Автоматическая приставка к зарядному устройству для авто аккумулятора

Автоматическая приставка к зарядному устройству для авто аккумулятора

Приставка может быть выполнена в виде отдельного блока либо встроена в зарядное устройство. В любом случае необходимым условием для ее работы будет наличие пульсирующего напряжения на выходе зарядного устройства. Такое напряжение получается, скажем, при установке в устройстве двухполупериодного выпрямителя без сглаживающего конденсатора.

Схема приставки-автомата

Узел управления содержит триггер на транзисторах VТ2, VТЗ и усилитель тока на транзисторе VТ1. База транзистора VТЗ подключена к движку подстроечного резистора R9, которым устанавливают порог переключения триггера, т. е. напряжение включения зарядного тока. «Гистерезис» переключения (разность между верхним н нижним порогами переключения) зависит в основном от резистора R7 и при указанном на схеме сопротивлении его составляет около 1,5 В.

Триггер подключен к проводникам, соединенным с выводами аккумуляторной батареи, и переключается в зависимости от напряжения на них.

Автоматическая приставка к зарядному устройству для авто аккумулятора

Рис. I. Принципиальная схема приставки-автомата.

Как видно из схемы, тринистор подключен катодом к минусовому проводу зарядного устройства, а анодом-к минусовому выводу аккумуляторной батареи. При таком варианте упрощается управление тринистором: при возрастании мгновенного значения пульсирующего Напряжения на выходе зарядного устройства через управляющий электрод тринистора сразу начинает протекать ток (если, конечно, открыт транзистор VT1).

А когда на аноде тринистора появится положительное (относительно катода) напряжение, тринистор окажется надежно открытым. Кроме того,’ подобное включение выгодно тем, что тринистор можно крепить непосредственно к металлическому корпусу приставки-автомата или корпусу зарядного устройствя (в случае размещения приставки внутри его) как к теплоотводу.

Выключателем SA1 можно отключить приставку, поставив его в положение «Ручн.». Тогда контакты выключателя будут замкнуты, и через «резистор R2 управляющий электрод тринистора окажется» подключенным непосредственно к выводам зарядного устройства». Такой режим нужен, например, для быстрой зарядки аккумулятора перед установкой его на автомобиль.

Детали и конструкция

Если сопротивление резистора больше указанного на схеме, параллельно его выводам подключают постоянный резистор такого сопротивления, чтобы общее сопротивление составило 330 Ом.

Детали узла управления монтируют на плате (рис. 2) из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм. Подстроечный резистор укрепляют в отверстии диаметром 5,2 мм так, чтобы его ось выступала со стороны печати.

Плату укрепляют внутри корпуса подходящих габаритов либо, как было сказано выше, внутри корпуса зарядного устройства, но обязательно возможно дальше от нагревающихся деталей (выпрямительных диодов, трансформатора, тринистора). В любом случае напротив сси подстроечного резистора в стенке корпуса сверлят отверстие. На лицевой стенке корпуса укрепляют светодиоды и выключатель SA1.

Автоматическая приставка к зарядному устройству для авто аккумулятора

Рис. 2. Печатная плата приставки-автомата.

Допустимо прикрепить теплоотвод и к наружной стороне стенки, вырезав в корпусе отверстие под тринистор.

Источник

Поделки своими руками для автолюбителей

Автоматическая приставка к зарядному устройству для авто аккумулятора

Автоматическое отключение аккумулятора или приставка к ЗУ

Схема представляет из себя систему автоматического отключения аккумулятора при полном заряде, то есть это не совсем зарядное устройство, конечно если дополнить её трансформатором и выпрямителем, то получим полноценное ЗУ.

Начальная схема подвергалась некоторым изменением плата дорабатывалась в ходе испытаний конечную версию платы можно скачать в конце статьи.

Рассмотрим схему.

Автоматическая приставка к зарядному устройству для авто аккумулятора

Как видим она до боли простая и содержит всего один транзистор, электромагнитное реле и мелочевку. У меня на плате также имеется диодный мост по входу и примитивная защита от переполюсовки (на схеме эти узлы не нарисованы).

Автоматическая приставка к зарядному устройству для авто аккумулятора

На вход схемы подается постоянное напряжение зарядного устройства или любого другого источника питания, тут важно заметить, что ток заряда не должен превышать допустимый ток через контакты реле и ток срабатывания предохранителя. В моем случае схема на 8 ампер.

Автоматическая приставка к зарядному устройству для авто аккумулятора

Как это работает — при подаче питания на вход схемы заряжается аккумулятор, в схеме есть делитель напряжения (R2, R3, R4) с помощью которого отслеживается напряжение непосредственно на аккумуляторе.

Автоматическая приставка к зарядному устройству для авто аккумулятора

По мере заряда напряжение на аккумуляторе будет расти, как только оно становится равным напряжению срабатывания схемы, которое можно выставить путем вращения подстроечного резистора, сработает стабилитрон, подавая сигнал на базу маломощного транзистора и тот сработает.

Так как в коллекторную цепь транзистора подключена катушка электромагнитного реле, последняя также сработает и указанные контакты разомкнутся, а дальнейшая подача питания на аккумулятор прекратится.

Заодно и сработает второй светодиод, уведомив о том, что зарядка окончена.

Автоматическая приставка к зарядному устройству для авто аккумулятора

В схеме есть еще один светодиод, он светится постоянно, это по сути индикатор наличии напряжения на плате.

Как сказал ранее, делитель отслеживает напряжение непосредственно на аккумуляторе, следовательно, если аккумулятор будучи подключенным к зарядному устройству разрядиться до некоторого значения, схема автоматически сработает и процесс заряда возобновится.

Автоматическая приставка к зарядному устройству для авто аккумулятора

Так как делитель подключен непосредственно к аккумулятору он будет его разряжать, но ток разряда такой мизерной, что его можно не принимать во внимание.

Для настройки схемы на ее выход подключается конденсатор большой емкости, он у нас в роли быстрого заряжаемого аккумулятора. Я взял последовательно соединенные ионисторы и подсоединил вместо конденсатора.

Автоматическая приставка к зарядному устройству для авто аккумулятора

Если брать конденсатор, то его напряжение должно быть 25-35 вольт, сперва подключаем ионисторы (в моём случаи) или конденсатор к выходу схемы соблюдая полярность,

Автоматическая приставка к зарядному устройству для авто аккумулятора

по окончанию заряда сперва отключаем зарядное устройство от сети, затем аккумулятор иначе реле будет ложно срабатывать. При этом ничего страшного не случится, но звук неприятной.

Автоматическая приставка к зарядному устройству для авто аккумулятора

Далее берем любой регулируемый источник питания, например лабораторный блок и выставим на нём то напряжение, до которого будет заряжаться наш аккумулятор и подключаем блок ко входу схемы.

Автоматическая приставка к зарядному устройству для авто аккумулятора

Медленно вращаем подстроечный резистор до тех пор,

Автоматическая приставка к зарядному устройству для авто аккумулятора

пока не сработает красный индикатор, после чего делаем один полный оборот подстроечника в обратном направлении, так как схема имеет некоторый гистерезис.

Автоматическая приставка к зарядному устройству для авто аккумулятора

А теперь проверяем работу

Напряжение на ионисторах или конденсаторе, будет показывать мультиметр при достижении на них порогового значения система отключит питание.

Автоматическая приставка к зарядному устройству для авто аккумулятора

Если напряжение снизится на АКБ, схема опять сработает и будет снова заряжать аккумулятор до заданного значения.

Источник

Приставка автомат к зарядному устройству для отключения аккумуляторов

Предлагаем тем, у кого имеются простейшие бюджетные автомобильные ЗУ с трансформатором и выпрямителем, простую схему, которая автоматически завершает процесс зарядки автомобильного аккумулятора, то есть отключает его по достижению нужного напряжения. Схема использует характеристики напряжения батареи в заключительной фазе зарядки, когда оно достигает значения около 14 В. По схеме был сделан макет несколько лет назад и по сей день не было никаких проблем с ним. Такая схема может использоваться в выпрямителях с 12 В и 24 В, после правильного подбора элементов.

Схема и список деталей для сборки

Автоматическая приставка к зарядному устройству для авто аккумулятора

Описание работы зарядного автомата

Когда тумблер выключен. Выпрямитель работает без системы автоматизации. Включение выключателя W запускает процесс отслеживания значения напряжения на выходе цепи. Если напряжение достигает значения около 13,8 В, ток будет проходить через стабилитрон D1 и поступать к катоду тиристора. Это активирует тиристор и одновременно вызывает срабатывание реле. Цепь зарядки аккумулятора будет отключена и загорится светодиод D3, указывая на окончание процедуры заряда.

Чтобы увеличить порог активации схемы (по напряжению), подключите последовательно со стабилитроном любой кремниевый диод малой мощности в направлении нужной проводимости. Это повысит порог на 0,7 В.

Из опыта работы со схемой добавим, что для регулирования напряжения при котором срабатывает тиристор, добавьте потенциометр 10 кОм, подключенный последовательно с стабилитроном.

Второй вариант схемы приставки

Автоматическая приставка к зарядному устройству для авто аккумулятора

А здесь работа основана на том, что после кратковременного замыкания цепи напряжение запускает реле, имеющее питание от массы после резистора, так что разрыв стабилитрона заставляет транзистор активировать второе реле, которое начинает питать + первого реле. Эта схема с управлением и пуском даже от низкого напряжения АКБ.

Автоматическая приставка к зарядному устройству для авто аккумулятораИзучение принципа действия и параметров кварцевого генератора, выбор КГ для различных устройств.

Автоматическая приставка к зарядному устройству для авто аккумулятораОбзор готового модуля усилитель звуковой частоты на TDA7377 с модулем Bluetooth для беспроводной передачи аудиосигнала.

Источник

приставка к ЗУ АКБ (тестовая сборка)

Автоматическая приставка к зарядному устройству для авто аккумулятора

Продолжаю серию постов про приставку для зарядного устройства (ЗУ) автомобильного аккумулятора. В моем блоге (и в сообществах) уже есть посты с описанием работы этой приставки, кому интересно могут посмотреть. А, сейчас я хочу рассказать и показать как собрать эту приставку чтобы не только можно было посмотреть но и самостоятельно протестировать её работу.
Выглядит приставка так :

Автоматическая приставка к зарядному устройству для авто аккумулятора

Автоматическая приставка к зарядному устройству для авто аккумулятора

Для управления этим блоком я использовал готовую плату Arduino Pro Mini теоретически можно использовать любую плату Arduino или просто контроллер с минимальной обвязкой.
А, если все таки есть желание сделать на плате, то вот ссылка на рисунок в «спринте» www.dropbox.com/s/1pv21oi…%9D%D0%9E%D0%95.lay6?dl=0

На этой плате сборка будет выглядеть так :

Автоматическая приставка к зарядному устройству для авто аккумулятора

Автоматическая приставка к зарядному устройству для авто аккумулятора

Для работы приставки естественно нужна программа и вот ссылка на тестовую прошивку www.dropbox.com/s/gpgszz4…r_47_for%20tests.hex?dl=0
Фьюзы можно оставить «родные», если делать на отдельном контроллере, то я применял: lf = 0xFF, hf = 0xDF

Остается только видео, где я расскажу как «оживить» приставку для работы.

и собственно небольшой парк моих приставок …

Автоматическая приставка к зарядному устройству для авто аккумулятора

Кстати, теперь в качестве источника напряжения использую блок питания от ноутбука, у него в схеме ничего не менял, только сделал выход более толстым проводом.
Провода для выхода приставки тоже советую делать сечением потолще и длиной покороче, я применяю сечение 2,5 длина до 40 см.

Все, что вы делаете, вы делаете на свой страх и риск!

Комментарии 128

Автоматическая приставка к зарядному устройству для авто аккумулятора

Автоматическая приставка к зарядному устройству для авто аккумулятора

Автоматическая приставка к зарядному устройству для авто аккумулятора

прошу указать тип диода

Автоматическая приставка к зарядному устройству для авто аккумулятора

От 40 Ампер…
Только на эту схему нет прошивки.

Автоматическая приставка к зарядному устройству для авто аккумулятора

Я смотрел блог тестовая сборка, разве это не та схема? Она там присутствует.
И что Вы предлагаете для повторения?
Как то все запутанно выглядит, можете прояснить?
Не обижайтесь, со всем уважением к Вашему труду…
Но хотел бы по подробней о калибровке, внимательно просмотрел видео,
калибровка привязана к конкретному аккумулятору, если Вы предлагаете прошивку
с автоматической калибровкой- то как быть с другим аккумулятором?
Я понимаю, что опорное остается прежним, а ЭДС другого аккумулятора иная-
снова ручная калибровка?
нет, если Вам эта тема не интересна, можем ее оставить, не хочу Вас отвлекать и надоедать,
хотя желал бы проверить на макете- судя по комментам никто ее не повторял.
Ну а обыкновенная моргалка мне не нужна, такого пруд пруди в нете.

Автоматическая приставка к зарядному устройству для авто аккумулятора

— калибровка НЕ привязана к аккумулятору. параметры для калибровки это опорное напряжение (напряжение питания) контроллера и фактические номиналы резисторов делителя напряжения.

— в тестовой версии калибровка требуется только при каждом включении ЗУ при смене аккумулятора этого делать не нужно.

— знаю о двух повторениях ЗУ но в комментах этого нет, все общения были в личке.

Автоматическая приставка к зарядному устройству для авто аккумулятора

Доброго времени суток. Пытаюсь разработать свое первое зарядное для АКБ, очень удачно наткнулся на Ваш каскад постов, 3 день пытаюсь въехать в тему. Просветите по поводу алгоритма работы, насколько мне удалось понять: измеряем напряжение АКБ, если меньше 10.8 включаем зарядку импульсми (на форуме пишут отношение 10:1 импульс-пауза и 1:2 длительности соответственно и чем ближе к 12 вольтам тем скважность можно больше сделать), так гоним пока напряжение на АКБ не станет 12 вольт. Затем заряжаем как обычно постоянным током 0.1С до 12.5в. Затем добиваем АКБ зарядкой типа «качели» (не нашел никакой конкретики), но видимо это режим когда подается порция тока, а затем подключается маломощная нагрузка рассчитанная на ток 0.05*С и так продолжается пока напряжение на АКБ не достигнет 14.4в. Законченной картины в голове пока нет, подскажите где я не прав?

Автоматическая приставка к зарядному устройству для авто аккумулятора

Вы сгребли кучу выдержек из разных постов, теперь нужно все сформировать в один логически обоснованный алгоритм…

1 — определитесь с целью и задачей, что вы собрались конструировать.
судя по цитатам это будет, что-то типа «моргалки», тогда может проще взять уже готовый вариант там на форуме, например от Павла Валерьевича.

Автоматическая приставка к зарядному устройству для авто аккумулятора

В общем нужен зарядник для АКБ, деньги есть на покупку готового, но неспокойный мозг инженера говорит что надо собрать самому. Думаю пока остановлюсь на изготовлении БП+»моргалки», а затем по уже если будет желание усовершенствую, добавлю разные контроли, режим разрядки, КТЦ. А тема с моргалкой Павла Валерьевича помогла, там почти готовый алгоритм, и как я раньше его не заметил. Спасибо что тыкнули носом куда надо!

Автоматическая приставка к зарядному устройству для авто аккумулятора

«остановлюсь на изготовлении БП+»моргалки», » — тоесть вернетесь в прошлый век…

«а затем по уже если будет желание усовершенствую, » — гемороя много, а толку мало …

Автоматическая приставка к зарядному устройству для авто аккумулятора

Не понял как изготовление БП вернет меня в прошлый век? насколько я помню вы в своих первых экспериментах использовали в качестве бп, зарядное типа «кипятильник», а потом уже пересели на БП от ноутбука.

Автоматическая приставка к зарядному устройству для авто аккумулятора

я имел ввиду «моргалку»…
что, использовать в качестве источника энергии (БП ноутбук или трансформатор) это не так критично, вопрос в блоке управления.

Автоматическая приставка к зарядному устройству для авто аккумулятора

Форум большой, читать его трудно и времени жалко если честно, да и мло людей кто делится информацией в открытую. Но найти необходимую информацию все же удалось.
Алгоритм зарядки-моргалки:
1. Зарядка производится пачками импульсов, частотой 35Гц, скважность импульсов равна 50%.
2. Длина пачки 30 сек или меньше, если достигнут верхний порог 14,3-14,4В
3. Далее пауза (отдых) 20 сек или меньше, если спад АКБ в паузе более 0,01В за 1 сек.
4. Если АКБ

Автоматическая приставка к зарядному устройству для авто аккумулятора

Интересно чем вы руководствовались выбирая именно этот алгоритм… интерес чисто теоретический…

давайте для начала попробуем разобраться с п.1 …

Автоматическая приставка к зарядному устройству для авто аккумулятора

Автоматическая приставка к зарядному устройству для авто аккумулятора

Это дроссель фильтра из компового БП.

Автоматическая приставка к зарядному устройству для авто аккумулятора

Источник

Автоматическая приставка к зарядному устройству для авто аккумулятора

Дополнив имеющееся в вашем распоряжении зарядное устройство для автомобильной аккумуляторной батареи предлагаемым автоматом, можете быть спокойны за режим зарядки батареи — как только напряжение на ее выводах достигнет (14,5±0,2)В, зарядка прекратится. При снижении напряжения до 12,8. 13 В зарядка возобновится.

Приставка может быть выполнена в виде отдельного блока либо, встроена в зарядное устройство. В любом случае необходимым условием для ее работы будет наличие пульсирующего напряжения на выходе зарядного устройства. Такое напряжение получается, скажем, при установке в устройстве двухполупериодного выпрямителя без сглаживающего конденсатора.

Схема приставки-автомата приведена на рис. 1.

Автоматическая приставка к зарядному устройству для авто аккумулятора

Она состоит из тринистора VS1, узла управления тринистором А1, выключателя автомата SА1 и двух цепей индикации — на светодиодах НL1 и НL2. Первая цепь индицирует режим зарядки, вторая — контролирует надежность подключения аккумуляторной батареи к зажимам приставки-автомата. Если в зарядном устройстве есть стрелочный индикатор — амперметр, первая цепь индикации не обязательна.

Узел управления содержит триггер на транзисторах VТ2, VТ3 и усилитель тока на транзисторе VT1. База транзистора VТЗ подключена к движку подстроечного резистора R9, которым устанавливают порог переключения триггера, т. е. напряжение включения зарядного тока. «Гистерезис» переключения (разность между верхним и нижним порогами переключения) зависит в основном от резистора R7 и при указанном на схеме сопротивлении его составляет около 1,5 В.

Триггер подключен к проводникам, соединенным с выводами аккумуляторной батареи, и переключается в зависимости от напряжения на них.

Транзистор VT1 подключен базовой цепью к триггеру и работает в режиме электронного ключа. Коллекторная же цепь транзистора соединена через резисторы R2, R3 и участок управляющий электрод — катод тринистора с минусовым выводом зарядного устройства. Таким образом, базовая и коллекторная цепи транзистора VT1 питаются от разных источников: базовая — от аккумуляторной батареи, а коллекторная — от зарядного устройства.

Тринистор VS1 выполняет роль коммутирующего элемента. Использование его вместо контактов электромагнитного реле, которое иногда применяют в этих случаях, обеспечивает большое число включений — выключений зарядного тока, необходимых для подзарядки аккумуляторной батареи во время длительного хранения.

Как видно из схемы, тринистор подключен катодом к минусовому проводу зарядного устройства, а анодом — к минусовому выводу аккумуляторной батареи. При таком варианте упрощается управление тринистором: при возрастании мгновенного значения пульсирующего напряжения на выходе зарядного устройства через управляющий электрод,тринистора сразу начинает протекать ток (если, конечно, открыт транзистор VТ1). А когда на аноде тринистора появится положительное (относительно катода) напряжение, тринистор окажется надежно открытым. Кроме того, подобное включение выгодно тем, что тринистор можно крепить непосредственно к металлическому корпусу приставки-автомата или корпусу зарядного устройства (в случае размещения приставки внутри его) как к теплоотводу.

Выключателем SА1 можно отключить приставку, поставив его в положение «Ручн.». Тогда контакты выключателя будут замкнуты, и через резистор R2 управляющий электрод тринистора окажется подключенным непосредственно к выводам зарядного устройства. Такой режим нужен, например, для быстрой зарядки аккумулятора перед установкой его на автомобиль.

Транзистор VT1 может быть указанной на схеме серии с буквенными индексами А — Г; VТ2 и VТ3 — КТ603А — КТ603Г; диод VD1 —любой из серий Д219, Д220 либо другой кремниевый; стабилитрон VD2 — Д814А, Д814Б, Д808, Д809; тринистор — серии КУ202 с буквенными индексами Г, Е, И, Л, Н, а также Д238Г, Д238Е; светодиоды — любые из серий АЛ102, АЛ307 (ограничительными резисторами R1 и R11 устанавливают нужный прямой ток используемых светодиодов).

Постоянные резисторы — МЛТ-2 (R2), МЛТ-1 (R6), МЛТ-0,5 (R1, R3, R8, R11), МЛТ-0,25 (остальные). Подстроечный резистор R9 — СП5-16Б, но подойдет другой, сопротивлением 330 Ом. 1,5 кОм. Если сопротивление резистора больше указанного на схеме, параллельно его выводам подключают постоянный резистор такого сопротивления, чтобы общее сопротивление составило 330 Ом.

Детали узла управления монтируют на плате (рис. 2)

Автоматическая приставка к зарядному устройству для авто аккумулятора

из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм.

Подстроечный резистор укрепляют в отверстии диаметром 5,2 мм так, чтобы его ось выступала со стороны печати.

Плату укрепляют внутри корпуса подходящих габаритов либо, как было сказано выше, внутри корпуса зарядного устройства, но обязательно возможно дальше от нагревающихся деталей (выпрямительных диодов, трансформатора, тринистора). В любом случае напротив оси подстроечного резистора в стенке корпуса сверлят отверстие. На лицевой стенке корпуса укрепляют светодиоды и выключатель SА1.

Для установки тринистора можно изготовить теплоотвод общей площадью около 200 см2. Подойдет, например, пластина дюралюминия толщиной 3 мм и размерами 100X100 мм. Теплоотвод прикрепляют к одной из стенок корпуса (скажем, задней) на расстоянии около 10 мм — для обеспечения конвекции воздуха. Допустимо прикрепить теплоотвод и к наружной стороне стенки, вырезав в корпусе отверстие под тринистор.

Перед креплением узла управления его нужно проверить и определить положение движка подстроечного резистора. К точкам 1, 2 платы подключают выпрямитель постоянного тока с регулируемым выходным напряжением до 15 В, а цепь индикации (резистор R1 и светодиод НL1) —к точкам 2 и 5. Движок подстроечного резистора устанавливают в нижнее по схеме положение и подают на узел управления напряжение около 13 В. Светодиод должен гореть. Перемещением движка подстроечного резистора вверх по схеме добиваются погасания светодиода. Плавно увеличивая напряжение питания узла управления до 15 В и уменьшая до 12 В, добиваются подстроечным резистором, чтобы светодиод зажигался при напряжении 12,8. 13 В и погасал при 14,2..14,7 В.

Зарядное устройство.

В сборнике «В помощь радиолюбителю» № 87 было помещено описание автоматического зарядного устройства К. Кузьмина, которое в условиях хранения аккумулятора в зимнее время позволяет автоматически включать его на зарядку при снижении напряжения и также автоматически выключать зарядку при достижении напряжения, соответствующего полностью заряженному аккумулятору. Недостатком этой схемы является ее относительная сложность, так как управление включением и выключением зарядки осуществляется двумя раздельными узлами. На рис. 1 приведена электрическая принципиальная схема зарядного устройства, свободная от этого недостатка: указанные функции осуществляются одним узлом.

Автоматическая приставка к зарядному устройству для авто аккумулятора

Схема обеспечивает два режима работы — ручной и автоматический.

В автоматическом режиме тумблер SА1 разомкнут. Если напряжение аккумуляторной батареи меньше 14,5 В, напряжение на выводах стабилитрона VD5 получается меньше, чем необходимо для его отпирания, и транзисторы VТ1, VТ2 заперты. Реле К1 обесточено и его контакты К1.1 и К1.2 замкнуты. Первичная обмотка трансформатора Т1 подключена к сети через контакты реле К 1.1. Контакты реле К 1.2 замыкают переменный резистор R3. Происходит зарядка аккумуляторной батареи. При достижении напряжения на аккумуляторе 14,5 В стабилитрон VD5 начинает проводить ток, что приводит к отпиранию транзистора VТ1, а следовательно, и транзистора VТ2. Срабатывает реле и контактами К1.1 выключает питание выпрямителя. Благодаря размыканию контактов К1.2 в цепь делителя напряжения включается дополнительный резистор R3. Это приводит к увеличению напряжения на стабилитроне, который теперь остается в проводящем состоянии даже после того, как напряжение на аккумуляторной батарее окажется меньше 14,5 В. Зарядка аккумулятора прекращается и наступает режим хранения, в процессе которого происходит медленный саморазряд. В этом режиме схема автоматики получает питание от аккумуляторной батареи. Стабилитрон VD5 перестанет пропускать ток только после того, как напряжение аккумуляторной батареи понизится до 12,9 В. Тогда вновь запрутся транзисторы VТ1 и VТ2, реле обесточится и контактами К1.1 включит питание выпрямителя. Вновь начнется зарядка аккумулятора. Контакты К1.2 также замкнутся, напряжение на стабилитроне дополнительно понизится, и он начнет пропускать ток только после того, как напряжение на аккумуляторе увеличится до 14,5 В, то еcть когда аккумулятор будет полностью заряжен.

Настройка узла автоматики зарядного устройства производится следующим образом. Соединитель ХР1 к сети не подключается. К соединителю ХР2 вместо аккумуляторной батареи присоединяется стабилизированный источник постоянного тока с регулируемым выходным напряжением, которое устанавливается по вольтметру, равным 14,5 В. Движок переменного резистора R3 устанавливается в нижнее по схеме положение, а движок переменного резистора R4 — верхнее по схеме положение. При этом транзисторы должны быть заперты, а реле обесточено. Медленно вращая ось переменного резистора R4, нужно добиться срабатывания реле. Затем на клеммах соединителя Х2 устанавливается напряжение 12,9 В и медленным вращением оси переменного резистора R3 нужно добиться отпускания реле. В связи с тем что при отпускании реле резистор R3 замыкается контактами К1.2, эти регулировки оказываются независимыми одна от другой. Сопротивления резисторов делителя напряжения R2—R5 рассчитаны таким образом, что срабатывание и отпускание реле должны происходить соответственно при напряжениях 14,5 и 12,9 В в средних положениях переменных резисторов R3 и R4. Если необходимы другие значения напряжений срабатывания и отпускания реле, а пределов регулировки переменными резисторами окажется недостаточно, придется подобрать сопротивления постоянных резисторов R2 и R5.

Электронный сигнализатор зарядки аккумуляторной батареи.

Чтобы продлить срок эксплуатации автомобильной аккумуляторной батареи, необходим эффективный контроль за режимом ее зарядки. Описываемое устройство сигнализирует водителю, когда напряжение на аккумуляторной батарее повышено и когда оно понижено, а генератор не работает. В случае повышенного потребления тока в бортовой сети при малой частоте вращения ротора генератора сигнализатор не срабатывает.

При разработке устройства ставилась цель разместить его в корпусе имеющегося в автомобиле сигнального реле РС702, что обусловило особенности конструкции сигнализатора и типы примененных транзисторов.

Принципиальная схема электронного сигнализатора вместе с цепями связи его с элементами бортовой сети приведена на рис. 1.

Автоматическая приставка к зарядному устройству для авто аккумулятора

На транзисторах VT2, VT3 выполнен триггер Шмитта, на VT1 —узел запрета его срабатывания. В коллекторную цепь транзистора VT3 включена индикаторная лампа HL1, размещенная на приборном щитке. В горячем состоянии нить накала имеет сопротивление около 59 Ом. Сопротивление холодной нити в 7. 10 раз ниже. В связи с этим vтранзистор VT3 должен выдерживать бросок тока в коллекторной цепи до 2,5 А. Этому требованию удовлетворяет транзистор КТ814.

Аналогичные транзисторы используются и в качестве VT1 и VT2. Но здесь причиной их выбора послужило стремление получить малые геометрические размеры устройства — три транзистора устанавливают один под другим и закрепляют общим винтом с гайкой.

Напряжение бортовой сети за вычетом напряжения на стабилитроне VD2 через делитель R5R6 подается на базу транзистора VT2. Если оно выше 13,5 В, триггер Шмитта переключается в состояние, при котором выходной транзистор VT3 закрыт и лампа HL1 не горит.

База транзистора VT2 через стабилитрон VD1 и делитель R1R2 соединена также со средней точкой обмотки генератора. При исправном генераторе в ней относительно его плюсового вывода создается пульсирующее напряжение с амплитудой, равной половине генерируемого напряжения. Поэтому, если даже из-за большой токовой нагрузки в бортовой сети напряжение упадет ниже 13,5 В, ток с делителя R1R2 поступает в базу транзистора VT2 и не разрешает горение лампы. Чтобы исключить запрещение на включение сигнализации, когда отсутствует ток в обмотке возбуждения генератора, используется цепь, состоящая из делителя R1R2 и стабилитрона VD1. Она предотвращает попадание тока утечки через выпрямительные диоды генератора (в худшем случае до 10 мА) в базу транзистора VT2.

Напряжение бортовой сети за вычетом напряжения на стабилитроне VD2 через делитель R3R4 подается также на базу транзистора VT1, участок коллектор — эмиттер которого шунтирует базовую цепь транзистора VT2. При напряжении сети выше 15 В транзистор VT1 переходит в режим насыщения. При этом триггер Шмитта переключается в состояние, при котором транзистор VT3 открыт и, следовательно, зажигается лампа HL1.

Таким образом, лампа красного света на приборном щитке загорается, когда отсутствует ток зарядки и напряжение сети ниже 13,5 В, а также когда оно выше 15 В.

При использовании в автомобиле электронного регулятора напряжения, не имеющего отдельного провода к клемме аккумуляторной батареи, из-за падения напряжения (около 0,1. 0,2 В) в цепи до входной клеммы регулятора (чаще всего в режиме холостого хода) при выключенных потребителях тока наблюдается кратковременное периодическое пропадание зарядного тока от генератора. Длительность и период такого эффекта обусловлены временем спадания напряжения на аккумуляторной батарее на 0,1. 0,2 В и временем повышения его на то же значение и составляют, в зависимости от состояния аккумуляторной батареи, около 0,3. 0,6 с и 1. 3 с соответственно. При этом с таким же тактом срабатывает сигнальное реле РС702, зажигая лампу. Такой эффект нежелателен. Описываемый электронный сигнализатор исключает его, так как при кратковременных пропаданиях зарядного тока напряжение в бортовой сети не достигает нижнего порога 13,5 В.

Электронный сигнализатор выполнен на базе имеющегося в автомобиле сигнального реле РС702. Само реле с гетинаксовой платы удалено (после ликвидации заклепки). Кроме того, удалены заклепка с контактного лепестка «87» и Г-образная стойка у его основания.

Элементы сигнализатора монтируют на печатной плате (рис. 2)

Автоматическая приставка к зарядному устройству для авто аккумулятора

из фольгированного стеклотекстолита толщиной 1,5. 2 мм. Транзисторы VT1—VT3 размещены по оси центрального отверстия платы: VT3 со стороны печатного монтажа коллекторной пластиной от платы, а VT2, VT1 (в указанном порядке) — с противоположной стороны платы коллекторными пластинами в сторону платы. Перед пайкой все три транзистора нужно стянуть винтом МЗ с гайкой. Их выводы соединяют с точками плиты полуженными медными проводниками, впаянными и нужные отверстии платы. Резисторы R3 и R5 припаивают не к токопроподящим дорожкам, а к штырям из провода. Это облегчает их замену при налаживании устройства. Элементы VD1 и VD2 устанавливают вертикально жестким выводом к плате. Так же вертикально расположен конденсатор С1, помещенный в хлорвиниловую трубку по диаметру конденсатора.

В сигнализаторе следует применять резисторы (кроме R8)—ОМЛТ (МЛТ) с номиналами и мощностью рассеивания, указанными на схеме. Допуск по номиналам ±10 %. Резистор R8 изготавливают из высокоомного провода, намотанного (1—2 витка) на резистор МЛТ-0,5. Конденсатор C1 — К50-12. Транзисторы VT1 — VT3 —любые из серии КТ814 или КТ816. Элемент VD1 — стабилитрон Д814 с любым буквенным индексом, VD2 — Д814Б или Д814В.

После окончания монтажа печатной платы электронный сигнализатор собирают в такой последовательности:
снимают гайку и винт, стягивающие транзисторы;
в сквозные отверстия транзисторов VT1, VT2 помещают хлорвиниловую трубку диаметром 3 мм;
в освободившуюся от реле РС702 плату вставляют лепестки (выводы) «30/51» (в центре) и «87»; последний закрепляют винтом М3 (головкой со стороны вывода) с гайкой высотой 3 мм;
винт М2,7 длиной 15. 20 мм пропускают через отверстие в плате от реле РС702 (со стороны вывода «30/51»), затем насаживают на концы винтов смонтированную плату с транзисторами;
обеспечивают контакт вывода «30/51» с коллекторной пластиной транзистора VT3 (путем ее плотного прилегания к плоской части вывода);
проверяют наличие соединения вывода «87» с печатной платой через гайку с винтом;
короткие штырьки выводов «85» и «86» подгибают так, чтобы они вошли в предназначенные для них отверстия на печатной плате;
с помощью гаек М2,7 и МЗ с шайбами скрепляют обе платы;
припаивают штырьки выводов «85» и «86» к токопроводящим дорожкам.

При налаживании сигнализатора требуются блок питания с регулируемым напряжением от 12 до 16 В и лампа мощностью 3 Вт на 12 В.

Сначала при отключенном, резисторе R5 подбирают резистор R3. Необходимо добиться, чтобы при увеличении напряжения лампа загоралась в момент достижения 14,5. 15 В. Затем подбирают резистор R5 так, чтобы лампа зажигалась, когда напряжение снижается до 13,2. 13,5 В.

Налаженный сигнализатор устанавливают на место реле РС702, при этом вывод «86» соединяют с «массой» автомобиля коротким проводом под винт крепления самого сигнализатора. К остальным выводам подключают провода электрооборудования, как это предусмотрено штатной схемой автомобиля с реле РС702, т. е. к выводу «85» — провод от средней точки генератора (желтый), к «30/51» — провод от лампы индикации (черный), к «87» — провод «±12 В» (оранжевый).

Испытания сигнализатора показали следующий результат. При коротком замыкании регулятора свечение лампы наблюдается при повышении частоты вращения генератора и зависит от нее. При изъятии предохранителя в цепи регулятора лампа загорается примерно через минуту независимо от частоты вращения. Этой информации достаточно, чтобы установить причину и вид неисправности системы генератор — регулятор напряжения.

При включении зажигания через час и более после остановки двигателя индикация работает, как и с релейным сигнализатором. Если же оно включается через незначительное время (менее 5 мин), лампа — сигнализатор зарядки не зажигается, но при пуске двигателя стартером вспыхивает и гаснет, свидетельствуя об исправности сигнализатора.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *