Биогеохимическая машина планеты представляется

Биогеохимические циклы основных биофильных элементов

Солнце дарит Земле колоссальное количество энергии. Достигающее биосферы излучение несет энергии около 3*10 24 Дж в год. Только около 0.3% этой энергии непосредственно преобразуется в процессе фотосинтеза в энергию химических связей органических веществ и только 0.1% оказывается заключенной в чистой первичной продукции. Дальнейшая судьба этой энергии обусловлена передачей органического вещества пищи по каскадам трофических уровней гетеротрофов.

Поток солнечной энергии образует глобальные физические круговороты воздуха и воды на Земле. Движение воздушных масс помимо механических эффектов (ветры, волны, течения) обусловливают аэрогенную миграцию веществ, в первую очередь газов, паров воды и пылевых частиц, аэрозоле разного состава. Под действием солнечной радиации и грозовых разрядов в атмосфере происходят различные фотохимические и электрохимические реакции – фотолиз воды, образование озона, окислов и кислотных осадков, образование углеводородных смогов и др.

Биогеохимическая машина планеты представляется

Рис. Схема биогеохимического круговорота веществ на суше (по Р. Кашанову, 1984)

Цикл углерода. Биогеохимическая машина планеты представляется системой взаимосвязанных циклов элементов. Определяющим для биосферы служит цикл органического углерода, полностью преобразовавший состояние поверхностных оболочек земли, движущей силой которого служит энергия Солнца, использованная фотоавтотрофами. Система биогеохимических циклов определяется ведущим циклом органического углерода Сорг и сопряженными с ним в эквимолекулярном отношении 1:1:1 циклами углекислоты СО2 и кислорода О2. Цикл органического углерода обусловлен, во-первых, первичной продукцией за счет использования внешней солнечной энергии фотоавтотрофными оксигенными организмами: цианобактериями, водорослями, растениями и в небольшой степени хемоавтотрофами за счет поступления эндогенного водорода в газогидротермах и, во-вторых, деструкцией органотрофными организмами, аэробными и анаэробными. Резервуары органического углерода определяются динамическим резервуаром биомассы, суммирующим биомассу продуцентов и деструкторов; резервуаром мортмассы, которая не успела еще разложиться под действием деструкторов; резервуаром остаточного органического вещества трудно поддающегося разложению. Динамический резервуар биомассы различен для организмов с коротким жизненным циклом и длительным циклом, как у деревьев.

Биогеохимическая машина планеты представляется

Рис. Круговорот углерода (по Smith, 1971)

Цикл азота сопряжен с циклом органического углерода соотношением Сорг : Nорг = 6 : 1 для синтеза биомассы; в нем происходят также превращения неорганических форм азота. Цикл азота с его этапами: азотфиксацией, аммонификацией, нитрификацией, денитрификацией – целиком определяются деятельностью бактерий. Продукция определяется наличием резервуара доступного азота, который пополняется только за счет азотфиксации и уменьшается за счет денитрификации и экспортной продукции мортмассы, выводимой из цикла. Способность к азотфиксации широко распространена среди бактерий, особенно анаэробных, но связана с большой затратой энергии.

Биогеохимическая машина планеты представляется

Рис. Оценка количества фиксированного азота, теряемого и приобретаемого биосферой в различных процессах (по Дювиньо, Тангу, 1968)

Цикл серы сопрягается с циклом органического углерода в реакциях сульфидогенеза, катализируемых только прокариотами, сульфат- и сероредуцирующими организмами. В биогеохимическом цикле серы участвуют следующие формы соединений серы, создающие значительные резервуары: 1) сульфаты, преимущественно сульфаты моря; 2) сульфиды в виде растворенного H2S и нерастворимых сульфидов металлов, частично эндогенного (вулканического) и в основном экзогенного (биогенного) происхождения; 3) сера, в значительной части эндогенного происхождения. Разнообразные промежуточные соединения неполного окисления серы, как тиосульфат или SO2, появляются в транзитных формах и незначительной концентрации, не образуя резервуары. Подобно тому как конечным результатом сопряженных циклов углекислоты, органического углерода, кислорода оказывается накопление кислорода атмосферы, конечным продуктом серного цикла оказываются сульфаты океана.

Биогеохимическая машина планеты представляется

Рис. Круговорот серы (по Ю.Одуму, 1975). «Кольцо» в центре схемы иллюстрирует процесс окисления (О) и восстановление (R), благодаря которым происходит обмен серы между фондом доступного сульфата (S04) и фондом сульфидов железа, находящихся глубоко в почве и в осадках

Цикл фосфора связан с циклом органического углерода в отношении С : Р ≥ 100 : 1 в реакциях анаболизма.. В цикле фосфора, в отличие от других биогенных элементов, отсутствует стадия воздушной миграции, обеспечивающая равномерное распределение по всему земному шару. Первичным источником пополнения доступного фосфора служит его выщелачивание из изверженных пород и поступление в состав Рорг биомассы. Из мортмассы в результате деструкции фосфор поступает в регенерационный цикл, частично захоранивается с мортмассой, частично переходит в неусвояемые соединения, прежде всего фосфаты кальция. Содержащие фосфаты осадки переходят в осадочные породы, из которых фосфор может быть мобилизован микроорганизмам либо поступает в геологический рецикл. В результате фосфор в большей степени, чем азот, служит лимитирующим биогеном, ограничивая развитие живых организмов.

Биогеохимическая машина планеты представляется

Биогеохимическая машина планеты представляется

Рис. Круговорот фосфора в биосфере (по П. Дювиньо, М. Тангу, 1973; с изменениями)

Цикл железа сопрягается с циклом кислорода деятельностью аэробных железобактерий. Цикл железа связан с циклом серы через образование сульфидов железа и их окисление бактериями. В геологическом прошлом цикл железа играл гораздо большую роль, приведя в раннем протерозое к формированию значимых для баланса кислорода мощных отложений окислов железа.

Цикл кальция тесно связан с циклом фосфора образованием фосфатов кальция, но в гораздо большем масштабе он имеет значение для цикла неорганического углерода. Современный цикл кальция определяется прежде всего биологически опосредованными реакциями растворения (выщелачивания) и осаждения карбонатов, а также биоминералогией образования скелета протистами и макроорганизмами. Первичное поступление кальция и магния в биологические циклы связано с выщелачиванием силикатных изверженных пород и циклом кремния в биологически опосредованных процессах. Выщелачивание обусловливает попутное поступление в водную фазу микроэлементов. Цикл кремния в фанерозое обусловлен его использованием как скелетного материала диатомовыми водорослями, радиоляриями и губками. В результате кремний ведет себя в океане как биогенный элемент, и это связано с появлением скелетной функции у эукариот.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Введение в природоведческую микробиологию

5. СИСТЕМА БИОГЕОХИМИЧЕСКИХ ЦИКЛОВ

Связь между биогеохимическими циклами в биосферной системе осуществляется серией частных реакций в этих циклах. Традиционная общая микробиология оказалась подготовленной к решению такой задачи, разработав в течение столетия систему «физиологических групп» и «морфо-физиологическую» систематику бактерий, преимущественно на уровне родов и иногда семейств. По своим принципам эта система совпадает до известной степени с системой «жизненных форм» ботаников и зоологов.

Система биогеохимических циклов (рис. 1) определяется ведущим циклом органического углерода Сорг и сопряженными с ним в эквимолекулярном отношении 1:1:1 циклами углекислоты

СО2 и кислорода О2. Эквимолярное сотношение между этими циклами следует из хорошо известного уравнения, описывающего фотосинтез (слева направо) и дыхание (в обратном направлении):

Цикл фосфора Р стехиометрически связан с циклом органического углерода в отношении С:Р = 100:1 (в реакциях анаболизма). В цикле фосфора, как уже отмечалось, в отличие от других биогенных макроэлементов отсутствует стадия воздушной миграции, обеспечивающая равномерное распределение по всему земному шару с воздушными потоками.

Цикл неорганического углерода смыкается через углекислоту воздуха и ее растворенные формы в гидросфере с циклом органического углерода. В литосфере неорганический углерод представлен в основном карбонатными породами, прежде всего карбонатом кальция.

Цикл кальция Са определяется, прежде всего, биологически опосредованными реакциями растворения (выщелачивания) и осаждения карбонатов, а также образованием минеральных скелетов

некоторыми протистами и макроорганизмами. Цикл кальция сопряжен также с циклом фосфора через образование и растворение фосфатов кальция.

Первичное поступление кальция и магния в биологические циклы связано с циклом кремния Si и химическим выветриванием силикатных изверженных пород, идущим, вообще говоря, под воздействием углекислоты, но ускоряемым примерно в 100 раз под воздействием микроорганизмов и продуктов их обмена в биологически опосредованных процессах. Выщелачивание обусловливает поступление в водную фазу микроэлементов.

С циклом органического углерода сопрягается цикл серы S в катализируемых только бактериями реакциях сульфат- и сероре-дукции (сульфидогенеза), окисления соединений серы аноксиген-ными фототрофными и аэробными хемотрофными организмами. В биогеохимическом цикле серы участвуют следующие формы соединений серы, создающие значительные резервуары: 1) сульфаты, преимущественно сульфаты моря; 2) сульфиды, в виде растворенного сероводорода H2S и нерастворимых сульфидов металлов, частично эндогенного (вулканического) и в основном экзогенного (биогенного) происхождения; 3) сера, в значительной части эндогенного происхождения. Разнообразные промежуточные соединения неполного окисления серы, как тиосульфат или SO2, появляются в транзитных формах и незначительной концентрации, не образуя резервуары. В цикле серы бактерии осуществляют окисление сероводорода и сульфидов либо при фотосинтезе, либо за счет внешних доноров электрона.

Цикл железа Fe сопрягается с циклом кислорода деятельностью аэробных железобактерий, окисляющих закисное железо в гидрат окиси железа, и с циклом органического углерода деятельностью железоредуцирующих бактерий, образующих восстановленное железо и магнетит. Цикл железа связан с циклом серы через образование сульфидов железа и их окисление бактериями.

Биогеохимическая машина планеты представляется системой взаимосвязанных циклов элементов. Эти циклы действуют как в планетарном масштабе, так и в конкретных ландшафтах-экосистемах. Общим правилом служит тезис «циклы в циклах», действующий на всех иерархических уровнях.

Итак, интересы микробиологии четко разделяются на три области.

Источник

Система биогеохимических циклов

Цикл углерода. Биогеохимическая машина планеты представляется системой взаимосвязанных циклов элементов. Определяющим для биосферы служит цикл органического углерода, полностью преобразовавший состояние

поверхностных оболочек земли, движущей силой которого служит энергия Солнца, использованная фотоавтотрофами.

водорослями, растениями и в небольшой степени хемоавтотрофами за счет поступления эндогенного водорода в газогидротермах и, во-вторых, деструкцией органотрофными организмами, аэробными и анаэробными. Резервуары органического углерода определяются динамическим резервуаром биомассы, суммирующим биомассу продуцентов и деструкторов; резервуаром мортмассы, которая не успела еще разложиться под действием деструкторов; резервуаром остаточного органического вещества трудно поддающегося разложению. Динамический резервуар биомассы различен для организмов с коротким жизненным циклом и длительным циклом, как у деревьев.

Цикл фосфора связан с циклом органического углерода в отношении С : Р gt; 100 : 1 в реакциях анаболизма.. В цикле фосфора, в отличие от других биогенных элементов, отсутствует стадия воздушной миграции,

обеспечивающая равномерное распределение по всему земному шару. Первичным источником пополнения доступного фосфора служит его выщелачивание из изверженных пород и поступление в состав Рорг биомассы. Из мортмассы в результате деструкции фосфор поступает в регенерационный цикл, частично захоранивается с мортмассой, частично переходит в неусвояемые соединения, прежде всего фосфаты кальция. Содержащие фосфаты осадки переходят в осадочные породы, из которых фосфор может быть мобилизован микроорганизмам либо поступает в геологический рецикл. В результате фосфор в большей степени, чем азот, служит лимитирующим биогеном, ограничивая развитие живых организмов.

Цикл кальция тесно связан с циклом фосфора образованием фосфатов кальция, но в гораздо большем масштабе он имеет значение для цикла неорганического углерода. Современный цикл кальция определяется прежде всего биологически опосредованными реакциями растворения (выщелачивания) и осаждения карбонатов, а также биоминералогией образования скелета протистами и макроорганизмами.

Первичное поступление кальция и магния в биологические циклы связано с выщелачиванием силикатных изверженных пород и циклом кремния в биологически опосредованных процессах. Выщелачивание обусловливает попутное поступление в водную фазу микроэлементов. Цикл кремния в фанерозое обусловлен его использованием как скелетного материала диатомовыми водорослями, радиоляриями и губками. В результате кремний ведет себя в океане как биогенный элемент, и это связано с появлением скелетной функции у эукариот.

Цикл серы сопрягается с циклом органического углерода в реакциях сульфидогенеза, катализируемых только прокариотами, сульфат- и

Цикл железа сопрягается с циклом кислорода деятельностью аэробных железобактерий. Цикл железа связан с циклом серы через образование сульфидов железа и их окисление бактериями. В геологическом прошлом цикл железа играл гораздо большую роль, приведя в раннем протерозое к формированию значимых для баланса кислорода мощных отложений окислов железа.

Источник

Основные моменты истории биосферы

История биосферы относится к тем фундаментальным знаниям, к которым можно подходить по-разному. Во-первых, рассматривать их как цель, постоянно расширяя область знаемого за счет сферы незнания. Во-вторых, подходить к этим фундаментальным знаниям, как средству построения новой деятельности. Последний подход лежит в основе выдвинутого В. Д. Шадриковым принципа фундирования знаний при преобразовании работы педагогических вузов. Именно с этих позиций автор и стремился рассмотреть историю биосферы, выбрать из этой обширнейшей области фундаментальных знаний то, что может помочь нам в построении деятельности, направленной на преодоление экологического кризиса.

С появлением первых организмов в географической оболочке нашей планеты началось формирование биосферы, т. е. в географической оболочке обособилось пространство, осваиваемое живыми организмами. Постепенно биосфера (сфера жизни) будет расширять свои границы, пока не охватит всю географическую оболочку.

Цианобактерии существовали в водной среде в виде своеобразных матов, которые сформировали мощные карбонатные пласты построек строматолитов. Эти строматолиты широко развиты в протерозойских породах. Циаонобактерии оказались той группой организмов, которая прошла через всю историю Земли и сыграли значительную роль в формировании биосферу современного вида. Все началось с того, что побочным продуктом жизнедеятельности цианобактерий был кислород. Он из трофической системы стал поступать в океан, воды которого тогда имели иной, чем ныне, химический состав. В них было значительно более высокое содержание восстановителей (сероводорода и закисного железа). Благодаря поступающему кислороду эти восстановители окислялись, превращаясь в сульфаты и окислы железа.

Балансовые расчеты показали, что если исходить из массы органического углерода в осадочных породах, то этой массе должны были соответствовать не только масса кислорода в атмосфере, но кислород, входящий в состав сульфатов океанических вод и в окисные руды железа, так называемые железистые кварциты.

Именно такое биосферное происхождение имеют железные руды Курской магнитной аномалии, дающие сейчас нам лучшие руды для производства чистого железа.

Пока не были окислены запасы сероводорода и восстановленного железа в водах первичного океана, кислород из океана не поступал в атмосферу. Как только содержание кислорода достигла примерно 1% от современного, стало возможным жизнь аэробных организмов.

Первая из известных нам бифуркаций. Примерно 1 млрд. лет тому назад, в начале позднего протерозоя, произошла так называемая неопротерозойская революция. Ее можно считать первой из известных нам точкой бифуркации в развитии нашей планеты.

Вторая бифуркация в развитии биосферы произошла 570 млн. лет тому назад, когда эукариота (растения и животные) освоили построение минерального скелета из карбоната кальция.

В результате изменился газовый состав атмосферы: в ней увеличилось содержание кислорода, а углекислого газа уменьшилось. Увеличение содержания кислорода примерно до 10 % от современного уровня его содержания привело к образованию озонового слоя. Это имело далеко идущие последствия: жесткое ультрафиолетовое излучение, губительное для биоты, стало задерживаться озоновым экраном и перестало доходить до дневной поверхности. Благодаря этому создались условия для выхода на сушу животных и растений. Так еще раз проявилась модифицирующая роль живого вещества в развитии биосферы.

Сформировавшийся в конце палеозоя химический состав морской воды, газовый состав атмосферы, а также строение трофической пирамиды, свойственной биоте, сохранились без особых принципиальных изменений до современности. Однако, ряд последовательных изменений, происшедших среди животного царства, привели к возможности новой перестройке биогеохимических циклов и связанной с ней новой бифуркации в развитии биосферы. Вот как выстраивает эти события Н. Н. Моисеев (1999).

Третье событие как раз и связано с успешным разрешением с возникшей тупиковой ситуации. Как предполагает австрийский антрополог Лоренц, выход из тупика был найден благодаря возникновению в стадах наших предков табу «Не убий!»

Рассмотренная выше реконструкция основных узловых моментов истории развития нашей планеты, как большой геосферно-биосферной системы, приводит к следующим выводам.

Постоянство системы биогеохимических циклов (в первую очередь углерода, кислорода, кальция, азота, серы, железа), которые претерпевают между точками бифуркации количественные, не принципиально качественные изменения.

Неизменен принцип круговорота, лежащий в основе биогеохимических циклов. «Биогеохимическая машина планеты представляет систему сопряженных циклов элементов, катализаторами в которых служат бактерии и иногда только бактерии. Именно эта трофическая инварианта и проходит через всю историю Земли» (Заварзин, 1999, с. 105).

Не меняются в биогеохимической машине отношения между функциональными группами биоты (продуцентами, консументами и деструкторами), которые обеспечивают ход биогеохимических циклов. Исполнители же функциональных ролей могут отчасти меняться.

Остается постоянным в развитии биоты явление отторжения чужеродной информации.

Вывод второй. В истории биосферы прослеживается процесс цефализации биоты (развития головного мозга), который привел к появлению человека, наделенного Разумом. Благодаря этому человек вышел из состава биоценоза, в котором прямые и обратные связи регулируют взаимоотношения членов между собой и с окружающей их природой. Поэтому, чтобы следовать тем «правилам игры», которые предъявляет ему биосфера, человек был вынужден создать социальных новообразований, зачатки которых появились уже в палеолите. К этим новым для биосферы феноменам относятся:

природопользование, как сфера общественно-производственной деятель-ности, связанная с освоением природных ресурсов для удовлетворения своих потребностей;

техника и технологии (в широком слове инженерия, создающая вторую природу), первым результатом появления которых стал каменный топор;

нравственная сфера, начало которой, вероятно, было положено введением табу «Не убий!»);

образование, в виде обучения подрастающих поколений не только знаниям и умениям, связанным с инженерией (на первых порах с изготовлением и технологиям применения каменных орудий в древнейшем охотничье-промысловом виде природопользования), но в первую очередь воспитание нравственных основ поведения;

управление этими социальными новообразованиями, составляющими основу жизнедеятельности общества.

Итак, с точки зрения автора, рассмотренные основные моменты должны помочь систематизировать для целей образования обширную область фундаментальных знаний по истории биосферы. Такое фундирование этой сферы знаний позволит при обучении подрастающих поколений не только заострить внимание на необходимости принять те «правила игры», которые предъявляет нам биосфера, но и откроет широкое поле для конструктивной действительности по их претворению в нашей повседневной действительности.

Вернадский В. И. Химическое строение биосферы Земли и ее окружения. М., Наука. 1987. 339 с.

Виноградов А. П. Введение в геохимию океана. М., Наука, 1967. 212 с.

Заварзин Г. А. Индивидуалистический и системный подходы в биологии. // Вопросы философии. 1999, № 4, с. 89-106.

Подолинский С. А. Труд человека и его отношение к распределению энергии. М., Ноосфера. 1991. 82 с.

Источник

Геохимическая роль микроорганизмов (стр. 1 )

Биогеохимическая машина планеты представляетсяИз за большого объема этот материал размещен на нескольких страницах:
1 2 3

Биогеохимическая машина планеты представляется

Министерство образования и науки Российской Федерации

Нижегородский государственный университет им

Национальный исследовательский университет

Геохимическая роль микроорганизмов

Мероприятие 1.2. Совершенствование образовательных технологий, укрепление материально-технической базы учебного процесса

Учебная дисциплина: «Микробиология», «Экология микроорганизмов»

Направления: 020200.62 – биология, 020800.62 – экология и природопользование

1. Среды обитания бактерий 3

2. Система циклов основных биогенных элементов в биосфере 8

3. Превращения соединений углерода 12

4. Превращения одноуглеродных соединений 16

5. Превращения безазотистых органических соединений 22

6. Захороненный углерод и его мобилизация 28

7. Образование и окисление водорода 29

9. Биологическая фиксация азота 33

10. Аммонификация 34

11. Нитрификация. 38

12. Денитрификация 39

13. Превращения фосфора 40

14. Минерализация фосфорорганических соединений 43

15. Мобилизация неорганических соединений фосфора 44

16. Круговорот серы 45

17. Превращения калия 50

18. Превращения железа 52

19. Превращения марганца 54

20. Превращения алюминия 55

21. Другие элементы 57

22. Биологические процессы в почвообразовании 60

23. Разложение растительных остатков и формирование подстилки 61

24. Образование и разложение гумуса 64

25. Участие почвенных микроорганизмов. В разрушении и новообразовании минералов 69

СРЕДЫ ОБИТАНИЯ БАКТЕРИЙ

Бактерии обнаруживаются в большинстве природных сред обитания. Клетки наиболее мелких бактерий имеют в диаметре около 0,3 микрона (0,0003 мм).

Огромное количество поколений бактерий прошло под действием времени и изменившихся условий среды и, естественно, эволюционная шлифовка их проведена очень тщательно. Микроорганизмы не только приобрели удивительную способность приспосабливаться к условиям внешней среды, но и в некоторых случаях могут приспосабливать эту среду к своим требованиям: подкислять или нейтрализовать и т. д. Микроорганизмы способны даже поддерживать температуру в определенных пределах.

Бактерии по способности противостоять высоким температурам, давлению и радиоактивному излучению оставляют далеко позади себя остальные формы жизни. Условия гидростатического давления в самых глубинных точках Мирового океана составляют 1100 атм (Мариинская впадина). Но даже там обнаруживаются представители мира микроорганизмов. Некоторые бактерии выдерживают давление 3000 атм в течение нескольких часов без потери жизнеспособности.

Известно немало микроорганизмов, которые при недостатке питательных веществ и других неблагоприятных условиях образуют покоящиеся формы в виде спор или цист. В этом состоянии они могут находиться сотни и даже тысячи лет в ожидании хороших условий.

Одной из природных сред обитания являются другие живые организмы. При этом микроорганизмы могут выступать как в роли паразитов, так и в роли организмов, выполняющих полезные функции. Например, огромный объем работы по переработке растительной пищи в желудке (рубце) жвачных животных проводят микроорганизмы, т. к. только эти уникальные организмы способны превращать целлюлозу в глюкозу, синтезировать витамины.

Множество бактерий вступают в симбиотические отношения с растениями. Некоторые из них поселяются на листьях (эпифиты) и через устьица обмениваются факторами роста с растениями, другие, поселяясь на поверхности и в тканях корней (бактерии ризоплана, клубеньковые) снабжают растениями биологически активными веществами и помогают усвоению азота. На 1 грамм сухого веса корней приходится до 1 млрд бактерий азотфиксаторов.

Известно, что оптимальное функционирование любой экосистемы во многом зависит от биоразнообразия живых организмов, составляющих ее трофические звенья. Огромную роль на всех трофических уровнях принадлежит микроорганизмам, и в частности бактериям. Они могут быть участниками, как процессов синтеза нового органического вещества, так и являются редуцентами, ответственными за процессы мацерации и деструкции органических тканей до простых минеральных соединений.

Главный парадокс жизни, по мнению (1974) заключается в том, что ее непрерывность обеспечивается процессами распада, деструкцией. Разрушаются сложные органические соединения, освобождается энергия, теряется запас информации, свойственный сложно организованным живым телам. В результате деятельности деструкторов, любая форма жизни неизбежно будет включаться в биотический круговорот. Поэтому с их помощью осуществляется естественная саморегуляция биосферы.

Три свойства позволяют микроорганизмам играть столь важную роль:

— убиквитарность, или вездесущность

— возможность сравнительно быстро приспосабливаться к различным условиям;

— способность использовать в качестве источника углерода и энергии самые различные субстраты.

Высшие организмы не обладают такими способностями. Поэтому они могут существовать лишь в качестве своеобразной надстройки на прочном фундаменте микроорганизмов.

Не менее грандиозные по масштабам процессы протекают и в Мировом океане, но наши представления об их деталях недостаточно полны.

Сложившиеся в естественных условиях микробные ценозы и ассоциации утилизируют те или иные естественные природные субстраты в адекватной химической среде. Любое изменение тех или иных элементов среды приводит к интенсификации или угнетению процессов жизнедеятельности микроорганизмов. Вносимые человеком в почву высокие концентрации различных веществ не только губительны для значительной части популяций микробов, но и обладают селективным эффектом, в результате чего в среде начинают преобладать резистентные к токсикантам штаммы, а естественный ход геохимических процессов нарушается. Достаточно красочной моделью подобной ситуации может служить динамика почвенной микрофлоры на площадках складирования отходов нефтепереработки, или состояние микробоценозов земель сельскохозяйственного назначения долгое время подвергавшиеся обработке минеральными удобрениями в комплексе с регулярной распашкой. Выявлять и наблюдать поврежденные территории позволяет система биомониторинга.

Биоэкологический мониторинг подразумевает использование биологических объектов, и бактерий в том числе, для индикации состояния экосистем. Так, например, известно, что определенный уровень биоразнообразия бактериопланктона может отражать степень трофности водоема, а индикаторные виды бактерий могут характеризовать и санитарное состояние водоема. Доминирующие виды бактерий, обнаруживаемых в воздухе, могут быть индикаторами территорий риска с повышенными концентрациями различных химических соединений, в том числе и токсичных для человека.

В общем курсе микробиологии студенты, как правило, знакомятся с различными аспектами деятельности микроорганизмов. Изучаются процессы утилизации белковой и небелковой органики, физиологическая роль микробов в жизни макроорганизмов. Достаточно полно обучающиеся знакомятся с методами исследования различных субстратов. К сожалению, большее внимание на лабораторных занятиях приходится уделять задачам санитарно-гигиенического плана. Вместе с тем, практика показывает, что сегодня необходимы знания и навыки исследования микроорганизмов в природных биосистемах.

Предпринятые на кафедре попытки участия студентов в проведении микробиологического мониторинга озер Пустынского заказника оказались вполне успешными и позволили наглядно и увлекательно пробудить интерес студенческой аудитории к подобным исследованиям. Сегодня наряду с традиционными медико-гигиеническими проблемами, решаемыми студентами в процессе выполнения курсовых и дипломных работ появились исследования экологической тематики. Такой интерес позволяет привлечь внимание студентов и к проблемам функционирования микробоценозов, позволяющих формировать и интенсифицировать разнообразные процессы в экосистемах. Сегодня, на наш взгляд, является целесообразным формировать интерес к подобным задачам уже в рамках общего курса микробиологии.

СИСТЕМА ЦИКЛОВ ОСНОВНЫХ БИОГЕННЫХ ЭЛЕМЕНТОВ В БИОСФЕРЕ

Биогеохимическая машина планеты представляется

Рис. 1. Сопряжение основных биогеохимических циклов (по Заварзин, 1984, * 1015г-атом)

Связь между биогеохимическими циклами в биосферной системе осуществляется серией частных реакций в этих циклах. Система биогеохимических циклов (рис. 1) определяется ведущим циклом органического углерода Cорг и сопряженными с ним в эквимолекулярном отношении 1:1:1 циклами углекислоты CO2 и кислорода O2. Эквимолярное соотношение между этими циклами следует из хорошо известного уравнения, описывающего фотосинтез (слева направо) и дыхание (в обратном направлении):

CO2 + H2O ↔ [CH2O] + CO2.

Цикл органического углерода обусловлен: 1) первичной продукцией за счет использования внешней солнечной энергии, прежде всего фотоавтотрофными оксигенными организмами (цианобактериями, водорослями, растениями), и в небольшой степени хемоавтотрофами – за счет поступления эндогенного водорода в газогидротермах, 2) деструкцией, осуществляемой органотрофными организмами, аэробными и анаэробными. Деструкционная ветвь цикла органического углерода наиболее сложна, и поэтому ее следует рассмотреть подробнее отдельно, ознакомившись с общими принципами организации участия сообществ микробов в циклах. Конечным продуктом деструкции служит углекислота, замыкающая цикл органического углерода и сопрягающая его с циклом неорганического углерода и циклом кислорода.

Цикл органического углерода дополняется циклом азота N, в котором азот входит в органические соединения в соотношении C:N = 6:1, а также происходят превращения неорганических форм азота. Цикл азота с его этапами – азотфиксацией, аммонификацией, нитрификацией, денитрификацией – целиком определяется деятельностью бактерий.

Цикл фосфора P стехиометрически связан с циклом органического углерода в отношении C:P = 100:1 (в реакциях анаболизма). В цикле фосфора, как уже отмечалось, в отличие от других биогенных макроэлементов отсутствует стадия воздушной миграции, обеспечивающая равномерное распределение по всему земному шару с воздушными потоками.

Цикл неорганического углерода смыкается через углекислоту воздуха и ее растворенные формы в гидросфере с циклом органического углерода. В литосфере неорганический углерод представлен в основном карбонатными породами, прежде всего карбонатом кальция.

Цикл кальция Ca определяется, прежде всего, биологически опосредованными реакциями растворения (выщелачивания) и осаждения карбонатов, а также образованием минеральных скелетов некоторыми протистами и микроорганизмами. Цикл кальция сопряжен также с циклом фосфора через образование и растворение фосфатов кальция.

Первичное поступление кальция и магния в биологические циклы связано с циклом кремния Si и химическим выветриванием силикатных изверженных пород, идущим, вообще говоря, под воздействием углекислоты, но ускоряемым примерно в 100 раз под воздействием микроорганизмов и продуктов их обмена в биологически опосредованных процессах. Выщелачивание обусловливает поступление в водную фазу микроэлементов.

Цикл железа Fe сопрягается с циклом кислорода деятельностью аэробных железобактерий, окисляющих закисное железо в гидрат окиси железа, и с циклом органического углерода деятельностью железоредуцирующих бактерий, образующих восстановленное железо и магнетит. Цикл железа связан с циклом серы через образование сульфидов железа и их окисление бактериями.

Биогеохимическая машина планеты представляется системой взаимосвязанных циклов элементов. Эти циклы действуют как в планетарном масштабе, так и в конкретных ландшафтах-экосистемах. Общим правилом служит тезис «циклы в циклах», действующий на всех иерархических уровнях.

Итак, интересы микробиологии четко разделяются на три области.

1. Биология прокариотной клетки как простейшей единицы живого мира рассматривает универсальные, свойственные всем бактериям свойства. Она основывается на знании путей метаболизма в цитозоле, биоэнергетики мембран, механизма синтеза белков на рибосоме, генетики и генома. В отличие от биохимиков и молекулярных биологов микробиологи имеют дело с микробной клеткой как организованной единой системой, представляющий целостный организм с его реакциями, обусловленными взаимодействием компонентов клетки.

2. Разнообразие микробного мира охватывает множество видов микроорганизмов в их функциональном и филогенетическом упорядочении. Характеристики множества разных бактерий составляют комбинаторную матрицу, основанную на разнообразии осуществляемых бактериями химических реакций, включая пути обмена с набором соответствующих ферментов и с транспортными механизмами; физических характеристиках – морфологии, жизненных циклах, адаптационных механизмах; генетических свойствах. Главным методом изучения разнообразия бактерий служит чистая культура микроорганизма в контролируемых условиях. Эта область находится в руках исключительно микробиологов и требует эвристического подхода к поиску, опознанию, культивированию, описанию, классификации множества организмов на основе сравнительного подхода. Изучение поведения вида микроорганизма в местообитаниях дает сведения о его аутэкологии.

3. Природоведческая микробиология рассматривает деятельность микроорганизмов в природе. Центральным объектом исследования является микробное сообщество как система взаимодействующих между собой разнообразных организмов. Сообщество функционирует в экосистеме, реализующейся в ландшафте. К изучению сообщества есть два пути: один, основанный на определении состава сообщества, взаимодействий в нем, путей метаболизма, организмов ответственных за ключевые реакции, или второй – «бескультурный», где культура не используется, а описываются суммарные процессы химическими методами в рамках синэкологии. В определенной части синэкологическая микробиология сливается с биогеохимией и геобиофизикой, предоставляющих знания о химических, минералогических, транспортных процессах, геологической среде обитания микробного сообщества.

ПРЕВРАЩЕНИЯ СОЕДИНЕНИЙ УГЛЕРОДА

В круговороте углерода и кислорода находит наиболее явное выражение взаимная зависимость и связь всех живых существ на Земле. Благодаря участию в этом цикле микроорганизмов как деструктивного звена происходит замыкание круговорота и совершается циклическое превращение веществ и энергии в биосфере. В этом — главнейшая функция микроорганизмов, которая проявляется в основном в почве.

В цикле углерода можно выделить два важнейших звена, имеющих планетарные масштабы и связанных с выделением и поглощением кислорода: 1) фиксация СО2 в процессе фотосинтеза; 2) минерализация органических веществ с выделением СО2. Первый процесс совершается в основном растениями и обеспечивает выделение кислорода в атмосферу. Второй производится микроорганизмами и идет, как правило, с поглощением кислорода (рис. 4).

Жизнь на нашей планете возникла, развивается и процветает благодаря энергии Солнца. Приблизительно 10% энергии, достигающей поверхности Земли, тратится на испарение воды, что вызывает абиотический, или большой геологический круговорот (БГК). Только 0,1% энергии Солнца закрепляется в синтезируемых растениями органических соединениях, что составляет основу биотического, или малого биологического, круговорота. Солнечная энергия, поглощенная растениями, совершает огромную работу: она «запускает» процессы биосинтеза и трансформируется в энергию химических связей образующихся органических веществ. В биосинтетические процессы вовлекаются разнообразные элементы, которые подвергаются постоянным превращениям. Так как количество этих элементов на нашей планете может быть определено конечными величинами, то «бесконечность» жизни обеспечивается непрерывно идущим круговоротом этих элементов. Различные этапы круговорота элементов осуществляются разными группами организмов.

Биогеохимическая машина планеты представляетсяПомимо глобального процесса круговорота углерода, состоящего из синтеза и минерализации органических веществ, почва участвует в обмене многими газами с атмосферой. При минерализации органических веществ в атмосферу возвращаются помимо СО2 еще СН4, H2, CO, H2S, NO2, N2 и др. (рис.2).

Превращения органических веществ и обмен газообразных продуктов микробного метаболизма сопровождается взаимодействием почвенных

Рис. 2 Схема катаболической системы микробного газообмена (по Заварзин, 1984)

микроорганизмов с первичными и вторичными минералами почвы. По своему значению для биосферы этот процесс сопоставим с фотосинтезом и фиксацией молекулярного азота, так как минеральные элементы, первоисточник которых находится в литосфере, необходимы для жизни всех организмов на Земле. В процессе почвообразования происходит разрушение минералов породы и извлечение элементов, которые поступают в обменные реакции биосинтеза. Без снабжения растений из почвы такими элементами, как фосфор и калий, поступающими из минералов, было бы невозможно создание первичной растительной продукции. Разрушение минералов происходит частично под влиянием корневых систем растений, но в наибольшей степени оно осуществляется в результате жизнедеятельности почвенных микроорганизмов, которые образуют органические и минеральные кислоты, щелочи, а также выделяют во внешнюю среду синтезированные ими ферменты, полисахариды, фенольные соединения. Эти вещества прямо или косвенно взаимодействуют с минералами, разрушая кристаллические решетки, образуя комплексные соединения, переводя элементы из одной формы в другую с изменением валентности и подвижности.

Таким образом, роль почвенных организмов проявляется не только в деструкции органической массы растений и животных, но также в контроле газового состава атмосферы и преобразовании литосферы, граничащей с почвой.

Высокая активность и огромные масштабы совершаемых микроорганизмами планетарных превращений веществ обусловлены их огромной численностью, повсеместным распространением, необычайной скоростью роста и разнообразием метаболических процессов.

Биогеохимическая машина планеты представляется

Рис.3. Основные резервуары (1015 г) и глобальные потоки соединений углерода (Заварзин, 1984, 1015 г./год)

ПРЕВРАЩЕНИЯ ОДНОУГЛЕРОДНЫХ СОЕДИНЕНИЙ

Из одноуглеродных соединений наибольшее значение на нашей планете имеет СО2, так как из углекислоты создается вся первичная органическая продукция. В атмосфере содержится около 0,03% СО2; в почвенном воздухе — на порядок больше. Биологическое связывание углекислоты происходит в процессах фотосинтеза, хемосинтеза гетеротрофной фиксации. Фотосинтез идет в основном в наземном слое биосферы, два последних процесса — преимущественно в почве.

Биогеохимическая машина планеты представляется

Рис 4 Круговорот углерода и кислорода (Бабьева, Зенова, 1983)

Пурпурные и зеленые серобактерии — обитатели пресных и соленых водоемов, содержащих сероводород. Это в основном водоемы застойного типа, заболоченные, где идет разложение органических (белковых) веществ в анаэробных условиях. Фотосинтезирующие серные бактерии редко можно обнаружить и в почве. Пурпурные несерные бактерии, например Rhodomicrobium, чаще выделяются из почв. Морфологически это почкующиеся бактерии, сходные с почвенными бесцветными Hyphomicrobium, но имеющие пигменты. Несерные фотосинтезирующие бактерии — анаэробы, использующие органическое вещество в качестве донора электрона. Они способны к фотоассимиляции органических субстратов (фотогетеротрофы). В эволюционном плане это, по-видимому, наиболее древние фотосинтетики. Следующий этап эволюции фотосинтеза — появление серных бактерий, которые оказались способными к гетеротрофной, а затем и автотрофной фиксации СО2 с восстановленными донорами электрона в виде H2S. Позже донором электрона в фотосинтетическом восстановлении СО2 стала служить молекула воды, а фотосинтез оказался сопряженным с выделением свободного кислорода (цианобактерии, водоросли, высшие растения). Этот тип фотосинтеза, независимый от присутствия органических источников углерода и от доноров водорода, имеющихся локально в среде, получил преимущество, что привело к доминирующему положению растений на суше, а водорослей — в океане, среди фотосинтезирующих организмов. Фиксация СО2 у всех автотрофных организмов происходит за счет универсального механизма, который известен как цикл Кальвина.

Более 10% биомассы микроорганизмов может быть из СО2, как это было показано в опытах с дрожжами при использовании меченной по углероду 14СО2.

Среди факультативных метилотрофов известны не только прокариоты, но и представители одноклеточных грибов. Метилотрофные дрожжи относятся к двум близким родам Pichia и Hansenula (сумчатые из Ascomycetes) или же к несовершенным грибам из рода Candida. Наиболее хорошо изученный вид С. boidinii. Он активно растет на метаноле и используется в промышленности для получения микробного белка.

Микроорганизмы-метилотрофы, особенно метанокисляющие бактерии, вовлекая в биотический круговорот одноуглеродные соединения группы метана, вносят значительный вклад в глобальный цикл углерода, замыкая трофические цепи в специфических нишах биосферы. Они представляют интерес и в практическом отношении как продуценты белка из дешевого сырья, а также как средство борьбы с метаном в угольных шахтах.

ПРЕВРАЩЕНИЯ БЕЗАЗОТИСТЫХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Основной источник пополнения запасов углекислоты в атмосфере — распад растительных тканей с высоким отношением С : N. Если бы не постоянно идущие процессы минерализации, производимые почвенными микроорганизмами, вся углекислота за несколько десятков лет могла бы быть исчерпана на фотосинтез. Органические вещества, входящие в состав растительных тканей, можно по степени их сложности и доступности для микробного разложения, разделить на следующие группы:

1) растворимые в воде соединения — сахара, органические кислоты, спирты;

2) слаборастворимые — гемицеллюлозы;

3) нерастворимые — крахмал, пектин, клетчатка, воска, жиры, смолы, углеводороды;

4) особо прочное соединение — лигнин.

Рассмотрим разложение этих веществ, последовательно по группам, в разных природных условиях — аэробных и анаэробных.

Биогеохимическая машина планеты представляется

Рис 5 Типы брожений (Бабьева, Зенова, 1983)

В зависимости от возбудителей и конечных продуктов различают несколько типов брожений (рис. 5). При сбраживании глюкозы дрожжами образуется этиловый спирт, при молочнокислом брожении главным или единственным продуктом является молочная кислота. Клостридии сбраживают глюкозу до масляной кислоты, пропионовые лактобациллы — до пропионовой и янтарной. Изучение разложения клетчатки в природе было начато еще в прошлом веке под влиянием идей Пастера об анаэробных брожениях. Поэтому в первую очередь изучали анаэробное разложение целлюлозы. Биологическую природу этого процесса впервые установил Л. Попов в 1875 г. Позже подробно изучал анаэробный распад клетчатки и выделил возбудителей этого процесса, один из которых был назван в его честь Bacillus omelianskii. Это тонкие, до 12 мкм в длину, слегка изогнутые палочки с округлыми или овальными терминальными спорами («барабанные палочки»). При анаэробном разложении целлюлозы образуется много органических кислот (уксусная, янтарная, молочная, масляная, муравьиная),

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *