433 92 мгц что может быть на этой волне
Какая частота автосигнализации больше подходит для работы?
Большая часть автолюбителей даже не задумывается, на какой частоте работает передача сигналов на его сигнализации. И что вообще такое частота сигнализации и на какие потребительские характеристики она влияет. Давайте разберемся!
На что она влияет и можно ли узнать частоту брелка?
Частота работы автосигнализации – это характеристика радиопередатчиков, находящихся в блоке управления и брелке. Этот показатель измеряется в Герцах (Гц). Его физический смысл заключается в том, как часто радиопередатчик излучает радиоволну, передавая сигнал. Дополнительной величиной, напрямую связанной с частотой, является длина волны, которая влияет на физические ее свойства. Чем выше частота, тем меньше длина.
Частота радиопередачи влияет на дальность радиосвязи брелка и автомобиля, на способность сигнала преодолевать препятствия (бетонные стены, металлоконструкции, другие автомобили).
На большинстве брелков не указывают информацию о частоте его работы. Однако, по брелку можно определить модель сигнализации. Зная модель, можно легко найти в интернете информацию о его рабочей частоте.
На какой работают новые модели?
27 МГц
Входит в диапазон HF (3—30 МГц) по обозначению МСЭ (Международный союз электросвязи). Относится к высоким частотам (ВЧ). Данный диапазон используется в радиовещании, радиосвязи, радиолокации, некоторых рациях, выходной мощностью передатчика до 10 Вт, радиоуправляемых моделях.
27 мегагерц называют «гражданским диапазоном», Си-Би (Citizen`s Band) или «11-метровым». Си-Би доступный и надежный способ связи. В Российской Федерации это основная гражданская связь.
Модели автосигнализаций, работающие на данной частоте скорее всего сильно устаревшие. Как правило для их функционирования необходимы антенны большого размера, так как длина волны составляет 11 метров. В данном контексте можно выделить одно главное преимущество диапазона:
А вот недостатков уже несколько:
Справка! Большинство «Си-Би» радиостанций в 2010 году были сняты с производства.
433 МГц
Находится в диапазоне UHF (300—3000 МГц), согласно МСЭ. Являются УВЧ (Ультравысокие частоты). Используется в телевидении, радиосвязи, мобильных телефонах, рациях, с выходной мощностью не более 0,01 Вт, УВЧ-терапии, микроволновых печах, спутниковой навигации. Так же на ней работают автоматические шлагбаумы и ворота.
Этот диапазон называют LPD ( Low Power Device) — маломощные устройства. Длина его волны – 70 см. В этих рамках волны начинают приобретать свойства света: поглощаться препятствиями и отражаться от них. В РФ выделено 69 каналов для связи на этой частоте. Пользоваться ими можно с некоторыми ограничениями. 433 МГц – официальная частота работы для автосигнализации. На этой частоте работают почти все охранные системы.
Справка! Американские и Японские сигнализации работают на частоте около 300 МГц.
868 МГц
Находится так же в диапазоне UHF (300—3000 МГц) по МСЭ. Не является диапазоном для гражданского использования, но его можно применять без разрешительных лицензий. По требованию органов надзора выходная мощность излучателей радиоволн не должна превышать 25 мВт. Начал использоваться в автосигнализациях сравнительно недавно. Имеет еще более короткую волну, чем у 433 МГц, равную 35 см.
Этот стандарт связи ввели из-за того, что радиоустройств с каждым годом становится все больше. И рано или поздно каналы были бы настолько загружены, что системы постоянно бы работали с помехами.
К преимуществам можно отнести:
Однако, тот факт, что диапазон 868 МГц менее нагружен, говорит о том, что на практике расстояние связи у него и у 433 МГц приблизительно равен.
Полезное видео
Наглядно с работой глушилок сигнализации ознакомьтесь в видео ниже:
Однако, большинство современных сигнализаций все равно работают в диапазоне 433 МГц. Трудно сказать, получит ли 868 МГц такое же большое распространение.
Еще раз о передатчиках и приемниках 433 МГц
Простейший комплект из приемника и передатчика ISM-диапазона 433 МГц завоевал заслуженную популярность в среде любителей электроники. Комплекты дешевы (даже в «Чипе-Дипе» их можно купить рублей за 300, а на Ali, говорят, вообще за полтинник), просты и надежны. Кроме того (о чем вы, возможно, не подозреваете), это самый дальнодействующий и проникающий способ беспроводного обмена данными — сигнал на частоте 433 МГц куда лучше проходит через препятствия и действует на более далеком расстоянии, чем в популярном диапазоне 2,4 ГГц (433 МГц полностью задерживаются стенкой в полметра бетона, а Wi-Fi умирает уже на 10 сантиметрах). Допускаю, что недавно появившиеся модули MBee-868, будучи снабженными соответствующей (направленной) антенной, «стреляют» дальше, но они как минимум на порядок дороже, сложнее в подключении, требуют управления энергосбережением и предварительной настройки. И вдобавок частота 868 МГц вдвое хуже проходит через препятствия (хотя, конечно, несравненно лучше частоты 2,4 ГГц).
О приемниках-передатчиках 433 МГц написано очень много (в том числе и на хабре, конечно). Однако, правильно включать в схему этот комплект по какой-то странной причине, кажется, не умеет никто. Когда я в который раз прочел вот тут, что комплект «принимал на 8-ми метрах в пределах прямой видимости, 9-ый метр осилить не удалось», мое терпение лопнуло. Какие еще 8 метров?! В 40-50 я бы поверил, хотя в реальности, наверное, дальность еще больше.
Стоит заметить, что я далее решаю задачу создания линии для передачи произвольных данных, а не просто управления какими-нибудь умными розетками или мотором модели катера. Моя задача сложнее, но все-таки расстояние надежной работы у меня оказывается гораздо больше. Причем в такой задаче важно не только и не столько расстояние в пределах прямой видимости (оно может служить только для сравнения), сколько способность проникать через различные препятствия.
У меня такой комплект работает за городом на расстоянии примерно 25-30 метров под острым углом к бревенчатой стенке, так, что на пути сигнала оказывается примерно метр (в сумме) стен и перегородок, причем частично экранированных фольгированным утеплителем. На гораздо меньшем расстоянии, почти прямо за стенкой, WiFi уже полностью теряет сигнал. В городе сигнал добивает от одного конца трехкомнатной городской квартиры к другому через две межкомнатные перегородки, а также с балкона, где по прямой линии между передатчиком и приемником не менее 80 сантиметров кирпичной кладки и гипсолитовая перегородка. Никаких более дорогих вариантов комплектов, упомянутых в приведенном обзоре, я не употреблял.
Дополнительный плюс комплекта в том, что в паузах передатчик не потребляет ничего, причем без всяких специальных режимов Sleep, просто по принципу своего устройства (ток потребления в покое сравним с токами коллекторной утечки запертого транзистора, то есть порядка 100 нА).
Давайте разберемся, в чем тут подводные камни.
Подключение передатчика
Передатчик (он носит название FS1000A), как мы видим из его схемы ниже, представляет собой простейший генератор на основе ПАВ-резонатора на 433 МГц. Генератор собран на транзисторе Q1, а транзистор Q2, на базу которого подаются цифровые данные — просто ключ, который подключает генератор к питанию (к шине GND) при наличии высокого уровня (логической единицы) на входе. Питание может быть от 5 до 12 вольт, причем, по утверждению производителей, чем выше питание, тем дальше работает связь.
Принципиальных преимуществ увеличенного питания в рамках своей задачи я не заметил. Тем не менее, не следует пренебрегать фактом, что особых требований к питанию тут не предъявляется, и при повышенном напряжении девайс будет работать только лучше. Удобно подключать передатчик непосредственно к напряжению с адаптера 9-12 вольт, аккумулятора или комплекта из 6 батареек (контакт Vin Arduino). При нестабилизированном питании, которое может превышать 12 вольт (как, например, у аккумуляторов) я обычно развязываю передатчик от основной схемы отдельным 9-вольтовым стабилизатором (можно простейшим 78L09), причем разницы в работе между питанием 9 и 12 вольт я не наблюдаю никакой. У Uno или Nano можно для питания самого контроллера и остальных схем (например, датчиков) при этом использовать встроенный стабилизатор 5 вольт, а для Mini (особенно — его дешевых клонов) я бы посоветовал поставить отдельный 5-вольтовый стабилизатор, подключив его к выводу 5V.
Следует отметить, что в последнее время стали появляться передатчики, выглядящие несколько нестандартно (см. рис. ниже). Оказалось, что отсутствие дросселя L1 (трехвиткового), от которого остались только отверстия — фикция, он просто заменен на соответствующий SMD-компонент. Хуже в этом варианте другое: неряшливая полиграфия может ввести в заблуждение относительно подключения выводов данных и питания. Правильное подключение показано на рисунке, оно для всех вариантов одинаково:
Самое поразительное в этом деле — то, что при перепутанном подключении данных и питания передатчик на небольших расстояниях продолжает работать! Если вы рассмотрите схему, то поймете в чем дело: база Q2 через резистор при этом оказывается подключенной к питанию, транзистор всегда открыт, и влияния на работу схемы не оказывает. А логический высокий уровень на шине питания просто запитывает в нужный момент генератор. Несуразности начинаются на некотором расстоянии — понятно, что из логического вывода источник питания получается плохой.
Подключение приемника
При приобретении приемника (он может носить название вроде MX-RM-5V или XD-RF-5V) обращайте внимание на длину выводов — мне как-то попалась целая партия с укороченными штырьками, отчего из стандартного разъема PBS приемник вываливался при малейшем перекосе и его приходилось к плате специально крепить.
У приемника схема гораздо сложнее (я ее не буду воспроизводить, но можете ознакомиться, например, тут). Она должна принять и усилить высокочастотный сигнал, отфильтровать частоту 433 МГц, выделить всплески и преобразовать их в логические уровни. Приемник имеет подстроечный дроссель (посередине платы), но без точных приборов для измерения амплитудно-частотной характеристики я его крутить не советую — скорее всего, вы ничего не улучшите, а только испортите.
Так как уже на небольшом расстоянии сигнал будет гораздо меньше помехи, понятно, что мы с помехами должны бороться по всем фронтам: и схемотехническими и программными методами. Последнее за нас делают библиотеки, но какая бы математика не применялась в программной обработке, желательно сначала сделать все для того, чтобы логическая единица на выходе появлялась только при всплеске полезного сигнала и не появлялась при наличии помехи. Иными словами, классно было бы от помех при приеме отстроиться заранее по максимуму.
Стандартный метод снижения помех, известный в мои времена каждому школьнику, собравшему хоть один радиоприемник или усилитель, заключается в том, что для чувствительных к помехам узлов необходимо делать отдельное питание, по максимуму изолированное от остальных схем. Можно его делать разными методами: когда-то ставили отдельный стабилитрон, сейчас часто изолируют питание проблемного узла LC-фильтром (так рекомендуется поступать, например, для АЦП, посмотрите даташиты на AVR-контроллеры). Но в наших условиях, когда современные компоненты невелики и дешевы, проще просто поставить на приемник отдельный от всего остального стабилизатор.
Стабилизатор, например, типа LP2950-5.0 плюс два необходимых конденсатора к нему в самом дешевом варианте (когда оба конденсатора — керамические, в диапазоне 1–3,3 мкФ) добавит к стоимости вашей схемы рублей шестьдесят максимум. Но я предпочитаю не экономить: на выходе ставлю обычный керамический, а на входе электролит (10–100 мкФ), причем твердотельный (полимерный) или танталовый. Обойтись керамическими конденсаторами и там и там можно, если входное напряжение 7-12 вольт поступает с батареек-аккумуляторов или с другого аналогового стабилизатора. Импульсные стабилизированные источники и простейшие нестабилизированные выпрямители требуют дополнительной фильтрации. Можно использовать дешевый алюминиевый электролит, если ставить параллельно ему керамический 0,1 мкФ, еще лучше поставить на входе последовательную индуктивность в несколько долей или единиц миллигенри.
Стабилизатор следует устанавливать прямо около приемника, длина проводников должна быть минимальна. Вместо LP2950 можно взять LM2931 или аналогичный с маленьким проходным напряжением (это особенно важно, если схема питается от батареек — для обычного LM78L05 входное напряжение должно быть не менее 7,5, а лучше 8-9 вольт).
Сравнив со случаем питания приемника непосредственно от Arduino, как рекомендуется во всех публикациях (исключений я не встречал), вы поразитесь полученному эффекту — дальность и способность проникать через стенки сразу увеличивается в разы. Приемник вместе со стабилизатором для удобства можно вынести в отдельную маленькую коробочку. Связать его выход с контроллером в основном корпусе можно любым трехжильным проводом (два питания и сигнальный проводник) длиной до 3 метров, а может быть и больше. Удобнее это потому, что еще нужны антенны, и по правилам будет лучше, если они будут параллельны друг другу в пространстве, а большие корпуса не всегда удается разместить так, чтобы антенны торчали в нужной ориентации.
В простейшем варианте в качестве антенн можно обойтись обрезками одножильного провода сечением не меньше 0,5 мм и длиной 17 см ± 1-3 мм. Не следует употреблять многожильный монтажный провод! В продаже имеются более компактные спиральные антенны, но я лично их эффективность не испытывал. Кончик антенны и у передатчика и у приемника запаивается в соответствующее отверстие в углу платы (не ошибитесь в модернизированном варианте передатчика — там слово ANT тоже не на месте, см. рис. выше).
Формирование и обработка передаваемых данных
Это второй крупный недостаток большинства обзоров по нашей теме: авторы ограничиваются какой-то локальной задачей, не формулируя ее в общем виде, как передачу произвольных данных одним пакетом. Как вы поняли из описания выше, передаваться нашим комплектом может только простая последовательность бит. Стандартная библиотека VirtualWire кодирует их специальным образом (каждая тетрада кодируется 6-ю битами, впереди добавляется синхронизирующий заголовок, и еще добавляется контрольная сумма для всего пакета) и на выходе превращает в более привычную последовательность байт. Но разбираться с ней уже приходится программисту самостоятельно.
Далее мы считаем, что передатчик и приемник подключены к Arduino. Кроме VirtualWire, в связи с бумом «умных домов», есть еще много всякого подобного, вроде RC-Switch или RemoteSwitch, но они ориентированы на другие задачи, и для передачи произвольных данных их употреблять явно не стоит.
Максимальная длина одного сообщения в VirtualWire равна 27 байт (см. документацию). Передача одного полного сообщения (оно автоматически дополняется сигнатурой 0xb38, значением длины сообщения и контрольной суммой) при выбранной мной скорости 1200 бит/с составляет 0,35 секунды.
Чем больше, кстати, выбранная скорость передачи, тем дальность передачи будет меньше. По опыту применения RS-232 известно, что при увеличении дальности допустимая скорость передачи экспоненциально падает: на скорости 19200 неэкранированная линия работает на 15 метров, на 9600 — 150 метров, а на скорости 1200 — более километра. Интересно было бы экспериментально выяснить характер этой зависимости для нашего случая, ведь очень много здесь зависит и от применяемой математики.
Инициализация передатчика в VirtualWire выглядит так:
Разберем принципы формирования данных на конкретном примере. Пусть у нас имеется выносной датчик температуры-влажности. Он выдает значения (переменные temperature и humidity) в формате действительного числа со знаком (float). Чтобы было проще разбираться на приемном конце, будем все приводить к виду положительного целого числа с числом десятичных разрядов не менее 4, переводить разряды по отдельности в ASCII-символы, передавать получившуюся строку, а на приемном конце выполнять обратные операции. Конечно, можно упростить задачу (например, обойтись без преобразования в ASCII и укоротить числа), но в таком виде она получается единообразной для почти любых разновидностей цифровых данных, что упрощает разборку при приеме.
На практике для формирования сообщения удобно воспользоваться типом String, примерно так:
Если требуется передавать более точные числа с большим количеством разрядов, то вы просто увеличиваете длину массива msg. Глобальные «волатильные» переменные tmpr и hum нужны в случае, если вы осредняете несколько показаний, в противном случае они тоже могут быть объявлены локальными внутри функции loop(). Сообщение, как видите, состоит из значений преобразованных температуры и влажности, в ASCII-строках по четыре байта каждое, предваряемых строкой из трех символов «DAH» (символы могут быть любыми другими из таблицы ASCII). Это сигнатура, которая позволит выделить данное сообщение из числа возможных других, посылаемых аналогичными устройствами. Не пренебрегайте сигнатурой, даже если вы полагаете, что других устройств поблизости в этом диапазоне не предвидится, заодно она служит дополнительной гарантией целостности принимаемых данных.
Заметьте также, что при преобразовании строки в массив необходимо указать на один символ больше, чем суммарная длина сообщения (3+4+4=11), это учитывается нулевой символ, замыкающий строку. А величина массива msg[] должна быть указана с запасом и может быть любой, в данном случае от 13 до 27 байт. При передаче все равно отправится ровно столько, сколько вернет функция strlen(msg), то есть 11 байт + нулевой символ.
В приемной части полученный массив ASCII-кодов придется разбирать (парсить). Но сначала нужно его принять. Для инициализации приема выполняются следующие действия:
Собственно прием с разборкой строки такой:
Надеюсь, у вас теперь будет меньше вопросов по применению этих дешевых и удобных в применении устройств.
Анализ частот 433MHz и 868MHz, применяемых в беспроводных системах сигнализаций
Беспроводная система сигнализации обладает такими качествами, как портативность, лёгкость в установлении и отсутствие проводов.
Все сигналы для связи с устройствами передаются по жестко заданным частотам. Как правило, в каждой стране есть свой бесплатный спектр радиочастот, а есть правительственный, распределение которого регулируется «Таблицей распределения полос частот между радиослужбами РФ», Постановление. Правительство РФ. 15.07.06 439-23. Можете скачать документ.
В документе перечислен весь перечень существующих радиочастот и указаны в каких диапазонах разрешено использовать коммерческим организациям. Согласно приложению №2 частота 433MHz лежит в диапазоне: 433,050 — 434,790 МГц и относится к неспециализированным устройствам радиочастотной идентификации, устройствам охранной радиосигнализации автомашин, а частота 868MHz (868 — 870 МГц) к неспециализированным устройствам охранной сигнализации.
На базе этих частот создают беспроводные охранные сигнализации.
Диапазон ISM
К бесплатным беспроводным каналам связи относится международный диапазон ISM (аббревиатура от Industrial, Scientific and Medical). Для его применения не требуется лицензирование. Bluetooth, Wi-Fi, IEEE 802.15.4, Zigbee работают в этом диапазоне.
Таблица распределения радиочастот
Благодаря высокой скорости работы радиоканала, высокой устойчивости к ошибкам связи и малому энергопотреблению этот диапазон применяется в большинстве современных устройств. Частоты 433MHz и 868MHz — это две главные группы, которые обычно используются в системе беспроводной сигнализации.
Особенности
Полоса частот 433MHz часто используется для управления многих устройств, перечислим распространенные:
868MHz предназначается для связи между беспроводными сетями датчиков. Большинство беспроводных систем используют частоту 433MHz, однако, она может работать нестабильно в условиях большого города. Главное требования предъявляемое к устройствам, работающих на этих частотах состоит в том, что они не должны создавать помех другим радиоэлектронным средствам.
Зависимость ослабления сигнала от расстояния
Дальность действия устройств, работающих на частоте 433MHz и 868MHz невелика, и сокращается в зависимости от наличия посторонних объектов на пути передачи сигнала. Частота 433MHz хорошо себя зарекомендовала для подвижных объектов. 868MHz имеет преимущество в скорости передачи, обмена данных и дальности передачи сигнала.
Зависимость ослабления сигнала от встречаемых препятствий
Усиливают сигнал при помощи антенн. Однако, у радиоволн отсутствует способность огибать препятствия. В законодательстве нет запретов на количество используемых ретрансляторов, репитеров и антенн, создав сеть из радиопередатчиков можно осуществлять передачу любого вида сигнала.
Считается наиболее надежная охранная сигнализация, построенная по радиочастотным протоколам. Например, Сбербанк издавал внутренний документ о запрете использования GSM-сигнализаций, поэтому все их объекты оснащены радиочастотными сигнализациями. Это можно объяснить двумя важными показателями: скорость срабатывания и передачи сигнала (мгновенное срабатывание), защищенность канала.
У меня остался один из таких радиопередатчиков, который до сих пор применяется вневедомственной охранной и некоторыми ЧОП-ами.
Внешний вид RF радиомодуля ATSU100 (производитель Израиль)
Сверху модуля производится подключение внешней антенны, справа разъем RS-232 для диагностики неисправностей, снизу для подключения датчиков
Клеммная коробка для подключения датчиков и питания к модулю ATSU100
Подведем итог преимуществ частоты 433MHz и 868MHz:
Улучшение сигнала
С точки зрения расстояния сигналы с большей длиной волны проходят большее расстояние и проникают через объекты лучше, чем сигналы с короткими длинами волн. Технически 433MHz может пройти большее расстояние, чем 868MHz.
Мощность передачи и чувствительность приемника — это два фактора, которые определяют диапазон. дБ — это децибелы, логарифмические единицы, которые используются для измерения радиочастотной мощности. Передача мощности относится к количеству ВЧ мощности, которая выходит из РЧ передатчика. Чувствительность приемника относится к минимальному уровню сигнала радио, она же может демодулировать. Большая мощность передачи может привести к большей дальности передачи.
Обработка нижеприведенных частот может улучшить качество передаваемого сигнала:
Второй способ усиления сигнала — применение внешних антенн.
Внешние антенны для улучшения сигнала
Размер антенны, направление и место ее установки влияет на качество улавливаемого сигнала, так как она прямо пропорциональна длине волны, поэтому их устанавливают как можно выше и в открытых местах.
433 или 868 мегагерц?
433 или 868 мегагерц?
Все чаще автомобильные сигнализации используют для связи между машиной и брелоком не традиционную частоту 433 мегагерц, а более высокую – 868 мегагерц. Что это за новый тренд и какие преимущества получает владелец охранной системы, радиоканал которой работает на этой частоте?
Все мы знаем, что рост частот в компьютерах, в мобильной связи и в прочей современной технике наглядно отражает для обывателя этапы её эволюции. Прогресс затронул и автомобильные охранные системы – появляется все больше моделей с частотой 868 МГц. На эту же частоту постепенно мигрируют стационарные системы охраны для помещений и пожарные сигнализации. В чем смысл такого «частотного реформирования»? Autostudio с удовольствием вам расскажет все в деталях.
Чем плох диапазон 433 МГц?
Во всем мире существуют диапазоны радиочастот, отведенные для безлицензионного использования. Один из самых популярных среди них – 433 МГц. Этот диапазон простирается от 433 до 447 МГц, и удобен тем, что если мощность передатчиков радиооборудования не превышает 10 милливатт, то конечному покупателю не требуется договариваться с радиочастотными службами о разрешениях и лицензиях. Помимо безлицензионности 433 МГц привлекателен хорошим радиусом действия в городской застройке и компактными размерами антенн, вследствие чего на частоте 433,92 МГц до недавнего времени работало подавляющее большинство брелоков автосигнализаций.
Со временем популярность и массовость не могли не сказаться на загрязнении частоты. Всевозможное оборудование, функционирующее вблизи 433 МГц, создает существенные помехи друг другу, ухудшающие стабильность работы, а то и вовсе прерывающие её. Пульты управления шлагбаумами и воротами, устройства для регулировки освещения и радиоуправляемые розетки, детские игрушки и портативные радиостанции – все это и множество другой аппаратуры использует диапазон 433 МГц. Даже домашние погодные станции имеют располагаемый за окном беспроводной датчик давления, температуры и влажности, который связывается с базовым блоком на частоте 433 МГц. И в результате многие автовладельцы больших городов уже столкнулись с ситуациями, в которых машина не реагирует на исправный брелок в зоне сильных радиопомех или, при наличии функции контроля канала, поднимает тревогу, не сумев подтвердить связь. Бывали прецеденты, когда автомобиль приходилось вручную или на тросе вытаскивать из зоны помехи, и только после этого его удавалось снять с охраны и завести.
Встречаем 868 МГц.
Радиооборудования вокруг нас становится с каждым годом все больше, и улучшения ситуации с помехами не предвидится – только наоборот. Поэтому одним из методов борьбы со сложившейся ситуацией является переход на новый диапазон – не засоренный помехами, обладающий всеми достоинствами нынешнего, и в чем-то даже его превосходящий. Речь идет о диапазоне от 868 до 870 мегагерц, который принято называть просто 868 МГц.
Высокочастотные сигнализации появляются как у флагманов рынка (к примеру, Pandora DXL 5000 new), так и прочих брендов (Alligator CM-30G, Sheriff ZX-1095, Tomahawk 9.5, Pantera SLK-868RS и т.д.). Многие производители автосигнализаций, работающих в диапазоне 868 МГц, уже обещают до 1000 метров дальности подачи команд с брелока, и до 5000 метров – обратной связи от машины к брелоку. Хотя, конечно же, несмотря на то, что при прочих равных 868 дальнобойнее, чем 433, нельзя забывать, что все эти «маркетинговые километры» проявляются лишь в неких идеально-виртуальных условиях, и в реальности могут быть значительно ниже.
Есть ли альтернатива?
Разработчиков автомобильного охранного оборудования также весьма привлекает диапазон 2,4 ГГц. Хотя это и относительно загруженный диапазон (на этих частотах работают Wi-Fi-интерфейсы компьютеров, смартфонов, точек доступа и т.п.), но при этом и чрезвычайно дальнобойный. Сегодня на 2,4 ГГц уже успешно работают метки иммобилайзеров, рассчитанные на сверхмалый радиус действия в 2-3 метра, но на этой же частоте вполне возможно обеспечить надежную работу брелков на расстоянии около километра – причем километра в реальных условиях, а не в лабораторных. Волны 2,4 ГГц слабо затухают в городской архитектуре, отлично переотражаются и имеют существенно больше шансов дойти до цели при прочих равных условиях, нежели более низкочастотные.
Впрочем, какой бы ни была частота радиоканала, дальнобойность мобильной связи пока вне конкуренции. В моделях сигнализаций, где присутствует GSM-модуль, брелок играет вторичную вспомогательную роль (а иногда и вовсе отсутствует), и, безусловно, проигрывает мобильному телефону в дальности связи. Телефон позволяет быть на связи со своим автомобилем практически всегда и из любого места – будь то оповещение владельца о происходящих тревожных событиях, получение информации о температуре двигателя или напряжении аккумулятора, передача команд, типа дистанционного запуска, прослушивание звуков в салоне и рядом с машиной в режиме реального времени или мониторинг её местоположения.
Весь этот набор функций для комфорта и безопасности всегда находится в вашем телефоне, не боится практически никаких помех и зависит лишь от баланса на сим-карте. Подобным функционалом обладают, к примеру, такие модели сигнализаций, как AUTOLIS Mobile, Pandora DXL 4300/4400, Pandora DXL 3700, Pandora DXL 3900, Pandora DXL 3910, Pandora DXL 3930, Pandora DXL 5000, StarLine E90 GSM, StarLine A94 GSM, StarLine B94 GSM, StarLine B94 GSM/GPS, которые специалисты Autostudio заслуженно считают наиболее надежными в плане обеспечения круглосуточной стабильной связи машины с хозяином.