Авто вместо бензина вода
Скоро, Без батарей и топлива, авто на воде!
Как Вам понравится автомобиль, расходующий вместо 10-15 литров высокооктанового бензина, 3-5 литров дешевого 72-го? Это реально. Уже появились системы с ценниками в несколько тысяч рублей, позволяющие сделать это, конечно, если Вам не захочется всё сотворить своими руками.
«Откуда возьмется остальная энергия, из воздуха?» – спросит критически настроенный читатель. Я отвечу: «Не из воздуха, а из воды». А дальше больше, заменить топливо водой полностью, и дело с концом!
Разбогател Джон Рокфеллер на продаже керосина. В те, почти двухвековой давности времена, освещение зданий производилось либо свечами, либо более прогрессивными керосиновыми лампами. А любое препятствие его бизнесу устранялось незамедлительно. Так, Томасу Эдисону и Николе Тесле в их работах с постоянным и переменным током, он чинил всевозможные препятствия. Его компания Standard Oil была чрезвычайно эффективна, а сам Рокфеллер стал первым миллиардером.
И сегодня нефтяные гиганты всячески пропагандируют статус-кво, что без нефтепродуктов и других топливных ископаемых – ни куда. Однако.
А что же вода? Возможно ли ее использование как источника энергии? Чему нас учит средняя и высшая школа? Энергетический эффект разрыва первой цепи кислород-водород, реакции H2O = HO + H, равен 495 кдж/моль, энергия разрыва связи Н—О в гидроксильной группе — 435 кдж/моль, что в сумме превышает 900 кДж на моль. Это гигантская цифра.
Боясь этих страшных энергетических затрат, любой нормальный инженер отбросит все возможные проекты, в основе которых лежит столь энергозависимая реакция, как разложение воды на водород и кислород 2H2O = 2H2 + O2
Не всё так сумрачно вблизи, и молекула воды имеет дипольный момент и в постоянном электрическом токе легко поляризуется, расщепляясь на газы, водород направляется к катоду, положительному заряду, а кислород – к аноду. В принципе раздельно получить эти газы не представляется проблематичным. И энергии на подобные химические превращения требуется очень незначительное количество. Настолько незначительное, что миниатюрные электролизеры, называемые теперь генераторами газа HHO (от воды H2O), работают от USB-шной зарядки мобильника (см. видео ниже).
Этот эффект электролиза воды впервые применили Генри Пухарич и Нил Браун в 90-е годы прошлого столетия. А газ, получающийся в результате электролиза, назвали газом Брауна. Правда, в химии такой газ, смесь водорода и кислорода, называется гремучей смесью, так как способен при возникновении малейший искры «шарахнуть» так, что мало не покажется никому.
Несколько патентов в области электролиза при резонансном токе получил Стенли Мейер (U.S. Patent 5,149,407, U.S. Patent 4,936,961, U.S. Patent 4,826,581, U.S. Patent 4,798,661, U.S. Patent 4,613,779, U.S. Patent 4,613,304, U.S. Patent 4,465,455, U.S. Patent 4,421,474, U.S. Patent 4,389,981). Мейер доказал, что электролиз воды способен проходить в обычных условиях, а для качественной и масштабной реакции достаточно 12 вольт бортового автомобильного питания. Мейер продемонстрировал это на своем автомобиле, переделанном для работы на воде. Этот пример рассматривается, как невозможный с точки зрения современной науки.
Промышленность, пока, правда, не автомобильная, начала использовать газ Брауна, уникальные свойства которого активно используются в газосварочном оборудовании. Еще бы температура горения водорода в кислороде достигает 3200°C. А это очень много, скажу я Вам, в одном из приведенных ниже роликов медный прут плавится (температура плавления меди 1083°C), как олово, в пламени обычной горелки, затем собирается каплями в одну большую каплю, причем пламя в этом месте зеленеет, похоже, медь начинает кипеть, а температура кипения меди 2558°C! Всё по-серьезному, приведу температуры горения нескольких хорошо известных веществ. Бумага горит от 230 до 300°C, керосин – 800°C, бензин – 1100°C, плавление стали 1510°C, горение стали 2000, ацетиленовая горелка (ацетилен в кислороде) 2100°C.Температура Солнца на поверхности, 6000°C, а это термоядерная реакция, до такой же температуры нагреваются спускаемые аппараты, попадающие на Землю из космоса. Этот HHO – реально крутой источник энергии! Вся нефтехимия просто отдыхает, покуривая за углом. Да еще немаловажно, что газы здесь – в максимально правильной концентрации, чтобы вновь образовать молекулу воды без побочных продуктов, то, что доктор прописал, для экологии.
А технология эта удивительно проста, при наличии стандартного автомобиля, может быть реализована где-то в гараже из подручных материалов. Вероятней всего, для простых авто, все дополнительные компоненты поместятся прямо здесь, под капотом. Автомобиль не претерпит серьезных внешних изменений. Даже внедрение турбины в двигатель внутреннего сгорания (ДВС) требует куда больших усилий.
Электролизер и генератор HHO
Главным аппаратом данной технологии является электролизер. Это емкость, в которую погружены пластины, чем больше площадь пластин, тем эффективнее аппарат. На каждую пластину подается напряжение либо плюс, либо минус. Плюсовые и минусовые пластины чередуются. Для получения смеси газов (кислород + водород), как в нашем случае, расположение, наклоны повороты пластин не важны. Важно, чтобы пластины были заполнены водой. Вся остальная обвязка «танцует» вокруг электролизера, обеспечивая его заполнение водой (реагент) и отвода получаемых газов (продукт). Не забудьте высушить и очистить газ перед подачей его в ДВС. Конечно, следует предусмотреть электрическую схему с предохранителем, регулировкой мощности, если это возможно и аварийным выключением, если что-то пойдет не так.
А что же автомобилестроители?
К сожалению, зашоренность и академичность обычного инженера, обладающего ворохом классических знаний, мешает продвижению революционной технологии. В голове такого человека с университетским классическим образованием не укладывается, что так просто может быть получено прекрасное топливо из воды.
В автомобилестроительном бизнесе высокая конкуренция, можно предположить, что достаточно одному из автомобильных концернов только объявить о выпуске (даже не выпустить) автомобиля, использующего воду в качестве топлива, и революция свершится!
Неизбежно возникнет вопрос о пересмотре важнейших на сегодня узлов и компонентов современного автомобиля, после внедрения подобной технологии. Давайте помечтаем, автомобиль сегодня напичкан избыточным количеством технологий, ставших стандартными. Зачем такой сложный мотор? Каков его КПД? ДВС и дизель далеки от идеала. КПД таких сложных агрегатов не превышает 40%, а в большинстве случаев, существенно ниже. А вот КПД топливных элементов, производимых электричество из водорода и кислорода, (побочным продуктом которых была чистая вода, что тоже не плохо в условиях космоса), использовавшихся, например на шатлах в качестве электростанций, 80%. КПД электродвигателей приближается к 100%. Зачем тогда нам ДВС с его 20%?
Ясно, как божий день, использование электродвигателей – будущее автотранспорта. Кстати, автомобилестроение началось с электромобилей. И только спустя несколько лет ДВС покорил индустрию, так как невозможно было накопить и удерживать достаточное количество электричества в батареях. И сегодня ограниченность батарей, сложность их зарядки и небольшой срок службы является главным тормозом развития электромобилей. А здесь, с HHO генератором, производи газа столько, сколько требуется, а дальше хочешь сжигай его в ДВС, хочешь получай электричество через топливный элемент и запускай электромоторы. А побочный продукт – воду можно направить на повторное использование. Чем не вечный двигатель?
В частности, одна японская фирма, GENEPAX (см видео ниже), предлагает уже сегодня электромобиль вообще без батарей, но с генератором HHO. Создавай и используй электричества сколько нужно. Причем на литре воды автомобильчик проезжает 80 километров со скоростью 80 км/час! Это практически лишает недостатков электромобиль. Простота, неограниченная дальность хода, быстрая заправка, достаточная для города скорость…
Одним из главных достоинств такого топлива является его абсолютная экологичность. Никаких выбросов, даже углекислый газ не образуется в результате горения такого топлива. И, возможно, этот аргумент станет решающим. Позволю себе напомнить уважаемым читателям, что в рамках перехода на новый для Европы экологический стандарт «Евро-6», ни один дизель, подготовленный мировыми производителями, не справился с нормативом. В результате, нормы были изменены, чтобы продолжить использовать такую вредную технологию, то есть экологи прогнулись перед автомобильными концернами. Зашоренность не только инженеров, но и экологов, не смогла уничтожить то, что наносит вред человеку и окружающей среде.
Так, может быть, требуется еще больше ужесточить нормы выбросов, ввести следующий стандарт, «Евро-7», чтобы новая технология пробила себе дорогу.
Где ты Джереми Кларксон? Ау! Эта технология для твоей новой передачи.
marafonec
Марафонец
Бег на месте к горизонту
Двигатель на воде давно создан — он запрещён! Чем заменяют подобные изобретения.
Водяной автомобиль существует гипотетически, и никак иначе! Но, это — неправда, в своей сути уже существует подобное изобретение. Как только, появляются новые и передовые технологии, затрагивающие интересы монополистов, — предприятия, осмелившиеся начать производство революционных технологий – разоряются.
Прорывная технология
В далёком 2008 году, японская компания Genepax, представляет на автомобильной выставке в Осаке, автомобиль, работающий на воде. Своё изобретение, предприимчивые японцы, запатентовали в Европейском патентном ведомстве. Можно вдохнуть свободно: наконец-то, прорыв!
Но, не тут-то было. Ходу этому изобретению не дали. Наоборот, изобретение вызывает, в определённых кругах, досаду и негодование. Оно способно негативно повлиять на способ ведения устоявшегося бизнеса владельцев компаний в энергетической отрасли.
Что же осмелились создать японцы — расплата за смелость
Японские изобретатели создали автомобиль, работающий на обычной воде. Вода может быть из крана или любого источника. В пути — это может быть и бутылка с водой, купленная в ближайшем магазинчике.
Для того, чтобы он начал движение, — ему нужно всего один литр воды, и один час езды обеспечен. Скорость автомобиля до 80 километров в час.
Воду нужно залить в бак, соединённый с устройством, которое посредством электрического тока, расщепляет воду на кислород и водород.
Так генерируется топливо – перекись водорода. Также генератор производит необходимую электроэнергию, извлекая из воды водород, высвобождая электроны.
Такое топливо даёт в два раза больше энергии двигателю, чем бензин. Продуктом распада этой реакции является, всего лишь – водяной пар.
Как в народе говорят: не прошло и года. Через год компания странным образом разоряется и, — перестаёт существовать.
Почему все молчат и ничего не делают?
Конечно, эта идея не нова! По всему миру изобретатели создают подобные прототипы, усовершенствуя и внося коррективы в своё идеальное транспортное средство.
Весь казус состоит в том, что такие автомобили единично передвигаются по дорогам, а оплаченное общество «экспертов», продолжает кричать о мошенничестве.
Есть и другой выход в создавшейся неудобной ситуации для монополистов. Он подразумевает: запугивание, подкуп, выкуп лабораторий, которые занимаются альтернативными источниками энергии.
Какой выход для всех нас?
И вот, в 2017 году – «прорыв»! Предприимчивые монополисты решились на инновации. Появляется «новый» серийный автомобиль компании Mercedes-Benz, работающий на водородном топливе.
Следом, не отстаёт японская компания Mirai, заявляя о безостановочном ходе своего автомобиля на 480 километров, который также заправлен водородом.
Да, все они будут заправляться водородом на специальных заправках (ведь, нужно же, что-то продавать, вместо бензина).
Как говорят, эти автомобили мощнее и их ждёт будущее, несмотря на то, что они более взрывоопасны, чем бензиновые.
PS: Так напоминает историю с электромобилями.
Еще в Советском Союзе харьковские разработчики и инженеры совершили прорыв, запустив на дороги транспортные средства, которые ездили на водороде, а не на бензине. Сегодня водородный двигатель активно тестируют в украинской лаборатории
Харьковские разработчики Института проблем машиностроения им. А. Н. Подгорного начали разрабатывать водородные двигатели еще с 70-х годов. Тогда по улицам Харькова начали ездить автомобили на воде. Их было несколько.
Сразу после Второй мировой войны в харьковском институте машиностроения специалисты начали работу над созданием альтернативного топлива. Тогда удалось добиться прогресса в этой области, и уже в 1976 году первый водородный двигатель был установлен на «москвич». Вода в двигателе проходила через определенные химические элементы и разделялась на водород и кислород. Что интересно, «Москвич» сохранил возможность передвигаться и на бензине.
Кроме привычного бензобака, на «Москвич-412» установили мини-реактор, заправленный энергоаккумулирующими веществами (ЭАВ) — катализаторами, в основе которых лежат оксиды различных металлов. Проходя через этот реактор, вода расщеплялась на кислород и водород, который потом и сгорал в цилиндрах привычного ДВС. Скоростью реакции управлял водитель, нажимая на педаль газа.Примечательно, что топливную систему для подачи водорода установили параллельно со стандартной бензиновой.
«В бак вместо бензина заливали воду. Специальный механизм подавал эту воду в реактор, где вырабатывался водород. И он питал двигатель», – рассказывает Антон Левтеров, старший научный сотрудник отдела водородной энергетики Института проблем машиностроения.
Волга ГАЗ-24 на водороде
Опытная эксплуатация бензоводородных автомобилей «Волга», осуществлявшаяся в Харькове с 1980 года, показала перспективность перевода части городского автотранспорта на бензоводородные смеси с содержанием водорода около 5% по весу. При этом резко снижается токсичность выбросов, эксплуатационный расход бензина уменьшается на 35‑40 процентов, а эксплуатационная экономичность повышается на 20‑25%.
В 1986 году Минавтопромом СССР было принято решение о выпуске и последующей эксплуатации в городах СССР опытной партии городских микроавтобусов РАФ (200 штук), работающих на бензоводородных смесях. Однако это решение из‑за начавшихся политических процессов не было выполнено.
Теперь харьковские разработчики хотят продолжить эксперимент и активно исследуют водородную энергетику.
Как работает водородный двигатель и какие у него перспективы
С 2018 года в ЕС действует запрет на дизельные автомобили новейшего поколения в населенных пунктах [1]. Это стало поворотным моментом в развитии рынка электрокаров, а также — гибридных и водородных двигателей.
Великобритания еще в 2017-м высказывалась за полный запрет бензиновых авто к 2040 году. Тогда же, если верить исследованию Bloomberg New Energy Finance [2], на электрокары будет приходиться 35% от всех продаж автомобилей. Уже к 2030 году Jaguar и Land Rover планируют довести число электрокаров в своих линейках до 100% [3]. Часть из них тоже работает на водороде.
История развития рынка водородных двигателей
Первый двигатель, работающий на водороде, придумал в 1806 году французский изобретатель Франсуа Исаак де Риваз [4]. Он получал водород при помощи электролиза воды.
Первый патент на водородный двигатель выдали в Великобритании в 1841 году [5]. В 1852 году в Германии построили двигатель внутреннего сгорания (ДВС), который работал на воздушно-водородной смеси. Еще через 11 лет французский изобретатель Этьен Ленуар сконструировал гиппомобиль [6], первые версии которого работали на водороде.
В 1933 году норвежская нефтегазовая и металлургическая компания Norsk Hydro Power переоборудовала [7] один из своих небольших грузовиков для работы на водороде. Химический элемент выделялся за счет риформинга аммиака и поступал в ДВС.
В Ленинграде в период блокады на воздушно-водородной смеси работали около 600 аэростатов. Такое решение предложил военный техник Борис Шепелиц, чтобы решить проблему нехватки бензина. Он же переоборудовал 200 грузовиков ГАЗ-АА для работы на водороде.
Первый транспорт на водороде выпустила в 1959 году американская компания Allis-Chalmers Manufacturing Company — это был трактор [8].
Первым автомобилем на водородных топливных элементах стал Electrovan от General Motors 1966 года. Он был оборудован резервуарами для хранения водорода и мог проехать до 193 км на одном заряде. Однако это был единичный демонстрационный экземпляр, который передвигался только по территории завода.
В 1979-м появился первый автомобиль BMW с водородным двигателем. Толчком к его созданию послужили нефтяные кризисы 1970-х, и по их окончании об идее альтернативных двигателей забыли вплоть до 2000-х годов.
В 2007 году та же BMW выпустила ограниченную серию автомобилей Hydrogen 7, которые могли работать как на бензине, так и на водороде. Но машина была недешевой, при этом 8-килограммового баллона с газом хватало всего на 200-250 км.
Первой серийной моделью автомобиля с водородным двигателем стала Toyota Mirai, выпущенная в 2014 году. Сегодня такие модели есть в линейках многих крупных автопроизводителей: Honda, Hyundai, Audi, BMW, Ford и других.
Как работает водородный двигатель?
На специальных заправках топливный бак заправляют сжатым водородом. Он поступает в топливный элемент, где есть мембрана, которая разделяет собой камеры с анодом и катодом. В первую поступает водород, а во вторую — кислород из воздухозаборника.
Каждый из электродов мембраны покрывают слоем катализатора (чаще всего — платиной), в результате чего водород начинает терять электроны — отрицательно заряженные частицы. В это время через мембрану к катоду проходят протоны — положительно заряженные частицы. Они соединяются с электронами и на выходе образуют водяной пар и электричество.
По сути, это — тот же электромобиль, только с другим аккумулятором. Емкость водородного аккумулятора в десять раз больше емкости литий-ионного. Баллон с 5 кг водорода заправляется около 3 минут, его хватает до 500 км.
Где применяют водородное топливо?
Плюсы водородного двигателя
Минусы водородного двигателя
Водород для топлива можно получать разными способами. В зависимости от того, насколько они безвредны, итоговый продукт называют [13] «желтым» или «зеленым». Желтый водород — тот, для которого нужна атомная энергия. Зеленый — тот, для которого используют возобновляемые ресурсы. Именно на этот водород делают ставку международные организации.
Самый безвредный способ — электролиз, то есть, извлечение водорода из воды при помощи электрического тока. Пока что он не такой выгодный, как остальные (например, паровая конверсия метана и природного газа). Но проблему можно решить, если сделать цепочку замкнутой — пускать электричество, которое выделяется в водородных топливных элементах для получения нового водорода.
Водородный транспорт в России
В России в 2014 году появился свой производитель водородных топливных ячеек — AT Energy. Компания специализируется на аккумуляторных системах для дронов, в том числе военных. Именно ее топливные ячейки использовали для беспилотников, которые снимали Олимпиаду-2014 в Сочи.
В 2019 году Россия подписала Парижское соглашение по климату, которое подразумевает постепенный переход стран на экологичные виды топлива.
Чуть позже «Газпром» и «Росатом» подготовили совместную программу развития водородной технологии на десять лет.
Главный фактор, который может обеспечить России преимущество на рынке водорода — это богатые запасы пресной воды [14] за счет внутренних водоемов, тающих ледников Арктики и снегов Сибири. Вблизи последних уже есть добывающая инфраструктура от «Роснефти», «Газпрома» и «Новатэка».
В конце 2020 года власти Санкт-Петербурга анонсировали [15] запуск каршеринга на водородном топливе совместно с Hyundai. В случае успеха проект расширят и на другие крупные города России.
Перспективы технологии
Вокруг водородных двигателей немало противоречивых заявлений. Одни безоговорочно верят в их будущее — например, Арнольд Шварценеггер еще в 2004 году, будучи губернатором Калифорнии, обещал [16], что к 2010 году весь его штат будет покрыт «водородными шоссе». Но этого так и не произошло. В этом отчасти виноват глобальный экономический кризис: автопроизводителям пришлось выживать в тяжелейших финансовых условиях, а подобные технологии требуют больших и долгосрочных вложений.
Другие, напротив, критикуют технологию за ее очевидные недостатки. Так, основатель Tesla Илон Маск назвал водородные двигатели «ошеломляюще тупой технологией» [17], которая по эффективности заметно уступает электрическим аккумуляторам. Отчасти он прав: сегодня водородным автомобилям приходится конкурировать с электрокарами, гибридами, транспортом на сжатом воздухе и жидком азоте. И пока что до лидерства им очень далеко.
Но у водородного топлива есть существенное преимущество перед электрическими аккумуляторами — долговечность. Если аккумулятора в электрокаре хватает на три-пять лет, то водородной топливной ячейки — уже на восемь-десять лет. При этом водородные аккумуляторы лучше приспособлены для сурового климата: не теряют заряд на морозе, как это происходит с электрокарами.
Есть еще одна перспективная сфера применения водородного топлива — стационарное резервное питание: ячейки с водородом могут снабжать энергией сотовые вышки и другие небольшие сооружения. Их можно приспособить даже для энергоснабжения небольших автономных пунктов вроде полярных станций. В этом случае можно раз в год наполнять газгольдер, экономя на обслуживании и транспорте.
Основной упрек критиков — дороговизна водородного топлива и логистики. Однако Международное энергетическое агентство прогнозирует, что цена водорода к 2030 году упадет минимум на 30% [20]. Это сделает водородное топливо сопоставимым по цене с другими видами [21].
Если вспомнить, как развивался рынок электрокаров, то его росту способствовали три главных фактора:
Водородные двигатели ждет примерно тот же сценарий. В Toyota видят главные перспективы [26] для водородных двигателей в компактных автомобилях, а также в среднем и премиум-классе. Пока что производство не вышло на тот уровень, чтобы бюджетные модели работали на водороде и оставались рентабельными. Современные водородные машины стоят вдвое дороже обычных [27] и на 20% больше, чем гибридные.
Автомобиль на воде своими руками.
из сети)
Бензиновый двигатель был изобретен очень давно, но используется в наше время. Люди всегда хотели, чтобы двигатель был мощным и экономичным. Было придумано много различных вариантов. Но не все используются в современном мире.
Здесь будет рассмотрена подача газа в двигатель. Этот газ называют по-разному: коричневый газ, газ Брауна, гидроген, водяной газ. Он делается на основе воды. Главное преимущество системы Брауна – улучшение экологии окружающей среды.
Бензин экономится из-за его лучшего горения. Часто только около 15% энергии бензина, превращается в механическую энергию в двигателе внутреннего сгорания. Если двигатель дополнить газом Брауна, то это приведет к тому, что топливо будет лучше сгорать, а доступная энергия из бензина преобразуется в механическую. И это не нарушает законов термодинамики.
Когда газ сгорает, получается сухой водяной пар. Он служит для того, чтобы очистить клапанно-поршневую группу от нагара, улучшить теплообмен между клапаном и седлом. В результате этого ресурс двигателя увеличивается. Из-за того, что расход топлива уменьшается, увеличивается пробег топливных форсунок, межсервисный пробег увеличивается, а также загрязнение масла уменьшается.
Один литр воды становиться шире на 1866 литра горючего газа. 30-40 часов можно проехать на каждом литре.
Чтобы в домашних условиях разложить воду на газ нужны: катализатор, дистиллированная вода, электричество, электроды.
Способов сделать автомобиль на воде своими руками множество. Но мы остановимся на одной, более простой конструкции.
Чтобы собрать генератор Брауна надо взять оргстекло 5 мл, 20 метров проволоки из нержавейки (марка 316), трубку из винила диаметром 4мл и шесть банок объемом 700 мл. Катализатором можно сделать КаОН или NaOH (резиновые перчатки используйте обязательно, так как эти вещества являются щелочью).
Можно использовать только одну банку, вместо шести, но обязательно учитывать следующие правила:
-надо, чтобы получилось строго определенное количество газа. Например, вам понадобиться 0,7-1,5 литра газа в минуту при условии, что у вас двигатель 1,5 л;
-температура электролита и количество газа сильно зависит от напряжения на электродах. Электролит может нагреться до 60 градусов уже через два часа при 12В питания. Это будет много, поэтому лучше подать 6В, а не 12В. Чтобы это сделать, нужно включить две банки одну за другой. Но тогда упадет количество производимого газа. Надо взять больше банок – лучше шесть (все параллельно и две последовательно).
Дальше все очень легко – надо вырезать пластинки и соединить их крест накрест. Потом обмотать их проволокой (2 электрода) и закрепить к крышке. На крышке нужно обязательно сделать штуцер, чтобы газ выходил и специальные болты, чтобы провода крепились к электродам. Электроды должны быть не замкнуты между собой, а крышка сидеть герметично при закрытии банки.
В банки нужно залить приблизительно пол-литра дистиллированной воды, предварительно добавив полчайной ложки КаОН. Получается, что 6 банок должны потреблять ток примерно 6В при правильном соединении. Эта система должна работать на любом автомобиле.