Альтернативные двигатели для автомобилей

Архив рубрики: Альтернативные двигатели

газогенераторная установка/gas-producing setting

Нынешние цены на бензин заставляют активно искать альтернативу этому виду горючего. И если о массовом переходе на водород или топливные элементы пока говорить рано (в силу дороговизны и сложности подобных устройств), то замена бензина дровами – технология уже известная. Но оправданна ли она? Оборудовав ГАЗ-52 самодельной газогенераторной установкой, группа инженеров Житомирского агроэкологического университета не изобрела… Читать далее »

Модель двигателя на постоянных магнитах. / Engine model based on permanent magnets.

Модель двигателя на постоянных магнитах. Гуляя просторами интернета я обратил внимание на странные споры вокруг так называемых вечных двигателей, причем основная часть авторов сайтов и комментаторов осациируют вечный двигатель с генераторами энергии, принцип работы которых основан на взаимодействии постоянных магнитов (двигателя на постоянных магнитах). Мое личное мнение – нет, и не может быть ничего… Читать далее »

Двигатель работающий на воздухе / The engine runs on air

Воздушный двигатель Идея этого альтернативного воздушного двигателясовершенно проста и не нова, основана на принципе работы простейшего парового двигателя. Напомню в краце, там для получения полезной энергии используется вода, которая вследствие нагревания превращается в пар, результатом чего является повышение давления. Затем этот пар (под высоким давлением) передается на турбину (или поршнь), с которой по средствам вала или редуктора… Читать далее »

Двигатель Шаубергера своими руками

Двигатель Шаубергера своими руками В настоящее время двигатель Шаубергера пользуется большой популярностью и рассматривается как альтернативный двигатель. Что представляет собой подобное устройство, и в чем его преимущества. Как создать двигатель Шаубергера своими руками? Австрийский инженер Виктор Шаубергер работал над созданием электрогенератора, в котором турбина отличалась от конструкций обыкновенных водяных электростанций. Идея двигателя Шаубергера… Читать далее »

Гидростатический двигатель

Гидростатический двигатель Уважаемые участники сайта, позвольте предложить Вам тему связанную с альтернативной энергетикой — гидростатический двигатель. Возникла идея построить действующий гидростатический двигатель (описание и принцип действия для понимания сути идеи выложу ниже), но нужен взгляд со стороны и желательно не один, и критические замечания. Также нужны расчеты движущего элемента и маховика — для примера,… Читать далее »

Водородный генератор для автомобиля

Альтернативные двигатели для автомобилей

Водородный генератор-это вид оборудования, при правильной установке которого можно снизить расхода топлива мотоцикла, легкового или грузового автомобиля, а также сократить количество вредных выбросов в атмосферу. При помощи батареи питания и генератора постоянного тока вода разлагается на кислород и водородный газ (HHO), который попадает в двигатель и потом выделяется в атмосферу. HHO улучшает качество сгорания топлива… Читать далее »

Генератор Адамса «Вега». Что это?

Альтернативные двигатели для автомобилей

Генератор Адамса относится к классу безтопливных самовосстанавливающихся зарядных устройств. Самым главным преимуществом данного устройства является абсолютная независимость от погодных условий (ветрогенераторам нужна постоянная и, желательно, сильная ветреная погода, а генераторы на солнечных элементах весьма критичны к яркости солнечного освещения и в ночное время обычно не работают). Конструкция генератора Адамса «Вега»: Конструкция генератора Адамса (как и перечисленных выше ветрогенератора и… Читать далее »

Двигатель Шаубергера своими руками

Альтернативные двигатели для автомобилей

В настоящее время двигатель Шаубергера пользуется большой популярностью и рассматривается как альтернативный двигатель. Что представляет собой подобное устройство, и в чем его преимущества. Как создать двигатель Шаубергера своими руками? Австрийский инженер Виктор Шаубергер работал над созданием электрогенератора, в котором турбина отличалась от конструкций обыкновенных водяных электростанций. Идея двигателя Шаубергера заключалась в создании вихря внутри камеры,… Читать далее »

Источник

Воздух, жир, спирт и водород: ищем альтернативу бензину

Читайте «Хайтек» в

Дрова, воздух, топинамбур — что между ними общего? Все они помогут добраться из точки А в точку Б, если правильно их применить. Запасы нефти истощаются, экология страдает от выхлопов, поэтому пришло время вспоминать хорошо забытые старые подходы к топливу и создавать новые двигатели без недостатков традиционных двигателей внутреннего сгорания на бензине и дизеле. Давайте посмотрим, что человечество придумало и протестировало за последнюю сотню с лишним лет.

Обычный, но сжатый воздух

В 1863 году во французском городе Рошфоре на воду спустили подводную лодку Le Plongeur. Аппарат разработали инженер Шарль Брюн и капитан I ранга Симон Буржуа. Это была самая большая подлодка XIX века, способная погружаться на 10 метров и обладавшая повышенной прочностью конструкции благодаря поперечным и продольным переборкам. Возможно, вдохновившись увиденной на Всемирной выставке 1862 года в Париже субмариной, Жюль Верн затем и описал свой «Наутилус».

Одним из главных технологических нововведений этого экспериментального проекта был двигатель на сжатом воздухе. Мощность пневматической турбины составляла 80 лошадиных сил. 23 резервуара объемом 117 кубометров хватало на 12 миль подводного хода. Отработанный воздух частично нагнетался внутрь корпуса, а часть стравливали наружу — так что лодка оставляла след на поверхности воды.

Подобная технология использовалась и в авиации. В 1879 году другой французский изобретатель Виктор Татен создал модель аэроплана с размахом крыльев 1,9 метров и двумя винтами, которые работали от двигателя на сжатом воздухе.

Позже, снова во Франции, Луи Мекарски представил двигатель для трамвая. К концу XIX столетия изобретатель уже имел целый парк из 96 трамваев, но позже их заменили на электрические. Однако агрегат стали использовать в шахтах.

Альтернативные двигатели для автомобилей

Двигатели на сжатом воздухе не выделяют вредных веществ. Поэтому сегодня над ними работают стартапы, рассчитанные на особенно ответственных потребителей, и компании, которые вынуждены показывать свою ответственность перед обществом и планетой.

В середине 2000-х компания MDI представила прототип пневмоавтомобиля AIRPod. Компанию основал Ги Негр, конструктор двигателей, работавший на Renault и создавший систему пневматического пуска двигателей для легких самолетов. Он предложил двигатель на этом принципе для болидов «Формулы-1».

Альтернативные двигатели для автомобилей

Сейчас на сайте производителя именно этого проекта нет, но есть ряд других авто, а также катер с двигателем, работающем на сжатом воздухе, велосипед и автопогрузчик. Энергию воздуха компания предлагает использовать и в домашних электрогенераторах.

Более известный автопроизводитель, компания Citroen в 2015 году представила кроссовер на сжатом воздухе. Разработчики облегчили серийную модель автомобиля, повысили ее аэродинамичекие свойства, спрятали в районе багажника баллоны и в результате получили концепт Citroen C4 Cactus Airflow 2L.

Автомобили на сжатом воздухе максимально экологичны, но есть и минусы — низкий КПД и ограничения по скорости. Для городской малолитражки есть иное решение — использование гибридных двигателей. В случае с Peugeot Hybrid Air только при скорости 70 км/час энергия от сжатого воздуха будет использоваться в течение 60–80% времени, что позволяет сэкономить топливо. Воздух в баллоны закачивается благодаря использованию рекуперативной энергии торможения, которая приводит в действие гидравлический насос — он нагнетает рабочее давление в основном баллоне. Способ похож на тот, что используется в электромобилях для зарядки аккумуляторов.

Фритюрный жир

Еще один источник возобновляемой энергии — растительное масло. В первых двигателях внутреннего сгорания Рудольф Дизель использовал именно его, а не бензин. Для получения биотоплива можно использовать как свежее, так и отработанное масло, например, после использования во фритюре. В теории сети быстрого питания могли бы стать поставщиками такого сырья. В городе будущего можно представить, как на «пит-стопе» вы покупаете бургер с картошкой, одновременно заправляя бак своего авто.

Почему мы используем нефть в качестве топлива?

Деревья поглощают из воздуха углекислый газ, а из осадков — воду. В результате они образуют углеводы — соединения из углерода, кислорода и водорода. Когда растение разлагается, оно оставляет после себя углеводород. В нефти 90% веществ — именно эти углеводороды. Благодаря горючим свойствам углеводорода бензин и дизель, результаты переработки нефти, обеспечивают возможность двигателей внутреннего сгорания работать.

Альтернативы этому источнику углеводородов можно найти в природе. Чтобы превратить растительное масло в топливо, нужно смешать его со спиртом и катализатором — например, щелочью. Примерно так же делают мыло, но без добавления спирта. Процесс получается эффективным: если из тонны нефти можно получить полтонны бензина, то из тонны растительного масла — тысячу литров биодизеля и глицерин.

Один из главных плюсов биодизеля — производить его можно из полностью возобновляемого сырья. Например, можно засеять неиспользованные поля сельскохозяйственного назначения топинамбуром.

Углекислого газа при сжигании биодизеля выделяется немного. При этом в нем нет серы и других примесей, способных отравлять окружающую среду, которые есть в традиционных видах топлива.

Альтернативные двигатели для автомобилей

Сейчас биодизель добавляют в бензин. Например, с 2018 года в Эстонии, по инициативе Евросоюза, в 95-й бензин и в дизель добавляют биокомпонент, чтобы снизить загрязнение окружающей среды.

Использовать биодизель можно в обычных дизельных двигателях, если добавить в топливо присадку и изменить систему подачи с учетом пониженного содержания энергии в биодизеле. Но есть и минусы — застывает такое топливо при более высокой температуре, чем дизель, поэтому нужны меры для использования биотоплива в холодных регионах.

Природный газ

При перегонке нефти получают пропан-бутан. Эта смесь газов в сжиженном виде сегодня используется практически в большинстве автомобилей. Он быстро и полностью сгорает, поэтому имеет высокое октановое число без использования дополнительных присадок.

Автомобиль можно сделать гибридным, баллон с газом поместить на место запасного колеса, а оборудование подключить к бортовому компьютеру. Автомобиль будет заводиться на бензине, затем переключаться на газ. После его полного использования снова возвращаться к бензину. На газу таким образом получится проехать 300–350 километров.

Альтернативные двигатели для автомобилей

В 2018 году в России потребили 705 млн кубометров этого газа. КамАЗ на газомоторном топливе окупается на два месяца быстрее дизельного аналога. Один куб метана эквивалентен литру бензина, а стоит 16 рублей — в три раза меньше. Но количество заправок в стране на прошлый год составило 360, чего, конечно, слишком мало, ведь всего число заправочных станций только на 2017 год превышало 15 тыс. АЗС.

В том случае, если мы говорим о необходимости перехода на альтернативные виды топлива, не завязанные на их добыче из недр, подход с газом рассматривать нет смысла. Запасы газа, как и нефти, могут исчерпаться, поэтому нужны технологии их производства в промышленных масштабах без зависимости от природных ресурсов. Либо выбор других источников.

Газ от горения дров

Французский инженер Филипп Лебон в 1799 году открыл светильный газ, получил патент на его использование, а в 1801 году — патент на конструкцию газового двигателя. Другой инженер — Этьен Ленуар из Бельгии — в 1860 году запатентовал двигатель внутреннего сгорания на этом газе.

В итоге к 1938 году в Европе насчитывалось около 450 тыс. автомобилей, работающих на газогенераторном горючем. В СССР с 1936 года начали экспериментальный выпуск ЗИС-13, затем ЗИС-21 и ГАЗ-42, работающих на газе.

Когда двигатель внутреннего сгорания есть, но бензин или дизель недоступен, возможно использование газогенератора. Этот подход применяли, например, во время Великой Отечественной войны в СССР.

Принцип следующий: машина работает на дровах, угольных брикетах или торфе. При сгорании твердого топлива выделяется горючий газ, и он подается в цилиндры как топливо.

Альтернативные двигатели для автомобилей

С точки зрения экологичности этот двигатель не сильно отличается от ДВС на природном газе — то есть он лучше, чем авто на бензине или дизельном топливе. Есть и минус — низкий КПД и ограниченная скорость.

Биоэтанол

Во время Первой мировой войны спирт использовали наряду с бензином во многих странах. Также с его помощью повышали октановое число, добавляя этанол к бензину.

Но уже спустя несколько десятков лет, во время Второй мировой войны, в США, Великобритании и Швеции невоенные организации и частные лица использовали бензин, в который добавляли до 30–35% этанола. После войны нефть снова подешевела, а этанол перестал пользоваться популярностью и исчез с топливных рынков. В США его производство восстановили после первого нефтяного кризиса 1970-х годов. В городах для общественного транспорта использование топлива с добавкой этанола стало обязательным — это помогает снизить содержание вредных веществ в выхлопных газах.

Биоэтанол получают в процессе переработки растительного сырья. Лидеры в производстве этого вида топлива — США и Бразилия. Из 117,5 млн кубометров биоэтанола в 2016 году в США произвели 59,5 млн, в Бразилии — 27,8 млн.

Сырье используется разное: в Бразилии это сахарный тростник, в США — кукуруза. Но также можно использовать другие сельскохозяйственные культуры с большим содержанием крахмала или сахара, такие как маниок, картофель, сахарная свекла или батат.

Спирт можно делать и из дерева, ведь целлюлоза содержит углерод и водород. Сырье измельчают, выделяют целлюлозу, добавляют водный раствор с ферментами, гидролизуют смесь до глюкозы и добавляют дрожжи. Смесь начинает бродить, после чего из нее удаляют дрожжи и выделяют спирт с помощью дистилляции. Получается технический спирт, у которого октановое число выше бензина. Поскольку в молекуле есть атом кислорода, требуется меньше кислорода для его сжигания в двигателе.

Угрозу биоэтанолу представляют низкие температуры. В баке это топливо может расслоиться и замерзнуть. Но есть способ исправить эту проблему — превратить биоэтанол в обычный бензин.

Биоэтанол подают в реактор с катализатором, происходит превращение биоэтанола в продукты с углеводородом. Углеводородная часть повторяет бензин с октановым числом 96, который можно использовать без присадок в обычных двигателях. В таком бензине нет серы, бензола или других токсичных соединений.

В Бразилии 70% автомобилей используют спирт вместо бензина. Около 40% потребностей в топливе страна обеспечивает за счет этого альтернативного вида топлива. Всё благодаря инициативе 1970-х годов, когда страны-экспортеры ввели эмбарго на поставку нефти государствам, поддержавшим Израиль. Пришлось создавать программу для обеспечения автомобилей заменителем бензина. Налог на бензин подняли, сделав использование этанола коммерчески выгодным, а строительство спиртзаводов поощрялось с помощью специальных условий по кредитам. А с 1979 года правительство подписало соглашение с рядом автомобильных концернов, включая Fiat, Toyota, Mercedes-Benz, General Motors и Volkswagen, чтобы те в стране собирали только машины, способные как топливо использовать стопроцентный спирт.

Диметиловый эфир

Также из стружек можно получить еще один вид топлива — диметиловый эфир. По химической структуре он похож на спирт, хотя здесь тоже два атома углерода, шесть водорода и один кислорода. Эфир используют в газовых баллончиках, он заменил собой фреон; эфир создает избыточное давление, что позволяет распылять содержимое баллонов. Свойства этого топлива похожи на свойства пропан-бутана, температура сгорания такая же, а давление, которое нужно обеспечить в баллоне, составляет пять атмосфер.

В 2005 году правительство Москвы подписало распоряжение, согласно которому департамент транспорта города должен был организовать испытания опытной партии автомобилей модификации ЗИЛ-5301 «Бычок» на диметиловом эфире. Испытания проходили на ГУП «Мосавтохолод», автомобили доставляли грузы в школы, детские сады и социальные объекты. На одной заправке они проходили 600 км и легко запускались зимой при отрицательных температурах до –30 °C. Пять таких «Бычков» выбрасывают в атмосферу столько же токсичных веществ, как один такой же грузовик на солярке.

Из диметилового эфира можно производить синтетический бензин. Это пытались делать еще в 1950-е годы в Европе, но длительная химическая реакция делала топливо дорогим.

В Институте нефтехимического синтеза решили эту проблему — там научились превращать диметиловый эфир в углеводороды бензинового ряда. В итоге получили тот бензин, который можно заливать в бак автомобиля. Получение обычного бензина требует больших мощностей, а синтетический бензин можно производить на небольших модульных установках. Октановое число синтетического бензина без добавок равно 76.

В колбах ниже — дизельное топливо и синтетический бензин. Как и в других видах биотоплива, в синтетическом бензине нет серы и почти нет бензола — токсичного канцерогена, поэтому он прозрачный, как вода.

Водородные топливные элементы

В Нью-Йорке 1900 года треть автомобилей были электрическими. Всё более эффективными становились аккумуляторы. Электромобили Detroit Electric, выпускавшиеся с 1907 года, сначала оснащались свинцово-кислотными батареями, а позже появились версии с железо-никелевым аккумулятором Эдисона. Тогда выпустили и первые гибридные автомобили — Woods Dual Power Model 44 Coupe имел сразу два двигателя, электрический и ДВС.

Альтернативные двигатели для автомобилей

В 1910-е годы электромобили были популярны, но в 1920-е годы все изменилось из-за снижения цен на бензин и сами автомобили с ДВС, а также из-за повышения их удобства. Только в 1960–1970 годы, когда остро стали подниматься вопросы экологии, а цены на топливо стали нестабильными из-за нефтяного кризиса, производители вспомнили снова об электромобилях.

До 1992 года аккумуляторы развивались медленно. Но в том году появился первый литиевый аккумулятор, энергоемкость которого была выше как минимум в два раза, чем у свинцовой батареи. Это позволило увеличить пробег, а повышение мощности сделало двигатели более быстрыми.

Один из типов электрохимических источников энергии — топливные элементы. Одним из многообещающих подвидов этих элементов являются водородные. Водородные топливные элементы превращают химическую энергию топлива в электричество, минуя процессы горения. Такие устройства в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывают электроэнергию и не выбрасывают вредные газы в атмосферу. Автомобили на водородных топливных элементов сегодня разрабатывают такие концерны Ford, Honda, Hyundai, Nissan, Toyota, Volkswagen и многие другие.

Альтернативные двигатели для автомобилей

Первым серийным автомобилем на водородных топливных элементах стала Toyota Mirai. Ее сейчас можно купить во Владивостоке чуть больше, чем за 1 млн рублей. Вместо выхлопного газа из трубы этого автомобиля выходит водяной пар.

Что мы будем использовать в качестве топлива через 30–50 лет — точного ответа нет. Но уже сейчас в разных странах люди на электромобилях получают налоговые послабления или другие преференции, а в YouTube умельцы переводят мопеды на газ или мотоциклы на дрова. Уже сейчас очевидно, что будущее — за чем-то максимально экологичным, а еще лучше, чтобы транспорт в принципе не нужно было заправлять. Но такие мечты всегда разбиваются о реальность.

Источник

Изучаем странные двигатели, застрявшие на обочине прогресса

Авторы необычных моторов, как правило, сулят революцию. Однако даже когда у крупных компаний есть возможность начать с чистого листа, они отчего-то ставят на конвейер классические поршневые ДВС. Один из последних примеров — семейство двигателей Ingenium компании JLR.

Двигатели Ванкеля, Стирлинга, разного рода газотурбинные установки так и не стали автомобильным мейнстримом. Ряд известных компаний (от Мазды до GM, от Мерседеса до Volvo) работали над ними десятки лет, упорствовали маленькие фирмы и отдельные изобретатели. Увы, в конце концов выяснялось, что подводных камней в той или иной конструкции намного больше, чем казалось вначале. Но это не значит, что развитие альтернативных агрегатов невозможно. Энтузиасты перебирают идею за идеей, и мне как инженеру-двигателисту интересно поделиться с вами рядом экзотических схем.

Некоторые создатели перспективных двигателей решили, что комбинация из цилиндра, поршня, шатуна и коленвала отлично себя зарекомендовала более чем за столетие и, чтобы улучшить параметры ДВС, не надо изобретать её заново — достаточно лишь подправить кое-какие аспекты. Поэтому первый в нашем обзоре — мотор американской компании Scuderi Group, который имеет классические такты впуска, сжатия, рабочего хода и выпуска, но происходят они не в одном и том же цилиндре, а в разных. Так называемый холодный цилиндр отвечает за впуск и сжатие, а второй, горячий — за рабочий ход и выпуск.

Пока в рабочем цилиндре идёт расширение газов, в холодном, компрессорном, — такт впуска. В рабочем — выпуск, в холодном — сжатие. В конце такта сжатия поршни приближаются к своим верхним мёртвым точкам, смесь через перепускной канал перебрасывается из холодного цилиндра в горячий и поджигается. Такой разделённый цикл (в принципе — тот же цикл Отто, пусть и модифицированный) американцы придумали в 2006 году, а в 2009-м построили опытный Scuderi Split Cycle Engine. У компрессорного и рабочего цилиндров могут быть разные диаметры и ходы поршней, что даёт гибко настраивать параметры — получается аналог цикла Миллера с дополнительным расширением газов.

Источник

ДВС и его альтернатива.

Альтернативные двигатели для автомобилей

Уже который год со всех телевизоров, радиоприемников и интернетов непрерывно несут о «технологиях, которые перевернут мир», о том, что «ДВС скоро уйдет в историю», что «открыты новые виды энергии». А сегодня, когда я услышал, что в Советском Союзе были электрокары на базе копейки (уже тогда, давно-давно были, но в массы они так и не вышли), это натолкнуло меня на мысли, что всё неспроста, и всемирный заговор, который прослеживается почти во всех моих постах, имел место быть и здесь. Но обо всём по порядку.

Всем давно известно, что КПД бензинового двигателя редко достигает 40%, а чаще топчется у отметки в 10-30%. При том двигатели внутреннего сгорания (ДВС), имеют весьма сложную организацию, трудно ремонтируются, требуют множество различных металлов и пр.

Дизельные двигатели имеют более высокий КПД и некоторые модели уже подобрались к 50%, используя турбины, передовые системы охлаждения. Малолитражные дизели имеют КПД, примерно такой же, как и бензиновые.

Электродвигатели, как всегда, впереди всех, с КПД в 96-97%.

Другими словами, 60% (больше половины, если мерить в половинах) бензина, который вы заливаете, уходит не на движение, динамику и т.п., а тупо к карман владельца колонки. Беда, правда?

Альтернативы, скажете, нет: не будешь же возить 700кг аккумуляторов, чтобы заряжать каждый день. Да и зимой с ними туговато выходит. Да и электричество ценами кусается.

Тут-то и хочется вспомнить о топливном заговоре, нефтяной игле и прочих недоказуемых вещах, которые хоть и незаметны, но влияют на нас с вами непосредственно. Неужели, традиционный ДВС заменить нечем? Конечно, есть. И речь идёт не о новомодных водородных и гелеевых двигателях. Всё новое — хорошо забытое старое.

Итак, решил поискать информацию об электрокопейках, передовых технологиях АвтоВАЗа, но нашёл кое-что поинтереснее.
Давно слышал, что были почти мистические машины в нашей стране, которые не уступали по динамике разгона и потолку максимальной скорости самым мощным иномаркам тех времён. Думал, что это специально выдуманные легенды работниками ВАЗа, чтобы прикрыть свою криворукость и неспособность создать хоть сколько-нибудь авангардное в мире машин. Я ошибся. Действительно, были такие у нас такие машины. Выпускались. И копейки были ракетные, и восьмёрки: Двигатель в 1.3л обходил по всем параметрам агрегаты компании Мерседес в 3.2л. А вот теперь перейдём к самому интересному. Что же у них было под капотом? Дизель? Нет, хоть и дизельные двигатели на АвтоВАЗе тоже были.

Там был ротор. Да-да, роторный двигатель, подобный тому, что ставится на Rx-8, таскал созданные на Волжском заводе тазики. Говорят, что и сейчас можно поставить на наши машинки такие агрегаты.
Так чем роторный двигатель лучше обычного? я бы на первое место поставил простоту. Минимальное число деталей роторного двигателя — 7. К примеру, из семи деталей состоит только поршень с шатуном.
Второе — такой двигатель можно крутить на 10-15тыс оборотов.
Крутящий момент — третье — стабильно высок и равен почти на всех оборотах.
Четвёртое — мгновенный разгон. Вышеупомянутая восьмерка разгонялась до сотни за 7.5с.
Недостаточно?
А вот вам козырь: этот двигатель можно кормить всем, что горит: бензин — хоть 76, хоть 98, хоть спирт, хоть (до последнего не верится) — дизель.

Как же эта чудо-штука работает?

Всё гениальное — просто. Посмотреть можно здесь: www.autoreview.ru/new_sit…les/2001/27_11/200/00.gif
Ротор вращается благодаря привычному всем сгоранию бензина. Тот взрывом двигает «овальный треугольник», который другой стороной создаёт вакуум, затягивая горючую смесь. Дальше свеча вновь делает своё дело и всё начинается заново. Замечу, что свеча может быть и одна, тогда, по схеме, остаётся всего 4 детали;)

Вспомним, что происходит в бензиновом двигателе, который ставится на наши машинки. Анимация здесь: k38.kn3.net/BB6B9FB18.gif
Занятно, правда?

А всё началось с далёкого 1957г, когда его придумал немецкий инженер Феликс Ванкель.

Альтернативные двигатели для автомобилей

Он первым использовал вместо поршня специальный ротор треугольного сечения, грани которого, скользя по поверхности цилиндра, отсекают переменные объемы камер. За один полный оборот ротор проходит четыре такта обычного двигателя. Такие моторы использовались немецкой компанией NSU, купленной впоследствии Audi, и французским «Ситроеном». Впрочем, ни немцы, ни французы дальше одной роторной модели не пошли: двигатели Ванкеля были отнюдь не экономичными, а в мире тогда случился топливный кризис. Немецкого инженера все забыли, кроме японской корпорации Mazda, которая выпускала роторные RX — в том числе и для того, чтобы поставить на место зарвавшееся правительство, пожелавшее в то время унифицировать всю автопромышленность. Прижились новые моторы и в СССР: спецслужбы сразу оценили потенциал нового движка. О них, собственно, и ходили слухи.

Основная причина в том, что они почти не используются в том, (как говорят), что они часто ломаются. Вроде бы, и ломаться-то нечему, а ломаются, причём раз и навсегда — они неремонтопригодны. А что там ремонтировать-то, спрашивается, если деталей-то не больше 10 штук?)) Если поставить на поток, двигатели можно вообще менять в сборе. Модульно.
Да, они могут показаться не такими экономичными (до 15л на 100км), но какие сто километров!
К тому же, прогресс не стоит на месте. Российские Кулибины непрерывно совершенствуют эти чудо-машины, причём без всякой поддержки извне.
Некоторые добились огромных результатов:

И становится очень страшно, если эти разработки снова утекут за рубеж.

Скажем, вот этот двигатель Ахриевых — практически не имеет вибраций и очень экономичен.
Двигатель Исаевых — имеет большую эффективность и экономичность за счёт высокого сжатия.

Каким бы мы увидели мир, если бы сделали ставку на такие двигатели?
Недавно где-то слышал по ТВ, у какой-то шишки в салоне электрокаров спросили, когда ДВС уйдёт в историю? тот засмеялся и выдал: «Никогда».
Журналист сконфузившись, еле пробубнил: «А если закончится нефть?»

— Не закончится, а просто станет ещё дороже.

«Просто станет ещё дороже», друзья. ПРОСТО дороже. Скоро будем выгуливать своих стальных питомцев только по праздникам, а после — только любоваться ими в гараже, очередной раз накладывая слой полировки на свои машинки.

В прочем, вот и конец этой небольшой истории. Кто знает, может всё переменится.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *