Архитектура машины фон неймана

Принципы построения и работы ЭВМ Джона фон Неймана

Человек, сформулировавший знаменитые принципы фон Неймана, родился в 1903 г. в Будапеште. Выходец из еврейской семьи, Янош Лайош Нейман, с детства проявлял задатки будущего математика, физика, химика.

В 30-х годах преподавал в Германии под именем Иоганна фон Неймана. Расцветающий нацизм и приглашение от американцев подтолкнули молодого ученого к решению перебраться в США. Там он окончательно стал Джоном.

Архитектура машины фон неймана

Работал в Принстоне, в университете и Институте перспективных исследований. Одно время там же работал по близкой тематике Алан Тьюринг. Один из создателей информатики в современном виде. Повлияли ли на Джона работы последнего, достоверно неизвестно.

Принципы Джона фон Неймана

Ученый был специалистом широкого профиля, но в историю вошел как создатель новационной архитектуры компьютера. Радикально нового с тех пор не придумали.

Архитектура машины фон неймана

Понятие «архитектура» означает необходимую организацию «железа» и программ для оптимального решения задач. При этом учитываются финансовые затраты, область приложения, функционал, комфортность в работе.

Не стоит путать со «структурой». Последняя не столь глобально описывают внутренние связи. Уточняет взаимодействие деталей устройства.

Идея возникла, когда фон Нейман занялся анализом недостатков первой электронной машины ENIAC (1944 г.). Сделанные ранее в Германии образцы были электромеханическими, на реле.

Архитектура машины фон неймана

Концепция создания усовершенствованной ЭВМ EDVAC была представлена в 1946 г. Новшество заключалось в следующем:

Утверждается двоичная система счисления как наиболее логичная и простая для реализации в компьютере. В дальнейшем нововведение дало возможность работать не только с цифрами, но и с текстами, графикой, видео / звуком.

Для проведения операций используется программа, включающая выполняемые одна за другой команды. Последняя в последовательности сигнализирует об окончании процесса. В нашем понимании – это программирование.

Программы и данные размещаются в памяти ЭВМ, преобразовываясь в двоичный код (см. п. 1). Производимые над ними операции схожи, соблюдается однородность. Машина самостоятельно корректировала программу сообразно запрошенным операциям.

Ячейкам памяти присваиваются конкретные адреса. Таким образом вводятся переменные.

Команды могут исполняться не только последовательно, но допускается переход с соблюдением условия. Так, например, может запускаться циклическая обработка данных.

Качественным улучшением по сравнению с ЭНИАКом стала легкость загрузки программ. Последние больше не являлись компонентом устройства и без труда менялись.

Принцип построения и работы ЭВМ фон Неймана

Архитектура машины фон неймана

Заносимые в память команды (программа) содержат информацию о необходимом действии и адреса требуемых данных. Также вводятся идентификатор ячейки для введения память результата (если нужно).

АЛУ отвечает за исполнение команды. Итог операции отправляется в память или на вывод. ВЗУ сходно с устройством вывода тем, что используется для недолгого хранения параметров. Только содержит информацию в непонятном для оператора формате. Исключительно для машины.

Если кратко, основной функцией АЛУ является поддержка незатейливых действий: арифметических, логических, перемещением данных. Еще анализируется результат. Решения по анализу принимаются УУ.

УУ предназначено для отправки указаний непосредственно отдельным деталям и получения от них подтверждений. Следит за очередностью выполнения команд и за их исполнением вообще.

Заключение

Архитектура машины фон неймана

Фон Нейман привнес неоценимые новшества в создание машин электронного класса. Благодаря придуманной им схеме, улучшенный калькулятор (каковым являлся ЭНИАК) превратился со временем в инструмент обработки любой информации. При этом их «железный» состав изменился слабо. Электронные лампы, например, заменили на полупроводники.

УУ и АЛУ скомпоновали в моноблочный центральный процессор. Значительные качественные изменения претерпело ОЗУ. Возрос объем. Гораздо удобней стали аппараты ввода и вывода. Но принципиальных подвижек пока нет.

С другой стороны, заслуги представляются несколько преувеличенными. Основы «принципов» рождались в результате дискуссий с коллегами. Но в опубликованных итогах оказалась одна фамилия. Но безусловна роль фон Неймана как систематизатора. А на титул первооткрывателя он и не претендовал.

Источник

Архитектура фон Неймана: характеристики и ограничения

Архитектура машины фон неймана

Архитектура фон Неймана является общей архитектурой всех процессоров ПК. Каждый из процессоров от ARM на x86, с 8086 на Ryzen через Pentium. Все они являются архитектурами фон Неймана, и все они наследуют определенную общую проблему.

Что такое архитектура фон Неймана?

Архитектура машины фон неймана

Архитектура фон Неймана лежит в основе всех процессоров ПК, поскольку все они организованы с помощью ряда общих компонентов, а именно:

Какие ограничения у архитектуры фон Неймана?

Архитектура машины фон неймана

Основным недостатком является то, что оперативная память, в которой находятся инструкции и обрабатываемые данные, унифицирована и совместно используется через одну шину данных и общую адресацию. Таким образом, инструкции и данные должны последовательно записываться из памяти. Это узкое место является так называемым узким местом фон Неймана. Вот почему разные микропроцессоры имеют ближайший к процессору кэш, разделенный на два типа: один для данных и один для инструкций.

В последние годы скорость процессора увеличилась намного быстрее, чем у оперативной памяти, что увеличивает время, необходимое для передачи данных из памяти. То, что вынудило разработать решения для облегчения этой проблемы, является результатом узкого места фон Неймана.

В процессорах, где обычно используется гарвардская архитектура, они являются автономными и, следовательно, не имеют доступа к общей оперативной памяти системы, а вместо этого выполняют свою собственную память и программу изолированно от основной. ЦП. Эти процессоры получают список данных и инструкции по двум разным ветвям данных. Один для памяти команд, а другой для памяти данных упомянутого процессора.

Почему он используется в CPU и GPU?

Архитектура машины фон неймана

Вторая причина заключается в том, что две ячейки памяти необходимо синхронизировать, чтобы инструкция не применялась к ошибочным данным. Это приводит к необходимости создания систем координации между обеими ячейками памяти. Конечно, значительную часть узких мест можно было бы устранить, разделив оба автобуса. Но это не уменьшило бы полностью узкое место фон Неймана.

Это связано с тем, что узкое место фон Неймана, несмотря на то, что оно является следствием хранения данных и инструкций в одной и той же памяти, также может возникать в архитектуре Гарварда, если оно недостаточно быстрое для питания процессора. Вот почему архитектуры Гарварда были сокращены особенно до микроконтроллеров и DSP. В то время как фон Нейман часто встречается на процессорах и GPU / ГРАФИЧЕСКИЙ ПРОЦЕССОР

Источник

Принципы фон Неймана

Архитектура машины фон неймана

Фон Нейман сформулировал 5 основных принципов:

Не нашли что искали?

Просто напиши и мы поможем

Архитектура фон Неймана

Архитектура ЭВМ фон Неймана включает:

К каждому ЭВМ прилагается список операций, которые могут проводиться с его помощью. Команда имеет следующую структуру:

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Принципы фон Неймана на практике

В компьютерах последних поколений все так же применяется двоичная система, принципы автоматической работы и сохранности. Оставшиеся 2 принципа применяются в отдельных случаях.

Есть модели, способные устанавливать отличия между данными и программами. В таких компьютерах ячейки не просто хранят информацию, но и имеют метку, указывающую на характер ее содержимого. Чтобы сэкономить память, метки устанавливаются не на каждую ячейку, а на их последовательность, что дает возможность различать команды и данные.

Во многих современных компьютерах нарушаются принципы однородности и линейности. К примеру, память состоит из 2 частей с независимыми адресами ячеек, или ячейки в принципе без адресов (ассоциативная память).

Все модели новых поколений, у которых больше 1 процессора, не выполняют команды последовательно. У таких компьютеров есть возможность выполнять сразу несколько команд, при этом они могут относиться к одной программе, или к разным.

Источник

Реферат: Архитектура фон Неймана

Архитектура фон Неймана (англ. von Neumann architecture ) — широко известный принцип совместного хранения программ и данных в памяти компьютера. Вычислительные системы такого рода часто обозначают термином «машина фон Неймана», однако, соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают физическое отделение процессорного модуля от устройств хранения программ и данных.

Наличие заданного набора исполняемых команд и программ было характерной чертой первых компьютерных систем. Сегодня подобный дизайн применяют с целью упрощения конструкции вычислительного устройства. Так, настольные калькуляторы, в принципе, являются устройствами с фиксированным набором выполняемых программ. Их можно использовать для математических расчётов, но невозможно применить для обработки текста и компьютерных игр, для просмотра графических изображений или видео. Изменение встроенной программы для такого рода устройств требует практически полной их переделки, и в большинстве случаев невозможно. Впрочем, перепрограммирование ранних компьютерных систем всё-таки выполнялось, однако требовало огромного объёма ручной работы по подготовке новой документации, перекоммутации и перестройки блоков и устройств и т. п.

Всё изменила идея хранения компьютерных программ в общей памяти. Ко времени её появления использование архитектур, основанных на наборах исполняемых инструкций, и представление вычислительного процесса как процесса выполнения инструкций, записанных в программе, чрезвычайно увеличило гибкость вычислительных систем в плане обработки данных. Один и тот же подход к рассмотрению данных и инструкций сделал лёгкой задачу изменения самих программ.

Принципы фон Неймана

Для представления данных и команд используется двоичная система счисления.

Как программы (команды), так и данные хранятся в одной и той же памяти (и кодируются в одной и той же системе счисления — чаще всего двоичной ). Над командами можно выполнять такие же действия, как и над данными.

Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка; память внутренняя.

Все команды располагаются в памяти и выполняются последовательно, одна после завершения другой, в последовательности, определяемой программой.

Неизменяемость в процессе работы топологии, архитектуры, списка команд.

Компьютеры, построенные на этих принципах, относят к типу фоннеймановских.

Компьютеры, построенные на принципах фон Неймана

1 Понятие архитектуры ЭВМ. Принципы фон Неймана

Архитектурой ПК называется его описание на некотором общем уровне включающее описание пользовательских возможностей программирования систем команд систем адресации организации памяти Архитектура определяет принцип действия, информационные связи взаимное соединение основных логических узлов компьютера: процессора; оперативного ЗУ, Внешних ЗУ и периферийных устройств.

Классические принципы построения архитектуры ЭВМ были предложены в 1946 году и известны как принципы фон Неймана».

Использование двоичной системы представления данных

Память (ЗУ) хранит информацию (данные) и программы. Запоминающее устройство у современных компьютеров «многоярусно» и включает оперативное запоминающее устройство (ОЗУ) и внешние запоминающие устройства(ВЗУ).

Принцип последовательного выполнения операций

Структурно основная память состоит из пронумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен.

Устройство ввода-вы́вода — компонент типовой архитектуры ЭВМ, предоставляющий компьютеру возможность взаимодействия с внешним миром и, в частности, с пользователями и другими компьютерами.

1.6. Устройства ввода-вывода информации

Человек взаимодействует с информационными системами главным образом через устройства ввода-вывода (input-output devices). Прогресс в области информационных технологий достигается не только благодаря возрастающей скорости процессоров и емкости запоминающих устройств, но также за счет совершенствования устройств ввода и вывода данных. Устройства ввода-вывода называются также периферийными устройствами (peripheral devices).

Клавиатура ( keyboard ) – традиционное устройство ввода данных в компьютер. Клавиатурами оснащены как персональные компьютеры, так и терминалы мэйнфреймов. Клавиатура современного компьютера содержит обычно 101 или 102 клавиши, разделенные на 4 блока:

Архитектура машины фон неймана

алфавитно-цифровой блок – содержит клавиши латинского и национального алфавитов, а также клавиши цифр и специальных символов;

Архитектура машины фон неймана

блок управляющих клавиш;

Архитектура машины фон неймана

блок расширенной цифровой клавиатуры;

Архитектура машины фон неймана

Мышь ( mouse ) была разработана довольно давно (в 60-х годах), но стала широко использоваться только с приходом в мир персональных компьютеров графического пользовательского интерфейса. Обычно мышь, как и клавиатура, подключается к компьютеру с помощью кабеля. Пользоваться мышью легко – вы передвигаете ее по столу, а на экране компьютера синхронно перемещается курсор. Чтобы активизировать некоторую опцию, нужно щелкнуть левой ( left ) клавишей мыши. С помощью мыши можно также «рисовать» на экране картинки.

Сенсорные экраны ( touch screens ) предназначены для тех, кто не может пользоваться обычной клавиатурой. Пользователь может ввести символ или команду прикосновением пальца к определенной области экрана. Сенсорные экраны используются в основном на сладах продукции, в ресторанах, супермаркетах. К примеру, в магазинах Muse Inc. (Бруклин), продающей компакт-диски, можно прослушать желаемую композицию, прикоснувшись пальцем к ее названию на экране компьютера. Слушая выбранную мелодию, вы можете одним прикосновением вызвать список других композиций исполнителя.

Устройства автоматизированного ввода информации

Основные устройства вывода информации – мониторы и принтеры.

Архитектура машины фон неймана

Архитектура машины фон неймана

Архитектура машины фон неймана

Архитектура машины фон неймана

разрешение ( print resolution ) – количество точек на один квадратный дюйм. Чем выше разрешение, тем качественнее печать. Матричные принтеры обеспечивают сравнительно низкое разрешение – от 80 до 200 точек на кв. дюйм; струйные – до 720, лазерные – до 1200, термографические – от 1200 до 5000 точек на кв. дюйм;

Архитектура машины фон неймана

Архитектура машины фон неймана

поддержка цветной печати ( color print ) – очень важное свойство для тех, кто занимается компьютерной графикой и дизайном. Также очень удобно пользоваться цветными принтерами при печати графиков и диаграмм. В качестве устройств цветной печати используются в основном струйные принтеры. Возможности цветной печати есть и у других типов принтеров. Однако, матричные цветные принтеры неудобны в управлении и не обеспечивают приемлемое качество печати. Лазерные и термографические принтеры способны обеспечить высочайшее качество изображения, но эти печатающие устройства пока слишком дороги для применения в бизнесе.

Другие устройства вывода информации

Запоминающее устройство — носитель информации, предназначенный для записи и хранения данных. В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям.

УСТРОЙСТВО УПРАВЛЕНИЯ ЭВМ
УСТРОЙСТВО УПРАВЛЕНИЯ ЭВМ, координирует совместную работу процессора, внешней памяти, устройств ввода-вывода и др. посредством управляющих сигналов, вырабатываемых устройством управления в соответствии с реализуемой программой.

3.4. Арифметико-логическое устройство

Арифметико-логическое устройство (АЛУ, ALU) выполняет арифметические и логические операции между регистрами или между константой и регистром. Им также могут выполняться операции над одним регистром. АЛУ напрямую подключено ко всем 32 регистрам общего назначения. При выполнении типичной одноцикловой операции в АЛУ, два операнда берутся из регистрового файла, затем, над ними выполняется операция, а результат возвращается обратно в регистровый файл.

При необходимости обработки данных из памяти данных, их необходимо вначале поместить в регистровый файл. После выполнения операции над ними, данные перезаписываются обратно в память данных из регистрового файла. Операции АЛУ разделяются на три основные категории: арифметические, логические и битовые функции. После выполнения арифметической или логической операции обновляется содержимое регистра статуса, тем самым, сигнализируя о результате операции.

Windows NT поддерживает сегментностраничную модель виртуальной памяти и использует для этих целей аппаратную поддержку таких процессоров как Intel 80386 и выше, MIPS R4000, DEC Alpha и Power PC. Для этого в NT executive имеется специальный компонент – менеджер виртуальной памяти.

Менеджер ВП обеспечивает для процессов следующие наборы функций:

Средства защиты памяти в Windows NT существуют в четырех формах.

Каждый раз, когда нить использует адрес, менеджер ВП вместе с аппаратными средствами транслирует виртуальный адрес в физический. Подсистема виртуальной памяти, управляя процессом трансляции виртуальных адресов, гарантирует, что нить одного процесса не сможет получить доступ к физической странице памяти, относящейся к другому процессу.

В дополнение к прямой защите, обеспечиваемой механизмом трансляции, каждый процессор, который поддерживает виртуальную память, реализует некоторую форму аппаратно-управляемой защиты памяти. Часто аппаратная защита бывает минимальной. Из-за этого менеджер виртуальной памяти Windows NT в гораздо большей степени зависит от аппаратуры, чем другие части операционной системы.

Каждый процесс NT executive имеет большое виртуальное адресное пространство размером в 4Гб, из которых 2 Гб резервируются для системных нужд. (Процессор MIPS R4000 требует, чтобы 2 Гб адресного пространства были зарезервированы для системы. Хотя другие процессоры требуют меньше, для переносимости системы Windows NT всегда резервирует 2 Гб.) Младшие адреса виртуального адресного пространства доступны для нитей, работающих и в пользовательском, и в привилегированном режимах, они указывают на области памяти, уникальные для каждого процесса. Старшая часть адресов доступна для нитей только тогда, когда они выполняются в привилегированном режиме. Виртуальное адресное пространство процесса показано на рисунке 1.4.

В нижней (младшей) части системной области памяти располагаются код и данные ядра, они никогда не вытесняются из памяти. Поскольку адреса из этого диапазона транслируются аппаратурой и всегда бывают действительными, доступ к этой области памяти осуществляется очень быстро. Она используется для тех частей ядра, от которых требуется максимальная производительность, например, для кода, который диспетчирует нити.

Верхняя часть системной памяти управляется менеджером виртуальной памяти и используется для хранения остальных системных данных и кода. Часть этой области резервируется для кода и данных, которые могут быть вытеснены на диск с помощью страничного механизма, а другая часть никогда не вытесняется из памяти (в ней, например, размещается код, который осуществляет страничный обмен).

В составе менеджера виртуальной памяти имеется такой компонент, как пейджер (pager). Этот код перемещает страницы между диском и памятью, представляя собой промежуточное звено между аппаратными механизмами и программно-реализуемыми стратегиями. В его функции входит:

Процесс принятия решения о замене страниц системой виртуальной памяти обычно включает три фазы: извлечение, размещение, замена.

Этап извлечения связан с выбором условия, при выполнении которого страница перемещается с диска в память. Существует два типа стратегий извлечения: с упреждением, когда страницы загружаются в память до того, как они оказываются необходимыми процессу, и стратегии загрузки по требованию, в соответствии с которыми страница перемещается в память только при наступлении страничного прерывания. При использовании стратегий “по требованию” при старте каждой нити происходит интенсивная загрузка страниц. Эти страницы называются начальным набором страниц. После загрузки начального набора интенсивность загрузки страниц заметно уменьшается.

Менеджер виртуальной памяти Windows NT использует стратегию “по требованию” с кластеризацией. При возникновении страничного прерывания менеджер виртуальной памяти загружает в память вызвавшую прерывание страницу, а также небольшое количество окружающих ее страниц. Эта стратегия пытается минимизировать количество страничных прерываний.

Менеджер виртуальной памяти Windows NT использует локальный алгоритм FIFO (First Input First Output). В соответствии с алгоритмом FIFO из памяти удаляется та страница, которая дольше всего там находится. Локальность в данном случае означает, что поиск страницы-кандидата на выгрузку осуществляется только среди страниц того процесса, который требует загрузки новой страницы. Существуют и глобальные стратегии, в соответствии с которыми поиск замещаемой страницы выполняется на множестве страниц всех процессов. Локальный вариант стратегии не дает одному процессу возможность захватить всю имеющуюся память.

Когда процесс стартует, ему назначается минимальный рабочий набор страниц. Процесс может его увеличивать до некоторого максимального размера. Если процесс требует еще больше страниц, то менеджер виртуальной памяти удаляет из рабочего набора по одной странице при загрузке каждой новой страницы. Когда размер свободной физической памяти уменьшается до некоторой критической границы, то менеджер виртуальной памяти использует прием, называемый автоматическим триммингом рабочего набора. Он просматривает страницы каждого процесса, находящиеся в памяти, сравнивает их количество с минимальным размером рабочего набора и удаляет избыточные страницы из памяти.

Для снижения объема вычислений, затрачиваемых на работу менеджера виртуальной памяти, в Windows NT минимизируется количество страничных прерываний. Для этого предпринимаются следующие меры:

Менеджер виртуальной памяти производит автоматический тримминг рабочего набора каждого процесса, чтобы сделать доступными для других процессов области памяти, занимаемые редко используемыми страницами.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Название: Архитектура фон Неймана
Раздел: Рефераты по строительству
Тип: реферат Добавлен 05:25:38 24 июня 2011 Похожие работы
Просмотров: 1522 Комментариев: 21 Оценило: 5 человек Средний балл: 4.4 Оценка: неизвестно Скачать