрисовку с незначительными огрехами в интерфейсе и заставках. Вариантов отображения картинки два. Некоторые игры, подобно Overwatch, срежут часть объектов в кадре сверху и снизу, сохранив исходный угол обзора по горизонтали.
Другой вариант — как во многих шутерах и гонках — оставить нетронутой высоту, но добавить недостающие фрагменты по бокам. Разумеется, второй сценарий — это дополнительная нагрузка на GPU. Причём не только по части отрисовки дополнительных точек (относительно разрешения 16:9 с той же высотой кадра), но и затраты ресурсов на генерацию дополнительной геометрии и обсчёт освещения.
Ну что, настало время проверить всё на практике?
Методика тестирования
Испытания будем проводить на двух мониторах, используя пять разрешений экрана. За 16:9 отдуваются 3840×2160 (4K), 2560×1440 (WQHD), 1920×1080 (Full HD), запущенные на AOC AGON ag271ug. За 21:9 — 3440×1440 (1440p UltraWide) и 2560×1080 (1080р UltraWide), дисплей для тестов — AOC AGON ag352ucg. Игры возьмём разные: свежие, старые, с хорошей оптимизацией и не очень. Сделаем три прогона каждого из тестов, медианный результат занесём в таблицу.
Конфигурация демостенда
Процессор Intel Core i7-7820X
Оперативная память 64 ГБ DDR4 GeIL EVO X
Накопитель NVMe SSD Intel 760p
Видеокарты MSI GeForce GTX 1080
Palit GeForce GTX 1080 Ti
Palit GeForce RTX 2080
Блок питания Cooler Master V1000
Корпус Cooler Master Cosmos II
Как мы поймём, что влияет на скорость работы игры?
Поскольку UltraWide-разрешения по сравнению со стандартными немного увеличивают угол обзора, в кадр попадает чуть больше объектов. Однако многие движки отрабатывают этот этап построения картинки примерно за одно и то же время — вне зависимости от разрешения или соотношения сторон. Проверить несложно: нужно выяснить, насколько больше точек необходимо обсчитать при отрисовке, разделив соответствующие площади изображений (2560х1080 и 1920х1080 или 3440х1440 и 2560х1440) и сравнив среднее время кадра (количество fps / 1000). Если результат измерений вписывается в теорию, дополнительная геометрия кадра никак не влияет на производительность. Не вписывается — влияет.
В гонках изменение FOV влияет очень сильно: на краях кадра много объектов, к которым применяются сложные эффекты вроде размытия.
Проверяем арифметику другим путём. Теоретически, среднее арифметическое производительности из разрешений 1920х1080 и 2560х1440 должно быть близко по значению к результатам 2560х1080. По очевидным причинам — суперширокое разрешение по длине совпадает с WQHD, а по высоте — с Full HD, ведь общее число отображаемых пикселей сопоставимо. Справедливо и обратное: среднее арифметическое из 3440х1440 и 2560х1080 близко к 3000х1260 (3,78 Мп). В мониторах такое соотношение не используется, зато по итоговой площади близко к 2560х1440 (3,68 Мп). Следовательно, при сравнении этих результатов мы поймём, насколько сильнее грузит систему дисплей 21:9.
С математикой покончено. Перейдём к результатам измерений?
Что показали испытания
Средние значения по 9 играм следующие: при апгрейде с Full HD на его суперширокий вариант (2560×1080) производительность падает примерно на 18±2%, переход с WQHD на UWQHD (3440×1440) отъедает 15±2%. То есть при смене монитора на аналогичный по высоте вы потеряете около 16% fps. Влияния большего числа пикселей на время отрисовки одного кадра никто не отрицал, но из чего она складывается?
Осталось понять, виной тому «лишние» треугольники моделей или же расчёт освещения. Отклонение среднего теоретического времени кадра от реально полученного в измерениях составило менее 5%. Эта цифра находится далеко за порогом значимости в рамках исследования: этап подготовки геометрии практически не заметен на фоне текстурирования и пост-обработки.
Таким образом, миф об оптимизации развеян на практике.
Этой проблемы нет у современных блокбастеров, полностью поддерживающих UltraWide-разрешения. Ведь GPU всё равно бьёт картинку на квадратные фрагменты в момент обсчёта. Куда сильнее влияют дополнительные объекты в кадре и естественный рост нагрузки из-за большего числа точек на дисплее.
Разрешение экрана — что это такое и какое лучше
Содержание
Содержание
Смартфоны, ноутбуки, телевизоры: при покупке этой техники важно обращать внимание на одну из ключевых характеристик — разрешение экрана. Что это такое, какие форматы существуют и как этот параметр соотносится с диагональю экрана?
Разрешение экрана — это размер дисплея в пикселях. Указывается двумя числами — количество пикселей по горизонтали и по вертикали. Практически все современные экраны состоят из матрицы пикселей — маленьких элементов, каждый из которых способен изменять свой цвет, яркость, а в некоторых дисплеях еще и прозрачность.
Как правило, один пиксель состоит из триады субпикселей — красного, зеленого и синего. Комбинацией этих цветов получаются все остальные оттенки.
Разрешение экрана напрямую влияет на качество изображения. Однако этот параметр не соотносится с физическими размерами экрана. Например, есть два монитора разрешением 1920х1080, но один из них имеет диагональ 24 дюйма, а второй — 27. Несмотря на одинаковое разрешение, детализация будет разной.
Все дело в еще одном важном параметре — плотность пикселей на дюйм (PPI – pixel per inch). Чем выше этот параметр, тем выше будет детализация картинки.
Однако PPI существенно различается для разных классов устройств. На плотность влияет точность метода ввода (сенсор или курсор), физические размеры экрана и расстояние пользователя от дисплея. Если телефон мы используем на расстоянии 10–20 сантиметров от глаз, то для телевизора это несколько метров. В связи с этим, и плотность пикселей будет существенно отличаться.
Делать выводы о качестве картинки по PPI для разных классов устройств будет не совсем корректно. В сети также можно встретить утверждение, что человеческий глаз не способен распознать плотность пикселей выше 300 ppi. Различия между 500 ppi и 300 ppi на самом деле заметить смогут только люди с высокой остротой зрения, да и отличия будут настолько несущественные, что в повсеместном использовании разница просто незаметна.
Однако для одной категории товаров с идентичным разрешением плотность будет напрямую влиять на качество картинки.
Большинство производителей указывают PPI в характеристиках экрана. Но вы можете высчитать показатель и самостоятельно. Для этого вам понадобится знать разрешение и диагональ экрана в дюймах. Используйте формулу:
Wp — количество пикселей по горизонтали, Hp — количество пикселей по вертикали, а dp — разрешение по диагонали. Остается только поделить полученное значение на диагональ в дюймах:
Например, у нас есть монитор разрешением 1920х1080 и диагональю 24 дюйма. Тогда по формуле определим dp:
dp = √(1920^2+1080^2) = 2203. Далее делим полученное разрешение на диагональ: PPI = 2203/23,8 = 93.
Представленные характеристики соответствуют монитору Acer KA242Ybi, и, если вы изучите его параметры, то обнаружите, что PPI действительно составляет 93 пикселя на дюйм.
Откуда взялись 2К, 4К, 8К
Существуют больше 30 разнообразных форматов разрешений, начиная от QVGA 240х320 px и заканчивая ошеломляющим 10K с разрешением 10240×5760 px. Самые распространенные разрешения экрана вы можете изучить ниже.
Наименование | Разрешение | Соотношение сторон |
HDTV (Full HD) (FHD) 1080p | 1920×1080 | 16:9 |
WUXGA | 1920×1200 | 16:10 |
2K DCI (Cinema 2K) | 2048×1080 | 19:10 |
QWXGA | 2048×1152 | 16:9 |
QXGA | 2048×1536 | 4:3 |
UWHD | 2560×1080 | 64:27 |
WQXGA (WQHD) (QHD 2K) | 2560×1440 | 16:9 |
WQXGA | 2560×1600 | 16:10 |
QSXGA | 2560×2048 | 5:4 |
WQXGA+ | 3200×1800 | 16:9 |
WQSXGA | 3200×2048 | 25:16 |
QUXGA | 3200×2400 | 4:3 |
Ultra WQHD | 3440×1440 | 21:9 |
4K UHD (Ultra HD) | 3840×2160 | 16:9 |
WQUXGA | 3840×2400 | 16:10 |
4K DCI (Cinema 4K) | 4096×2160 | 19:10 |
5K / UHD + | 5120×2880 | 16:9 |
HSXGA | 5120×4096 | 5:4 |
WHSXGA | 6400 × 4096 | 25:16 |
HUGA | 6400 × 4800 | 4:3 |
8K UHD (UHDTV-2X) | 7680 × 4320 | 16:9 |
WHUXGA | 7680 × 4800 | 16:10 |
10K | 10240 × 5760 | 16:9 |
12K | 11520 × 6480 | 16:9 |
Внимательные читатели заметили, что в таблице есть пара разных строк с обозначениями 2К. Аналогичная ситуация и с разрешением 4К. На самом деле под формат 4К существуют сразу несколько разных разрешений:
Академический 4K | 3656 × 2664 | 1,37:1 |
Кашетированный 4K | 3996 × 2160 | 1,85:1 (Flat) |
Полнокадровый 4K | 4096 × 3072 | 1,33:1 (4:3, 12:9) |
Широкоэкранный 4K | 4096 × 1716 | 2,39:1 (Scope) |
DCI 4K | 4096 x 2160 | 1,89:1 (256:135) |
Ultra HD 4K | 3840 × 2160 | 1,78:1 (16:9) |
По горизонтали практически все они приближены к четырем тысячам пикселей, а вот разрешение по вертикали напрямую зависит от соотношения сторон. Истинным 4К в данном случае называют DCI 4К, используемый в кинематографе. Однако соотношение сторон такого формата не подходило для мониторов и телевизоров. Именно поэтому Ассоциация потребительской электроники (CEA) в 2012 году утвердила единый 4К формат для цифровой электроники, который и получил название Ultra HD 4K.
Это означает, если на коробке монитора или телевизора указано 4К, то согласно принятой спецификации он будет иметь разрешение именно 3840х2160.
Аналогичная ситуация и с 2К — истинным считается DCI 2K 2048×1080, однако среди мониторов и телевизоров под 2К понимают форматы UWHD (2560×1080) или QHD (2560×1440).
По аналогии с уже установившимися 2К и 4К, формату 8К соответствует разрешение 7680×4320 пикселей.
Соотношение сторон экрана
Соотношение сторон показывает отношение горизонтальной и вертикальной стороны экрана друг к другу. Например, формат 1:1 — квадратное изображение. Как правило, конкретным разрешениям соответствуют определенные соотношения сторон.
Соотношение сторон | Типичные разрешения | Применение |
1,25:1 (5:4) | 1280×1024 | Устаревшие мониторы |
1,33:1 (4:3) | Широкоформатные 2К, 4К и FullHD мониторы и ТВ, некоторые ноутбуки | |
2,3:1 (21:9) | Некоторые мониторы и LCD телевизоры |
Какое соотношение лучше — зависит непосредственно от формата фильма или игры. С играми обычно проблем не бывает, поскольку они легко адаптируются под разные форматы, а вот при просмотре кино неподходящего разрешения по краям экрана могут появиться черные линии.
Самые популярные соотношения сторон, под которые адаптирована большая часть мультимедийного контента — 16:10 и 16:9.
Про разрешения экрана смартфонов
С мобильной электроникой все намного сложнее, поскольку разнообразия форм-факторов куда больше. Если рассмотреть линейку смартфонов от Apple, то здесь ситуация следующая:
Модель | Диагональ, дюймы | Разрешение экрана |
4, 4S | 3,5 | 640 х 960 |
5, 5C, 5S | 4 | 640 х 1136 |
6, 6S | 4,7 | 750 х 1334 |
6+, 6S+ | 5,5 | 1080 х 1920 |
7, 8 | 4,7 | 750 х 1334 |
7+, 8+ | 5,5 | 1080 х 1920 |
X, XS, 11 Pro | 5,8 | 1125 х 2436 |
XS Max, 11 Pro Max | 6,5 | 2688×1242 |
Разрешения FullHD 1920х1080 разработчикам удалось добиться при диагонали 5,5 дюйма, а максимальное 2688х1242 доступно на смартфонах диагональю 6,5 дюйма. Условно его можно назвать приближенным к 2К.
Для Android-гаджетов все еще сложнее, поскольку рынок представляют сотни разнообразных моделей. Условно можно выделить общую классификацию из пяти категорий:
Выпускаются и смартфоны с 4К дисплеем. Например, Xperia XZ2 Premium оснащен IPS-дисплеем с диагональю 5,8 дюйма и разрешением 3840×2160. Фактически, это «классический телевизионный» стандарт Ultra HD 4K, а плотность пикселей доходит до впечатляющих 765 ppi. Если вы ожидаете беспрецедентной четкости, то вас может ждать разочарование. Проблема в том, что увидеть разницу между FHD+ и 4К практически невозможно, особенно, в рамках дисплеев на 5-6 дюймов.
При подборе монитора для гейминга согласовывайте разрешение с железом. Не стоит гнаться за 2К и 4К мониторами, если у вас слабая видеокарта и процессор. Телевизоры для просмотра кино лучше брать с разрешением от 2К и соотношением сторон 16:9 или 16:10, чтобы в полной мере наслаждаться детализированной картинкой.
При покупке смартфона определяющим является плотность пикселей на дюйм, поскольку дисплей всегда находится перед глазами и «зернистость» увидеть проще всего. Ищите смартфоны с 300-450 ppi. Большую плотность ваш глаз уже не различит.