бестрансформаторные блоки питания для кв ум

Бестрансформаторные блоки питания для кв ум

Внимание, при сборке бестрансформаторных источников питания вы должны обязательно соблюдать технику безопасности и отдавать отчет всем своим действиям. Обязательно сделайте себе простейшее устройство для разряда электролитических емкостей. Я для этой цели использую малогабаритную лампу накаливания на 60Вт c щупами от тестера.

Корпус (шасси) усилителя, к которому будет подключаться бестрансформаторный источник питания, обязательно должен быть заземлён, а в электрощитовой обязательно должно быть установлено УЗО. Желательно там же установить реле напряжения, чтобы предотвратить превышение сетевого напряжения на входе умножителя, что может привести ко взрыву ёмкостей.

Так же, желательно использовать простейший светодиодный индикатор предпочтительного подключения фазы к умножителю напряжения. На входе и выходе умножителя необходимо по каждой цепи устанавливать предохранители, согласно расчётному току. Подавать сетевое напряжение на умножитель нужно с ограничением тока заряда ёмкостей. Я для этой цели использую цементный резистор 220Ом на 20Вт. После подачи напряжения, через несколько секунд включается обход резистора.

Предполагается, что вы знакомы с материалом И.Гончаренко, относительно принципа бестрансформаторного питания.

Воспользовался программой Electronics Workbrench Version 5.12 на предмет моделирования различных вариантов умножителей сетевого напряжения для КВ-усилителей мощности. Выкладываю несколько своих расчетов для разных нагрузок. Собственно, суть в том, что есть определенные соотношения между емкостями ступеней умножителя и не всегда некоторое их увеличение может быть оправданным. Нужно подбирать оптимальную величину и соотношение емкостей, исходя из заданного тока в нагрузке.

1. Умножитель на 4 на ток до 500мА. Подойдет для вариантов усилителей на трех-четырех ГУ-50, на одной ГИ-7Б.

бестрансформаторные блоки питания для кв ум

Практическая реализация умножителя на 4.

бестрансформаторные блоки питания для кв ум

2. Умножитель на 4 на ток до 600мА. Здесь уже емкости по-больше. Можно попробовать применить для двух ГИ-7Б или четырех Г807.

бестрансформаторные блоки питания для кв ум

3. Умножитель на 4 на ток до 1А. Пожно попробовать использовать с лампами Г811.

бестрансформаторные блоки питания для кв ум

бестрансформаторные блоки питания для кв ум

Все схемы и файлы для моделировщика. Возможно, будут добавляться другие варианты умножителей.

При практической реализации необходимо предусмотреть установку предохранителей во входных и выходных цепях, плавный пуск через мощный резистор, чтобы ограничить зарядный ток конденсаторов, можно установить амперметр для контроля тока и фильтрацию входного напряжения по аналогии с узлами в компьютерных блоках питания, светодиодные индикаторы для определения предпочтительного варианта включения фазы (в точку соединения конденсаторов для умножителя на 4 и в точку соединения диодов для умножителя на 6).

В настоящий момент занялся изготовлением платы умножителя на 6 по схеме в п.4. Планирую выполнить блок питания в отдельном корпусе с последующим использованием его с PA на 2-х ГИ-7Б, т.к. в имеющийся корпус PA данная плата вместо умножителя на 4 (которого оказалось недостаточно) не помещается. В качестве соединительного силового кабеля хорошо подойдёт качественный компьютерный проходной сетевой трёх-проводной шнур с ответными разъёмами на умножителе и PA.

При использовании данного умножителя с ГК-71 по схеме с сетками, заземлёнными по ВЧ, по кабелю может передаваться «-«, «+» и «+620В»(относительно минусового провода) для узла стабилизатора экранного напряжения. Напряжение смещения для первой сетки, накал лампы и питание цепей автоматики необходимо будет выполнять на других источниках переменного напряжения внутри самого PA.

Вариант практической реализации умножителя на 6. Использован односторонний фольгированный стеклотекстолит размером 150×200мм. Дорожки нарисованы лаковым маркером edding print marker 780 (к сожалению, после травления, местами удаляется довольно сложно с помощью мелкой шкурки), плата вытравлена в хлорном железе, при пайке использовался флюс ЛТИ-120, после пайки, плата промыта растворителем.

бестрансформаторные блоки питания для кв ум

Теперь необходимо подобрать подходящий корпус, установить сетевые разъемы, предохранители, выключатели и миллиамперметр.

Еще раз напомню: при использовании бестрансформаторного блока питания по схеме умножения сетевого напряжения, у нас есть минус (точка «ноль вольт» в схеме усилителя мощности) и плюс (подается через дроссель на анод), если производить замер относительно средней точки соединения диодов, независимо от того, приходит в эту точку фаза или ноль из розетки. Земляного (корпусного) провода данный блок питания не имеет. По схеме усилителя, земля (корпус усилителя) имеет связь с точкой «ноль вольт» умножителя только по высокой частоте через емкость около 2200пФ (см. схему И.Гончаренко). Ее можно набрать из четырех емкостей, которые могут служить опорой блока ламп, например или поставить один конденсатор. Емкости используются с запасом по напряжению и кВАрам (я ставлю дисковые КВИ).

Вариант умножителя напряжения на 8. При стоимости емкостей 680uFx400V по 350руб./шт оптом (нужно ещё поискать такую точку), 24 конденсатора будут стоить 8400 руб.. Приблизительно, за эти деньги уже можно заказать всамделишный полуторакиловаттный тороидальный трансформатор и выполнить классическую схему усилителя. Поэтому, данный вариант умножителя, на мой взгляд, оправдан лишь в том случае, если у вас есть в наличии достаточное кол-во конденсаторов. С другой стороны, емкость фильтра питания (одна банка или вариант из нескольких последовательно включенных емкостей) классического трансформатора тоже обойдётся в немалую сумму. Так же, схема представляет определённый интерес в плане моделирования умножителя в программе.

бестрансформаторные блоки питания для кв ум

С таким умножителем к анодам можно подвести приблизительно 1,2кВт мощности и в классе AB1 получить около 700Вт полезной мощности. Можно попробовать использовать этот умножитель для пары ГИ-7Б или одной-двух ГК-71.

Схемы умножителей размещаю не по принципу увеличения степени умножения, а по результатам моделирования.

Вариант умножителя на 3. Подойдёт для трёх ГУ-50 по схеме с общими сетками, заземлёнными по ВЧ. В классе АВ1 можно выжать до трёхсот ватт полезной мощности. Однако, нужно будет проверять сигнал на линейность.

К слову, я проверял в макете это решение, только все четыре ёмкости были по 680uFx400V. При токе анодов 500mA, не стабилизированном экранном напряжении около 300В и общем токе экранных сеток около 30mA в нагрузку уходило 300Вт. Аноды оставались серыми даже в режиме нажатия. На линейность усилитель не проверял.

бестрансформаторные блоки питания для кв ум

Питать четыре полтинника от такого умножителя, я особого смысла не вижу. Лучше сделать учетверение при общем токе около 600mA (см.выше).

Купил себе мобильный вариант реле напряжения:

Источник

Бестрансформаторный блок питания большой мощности для любительского передатчика

Заманчивая идея избавиться от крупногабаритного и очень тяжелого силового трансформатора в блоке питания усилителя мощности передатчика, давно озадачивает радиолюбителей. Особенно, эта идея привлекательна для участников радиоэкспедиций, где каждый лишний килограмм массы аппаратуры ощущается «собственным горбом». В различных радиолюбительских изданиях прошлых лет публиковались конструкции бестрансформаторных блоков питания. Но это, как правило, были устройства относительно маломощные, предназначенные для питания передатчиков мощностью 100. 400 Вт, кроме того, требующие наличия защиты от «неправильного» включения вилки питания в розетку.

Применение современных малогабаритных электролитических конденсаторов позволяет сконструировать и изготовить мощный высоковольтный блок питания небольшого размера и веса. Предлагаемый вариант блока питания разработан для усилителя мощности на лампе ГУ-43Б, включенной по схеме с общим катодом с выходной мощностью 1,5 кВт (подводимая — 3 кВт).

бестрансформаторные блоки питания для кв ум

Используя включение лампы по схеме с общим катодом, при данной схеме питания, входной сигнал на управляющую сетку подается через ВЧ трансформатор, и никак иначе. Если же подавать сигнал просто через конденсатор, то из-за того, что выходная цепь драйвера гальванически связана со своим корпусом, на сетку попадет переменная составляющая питающей сети 50 Гц. К тому же это приведет к нарушению режима работы усилителя мощности. Но в схеме с общей сеткой, где управляющая сетка соединена с катодом, такой проблемы не возникает. Некоторые особенности принципиальной схемы такого усилителя мощности с бестрансформаторным питанием показаны на, рис. 6.5.

Приведенный способ включения не требует дополнительной защиты от «неправильного» подключения к сети (случайный поворот вилки питания, когда могут быть перепутаны «фаза» и «ноль»), т.к. отсутствует гальваническая связь цепей питания с корпусом (в двухполупериодных умножителях она и недопустима!). Однако, следует еще раз напомнить, что этот блок питания вырабатывает высокое напряжение, опасное для жизни.

бестрансформаторные блоки питания для кв ум

По правилам техники безопасности корпус радиостанции должен быть надежно соединен с исправным заземлением. В целях личной безопасности и безопасности окружающих работы с высоковольтными источниками питания следует проводить очень осмотрительно, и они могут производиться только опытными и подготовленными радиолюбителями. Этот блок питания представляет собой бестрансформаторный десятикратный умножитель-выпрямитель напряжения.

При напряжении питающей сети переменного тока 230 В постоянное выходное напряжение составляет 3240 В без нагрузки и 3000 В при нагрузке 1 А. Потребляемая нагрузкой мощность составляет 3 кВт. При испытании в качестве нагрузки использовался набор из мощных резисторов суммарным сопротивлением 3 кОм и общей мощностью 3 кВт. Эту мощность можно потреблять от блока питания довольно продолжительное время, не опасаясь перегрева его деталей (например, работать в ЧМ режиме). При работе в режиме SSB или CW просадка питающего напряжения имеет существенно меньшую величину и зависит от пикфактора SSB сигнала или скважности телеграфных посылок. Общая масса блока питания составляет 5,8 кг, что значительно меньше массы аналогичного трансформаторного блока.

Схема умножителя симметричная, двухполупериодная (рис. 6.6). Каждое плечо обеспечивает пятикратное умножение напряжения сети. Во избежание неприятностей, рабочее напряжение используемых конденсаторов должно выбираться с достаточным запасом. Каждый конденсатор, кроме С1 и СГ, состоит из шести конденсаторов в последовательно-параллельном включении, зашунтиро-ванных резисторами (рис. 6.7).

бестрансформаторные блоки питания для кв ум

Все конденсаторы, которые составляют сборную емкость, по 470 мкФ каждый. Шунтирующие резисторы применены двухваттные, по 220 кОм. Выпрямительные диоды расчитаны на обратное напряжение не менее 800 В и рабочий ток не менее 7 А.

Включение блока питания (см. рис. 6.6), производится в два приема. Сначала напряжение сети подается через ограничительный 50-ваттный резистор 200 Ом, затем, спустя 5. 10 секунд, он замыкается контактами реле К1.1. Во избежание ошибочного включения в обход ограничительного резистора, вместо этого реле ни в коем случае нельзя использовать какие-либо ручные переключатели или тумблеры. Включение реле обеспечивает простая схема самоблокировки, создающая необходимую задержку (на схеме не показана). Выключение может производиться в обратном порядке или сразу. Сетевое напряжение подается через плавкий предохранитель или автоматический выключатель на ток срабатывания 15 А. Для защиты от каких-то непредвиденных обстоятельств, например, внутренний пробой лампы и т.п., между блоком питания и нагрузкой установлены высоковольтные предохранители на 2 А и постоянно включены ограничительные 50-ваттные резисторы по 20. 30 Ом.

Все конденсаторы, кроме С1 и СГ, диоды и шунтирующие резисторы размещаются на двух печатных платах из фольгированного стеклотекстолита, толщиной 2 мм. Причем, каждое плечо умножителя собирается на отдельной плате. На рис. 6.8 приводится одна из плат, на другой, такой же плате, располагается обратная полярность конденсаторов и диодов. Размер каждой платы 240×170 мм. Токопроводящие дорожки на платах продублированы (пропаяны) толстым многожильным проводом. Электролитические конденсаторы, из которых набираются С2. С5 (С2′. С5′), использованы по 470 мкФ, 400 В. Они имеют внешний диаметр 35 мм и высоту 50 мм. Между собой платы соединяются с помощью керамических стоек, монтажом внутрь. На шасси усилителя конденсаторный блок устанавливается на изоляционной пластине из толстого фторопласта.

бестрансформаторные блоки питания для кв ум

Конденсаторы С1 и СГ 3300 мкФ, 400 В должны быть хорошо изолированы от корпуса и устанавливаются отдельно. (Помните, что имеете дело с высоким напряжением 3000 В — здесь качественная изоляция важна превыше всего!). Бестрансформаторные блоки питания в усилителях мощности категорически не допускают гальванической связи питающих цепей и корпуса.

Источник

Бестрансформаторный блок питания

Бестрансформаторный блок питания в радиолюбительской спортивной аппаратуре не содержащий мощных высоковольтных трансформаторов.
Преимущества подобных блоков питания очевидны:
Они позволяют уменьшить габариты и массу передающей аппаратуры.

Особенно эффективно применение бестрансформаторного питания в ламповых усилителях мощности. Когда на основе современных полупроводниковых диодов и малогабаритных электролитических конденсаторов можно создать очень легкие и весьма компактные усилители. Такие усилители удобны при работе как в стационарных условиях, так и в радиоэкспедициях.

Бестрансформаторный блок питания рассмотренные ниже, предназначены для работы с однофазной сетью переменного тока напряжением 220 В.

Следует сразу подчеркнуть, что эксплуатация аппаратуры с бестрансформаторным питанием возможна в том случае, если на радиостанции имеется надежное заземление. Наличие гальванической связи источника питания с сетью переменного тока требует применения не только хорошего заземления, но и устройства, исключающего включение аппаратуры при неправильном подключении к сети бестрансформаторного блока питания.

Нельзя забывать и то, что такая защита срабатывает только при подключенном заземлении, в чем необходимо в обязательном порядке убедиться перед тем, как вставить вилку сетевого шланга в розетку. В целом изготовление конструкций с бестрансформаторным питанием можно рекомендовать радиолюбителям, уже имеющим опыт в изготовлении и эксплуатации связной аппаратуры.

Типовые режимы мощных каскадов на распространенных лампах ГУ-19, ГУ-29, ГС-90, ГИ-7Б и т. п. обеспечиваются источником питания, схема которого приведена на рис.

Он состоит из двух однополупериодных выпрямителей (VI, С1 и V2, С2), работающих непосредственно от сети с выходными напряжениями + 300 В и —300 В (относительно корпуса). Режим работы лампы V5 определяется стабилитронами V3 и V4. Напряжения на электродах лампы V5 (относительно катода) определяются так:

где Uс1—напряжение на управляющей сетке; Uс2 — напряжение на экранной сетке; (Uа — анодное напряжение.

При выборе стабилитронов необходимо учитывать, чтобы максимальный ток стабилизации стабилитрона V3 был не меньше пикового значения анодного тока, a V4—тока экранной сетки. Необходимый диапазон напряжений стабилизации и токов обеспечивают диоды Д815А—Д817Г. Поскольку катод лампы V5 находится под потенциалом около — 300 В относительно корпуса, обмотки накального трансформатора должны быть хорошо изолированы от корпуса.

Высокие динамические характеристики бестрансформаторного источника питания обусловлены тем, что в выпрямителях отсутствуют трансформаторы и дроссели фильтра, имеющие значительную индуктивность. Статическая характеристика определяется конденсаторами С1 и С2.

Выпрямительные диоды V1 и V2 должны быть рассчитаны на обратное напряжение не менее 350 В и пиковый ток, превышающий ток заряда конденсаторов С1 и С2 (обычно от 2 до 5 А). Такому условию удовлетворяют диоды Д246, КД202К — КД202С.
Усилитель мощности кв радиостанции.
На рисунке приведена схема выходного линейного усилителя c бестрансформаторный блок питания выполненного на двух металлокерамических триодах ГИ-7Б,

Включенных по схеме с заземленной сеткой. Бестрансформаторный источник питания для усилителя рассчитан на пиковую нагрузку около 360 Вт, что позволяет в режиме усиления однополосного сигнала подводить мощность 200 Вт (среднее значение). Коэффициент усиления по мощности — 15 дБ. Режим ламп V4, V5 рассчитан так, что при напряжении сети 220 В Uc1= — 7B, Ua — +600 В, начальный анодный ток обеих ламп, включенных параллельно, равен 40 мА, максимальный анодный ток — 600 мА. При нестабильности сети ±20 В усилитель сохраняет хорошую линейность.

Сопротивление анодной нагрузки каскада — 1 кОм, Применение в усилителе двух ламп, включенных параллельно, объясняется необходимостью получить большой анодный ток при сравнительно низком анодном напряжении. Средняя мощность, рассеиваемая на аноде каждой лампы, не превышает 50 Вт, вследствие чего лампы надежно работают и без принудительного воздушного охлаждения.

Пусковое устройство выполнено на электромагнитном реле K1, контакты K1.1 и К 1.2 которого подключают нулевой провод сети к корпусу и подают напряжение сети на выпрямители на диодах V1 и V2. При включенном тумблере S1 пусковое устройство не сработает, а следовательно, источник питания будет отключен от сети, если корпус прибора не заземлен или корпус прибора заземлен, но контакт сетевой вилки А7 подключен к нулевому проводу сети. Таким образом, при включении трансивера в сеть необходимо подсоединить к корпусу заземление, включить тумблер S1 и найти такое положение вилки X1 в сетевой розетке, при котором пусковое устройство срабатывает.

Реле К2 и КЗ коммутируют соответствующие цепи при переходе с приема на передачу. При работе на прием питающие напряжения (кроме накала) с ламп сняты, а трансивер подключен к антенне через разъем ХЗ.

Конденсаторы С1 и СЗ—К50-12, С2 и С4 — К50-7, С6 — С10 — КСО на рабочее напряжение 500 В.

Схема усилитель мощности на 144Мгц.

На рисунке приведена схема линейного усилителя, работающего в диапазоне 144… 146 МГц,

Выполненного на лампе ГУ-29. Коэффициент усиления по мощности около 20 дБ, что позволяет использовать в качестве возбудителя транзисторный УКВ передатчик. Режим работы лампы ГУ-29 следующий: Uc1 = — 22В, Uc2 = + 225В, Uа = +580 В. Максимальный анодный ток равен 250 мА. При нестабильности сети ±15 В режим лампы изменяется незначительно, а линейность усилителя мощности не ухудшается.

Детали и конструкция бестрансформаторный блок питания

Петлю связи L6 размерами 40X35 мм изготавливают из посеребренного провода диаметром 1,5 мм.

Располагают ее на расстоянии 6 мм от L5. Конденсаторы С1, С2 — К50-7 или К50-12 на рабочее напряжение 350 В, С7—С11— КСО на рабочее напряжение 500 В. СЗ, С4 и C13 — КПВ. Дифференциальный конденсатор С12 составлен из двух КПВ роторы которых закреплены на одной оси. Накальный трансформатор T1 — ТНЗЗ-127/220-50 или любой другой, имеющий отдельные обмотки на напряжения 6,3 и 12,6 В. При налаживании усилителя конденсатором СЗ регулируют связь с возбудителем, С13 — связь с антенной, конденсатором С4 настраивают на рабочую частоту сеточный контур, а С12—анодный.

Источник

Тема: Бестрансформаторный блок питания для УМ

Опции темы
Поиск по теме

to UI8IDZ
Разница между элекробезопасного заземления и РЧ заземления проявляется в то, что один и тот же заземитеьлный провод примерно длина 20 метров и диаметр 5 мм имеет омическое сопротивление ниже 1 ом, а как РЧ заземление уже имеет индуктивность 35 uH и импеданс 800 ома на 80м, 3 ком на 20 м и 6 ком на 10м. Этот импеданс поднимает ваш антенный разъем относително земле. Так что такое заземление не избавит вас ни от индустриального шума по сетьи, ни от белого эфирного шума.

бестрансформаторные блоки питания для кв ум бестрансформаторные блоки питания для кв ум

бестрансформаторные блоки питания для кв ум

бестрансформаторные блоки питания для кв ум бестрансформаторные блоки питания для кв ум

1980г. сделал ТХ с безтрансформаторным питанием анода на ГУ-19,

бестрансформаторные блоки питания для кв ум бестрансформаторные блоки питания для кв ум

бестрансформаторные блоки питания для кв ум

бестрансформаторные блоки питания для кв ум бестрансформаторные блоки питания для кв ум

Кажется, всё нарисовал.

бестрансформаторные блоки питания для кв ум бестрансформаторные блоки питания для кв ум

Кажется, всё нарисовал.

День добрый!
Интересная схема, но есть пара вопросов:
Задержка включения RLY1 не маловата ли?, успевают ли за этот короткий промежуток зарядится С6 и С7? а если в сети будет 240В?

Емкость конденсаторов С6 и С7 исходя из предполагаемого анодного тока имхо необходимо увеличить минимум до 1000 мкФ и зашунтировать их резисторами 100-150к 2 Вт.

Емкость С18 уменьшить до 2000-2200 пФ, лучше разделить её на количество конденсаторов по количеству ламп, и включать между минусом питания и корпусом на каждой панельке.

на случай межвиткового замыкания входного трансформатора по входу поставить разделительный конденсатор 4700-5600пф.

бестрансформаторные блоки питания для кв ум бестрансформаторные блоки питания для кв ум

Один его конец заземлён.Трансформат ор намотан проводом в фторопластовой изоляции МГТФ. Скорее конденсатор С18 пробёт, чем его.
Схема рабочая, на него я уже делаю QSO. Единственная проблемма это выходной трансформатор, он пока работает только до 16 MHz. Но может даже сегодня что-нибудь хорошее получится.

бестрансформаторные блоки питания для кв ум бестрансформаторные блоки питания для кв ум

бестрансформаторные блоки питания для кв ум бестрансформаторные блоки питания для кв ум

бестрансформаторные блоки питания для кв ум бестрансформаторные блоки питания для кв ум

Блин, как только очередная «чистка» сайта, так пароль уходит в небытие :инвалид:

Источник

Тема: УМ на 4 х ГУ50 с беcтрансформаторным питанием

Обратные ссылки
Опции темы

бестрансформаторные блоки питания для кв ум

УМ на 4 х ГУ50 с беcтрансформаторным питанием

Всем доброго времени суток.Хочу собрать УМ 4 шт ГУ-50 по безтрансформаторной схеме питания.У кого есть опыт постройки просьба поделиться.

Я собирал, правда на 3ех ГУ-50. Для начала очень рекомендую ознакомится со статьей DL2KQ Легкий и мощный PA http://www.dl2kq.de/pa/1-1.htm Многие вопросы отпадут сами собой.
Схема моего вот такая (см.вложеный файл).

бестрансформаторные блоки питания для кв ум

Делал и некотрое время работал на УМ на трех полтинниках по аналогичной схеме. Общая емкость С12-С14 желательно не болжна быть более 2700 Пф на напряжение не менее 2500В (при U анода 1200В), для предотвращения самовозбуда ум в варианте для трех полтинников эту емкость лучше разделить на количество ламп +1(например 4Х680 Пф), эти конденсаторы запаиваются непосредственно с выводов сеток ламп каждой панельки на корпус и с общей точки подключения минуса источника питания к лампам на корпус.
входной транс делал на куске феритового сержня от магнитной антенны диаметром 10мм, обмотка выполнена кабелем РК-50 (диаметр 4мм, 12 витков), для согласования выхода трансивера с входом ум применял автотрансформатор на кольце.
Накальный транс с хорошей изоляцией между обмотками, типа ТН, ТПП, наверное можно и непосредственно от сети через кондер, но это уже на любителя..
Элементы П-контура расчитывал по программе с сайта И.Гончаренко.
Раскачивал трансивером

25 Вт, ток анода в резонансе около 380 мА, больше не качал. Потом полтинники были заменены на одну Ги-7Б, при некотором упрощении схемы и аналогичной раскачке одна Ги-7Б отдает немного больше, чем три полтинника..

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *