Борьба с выхлопными газами автомобилей
Устройство автомобилей
Способы борьбы с токсичностью выхлопных газов
Резкое повышение концентрации вредных веществ в атмосферном воздухе, особенно в крупных мегаполисах, связанное с интенсивным ростом автомобильного парка, не могло остаться без внимания специалистов и экологов. Очевидно, что без автомобильного транспорта невозможно представить динамичное развитие человеческого общества, но и смириться с тем, что ежечасно миллионы людей отравляют свой организм, вдыхая отраву, выбрасываемую из автомобильных глушителей, конечно же, нельзя.
Поэтому разработкам, связанным с уменьшением вредного влияния транспорта на окружающую среду, ученые, специалисты и инженеры в последние годы уделяют все более пристальное внимание.
Конечно же, наиболее привлекательным методом исключения пагубного влияния техники на условия среды обитания человека является внедрение технологий и разработок, позволяющих использовать экологически чистые и безвредные энергоресурсы.
К таковым, безусловно, можно отнести электрическую энергию и энергию, выделяемую при химических процессах, конечным продуктом которых являются безвредные для человека и природы вещества, например, вода, образуемая при соединении водорода и кислорода. Эта химическая реакция сопровождается значительным выделением тепловой энергии, которую можно было бы использовать для преобразования в механическую энергию посредством тепловых двигателей, однако в окружающей нас природе мало свободного водорода, который можно было бы использовать в виде автомобильного топлива.
Конечно, на нашей планете достаточно большое количество воды, в составе которой водорода более, чем достаточно, но расщеплять воду на составляющие элементы для последующего соединения – все равно, что изобретать вечный двигатель, поскольку затраты превысят эффект.
Электричество – экологически чистый и очень привлекательный источник энергии, но преобразовывать другие энергоресурсы в электроэнергию без значительных затрат человечество пока не научилось, как не научилось и запасать в достаточном объеме эту энергию впрок. Даже самый современный аккумулятор электрической энергии способен обеспечить работу автомобиля лишь в течение нескольких десятков километров пробега. Этого для удовлетворения возрастающих автотранспортных нужд, конечно же, недостаточно.
По этим причинам в ближайшем будущем достойной замены нефтепродуктам, как основным источникам энергии для автомобильных двигателей, не предвидится.
В настоящее время определено несколько путей снижения токсичности выхлопных газов, выделяемых автомобилями и другой техникой, использующих тепловые двигатели, работающие на нефтяном топливе.
Основные направления снижения содержания вредных веществ в отработавших газах:
Полнота сгорания топлива
Совершенствование процессов сгорания топлива выгодно не только с точки зрения экологии, но и экономичности. Полностью сгоревшее топливо отдает максимум тепловой энергии для работы двигателя и выделяет в отходы значительно меньше вредных веществ, чем топливо, сгоревшее частично.
Совершенствование процессов горения топлива связано с решением многих задач – улучшение смесеобразования, повышение эффективности работы газораспределительного механизма, систем питания и зажигания двигателя.
В последние годы значительную долю этих задач конструкторы решают внедрением компьютерных технологий в процессы управления работой двигателя. Управляемые электроникой системы впрыска и зажигания, безусловно, способствуют повышению качества сгорания горючей смеси, и, конечно же, это благотворно сказывается на экологичности тепловых двигателей.
Повышение качества топлива
Повышение качества используемого для работы двигателей топлива, безусловно, имеет колоссальное значение для улучшения эклогичности автотранспорта. В любом топливе, используемом для извлечения тепловой энергии, лишь два химических элемента представляют энергетическую ценность – водород и углерод. Первый при окислении образует воду, второй – либо оксид углерода (при неполном сгорании), либо двуокись углерода (при полном сгорании).
При идеально отлаженной системе питания и зажигания эти два элемента сгорают полностью и отдают двигателю необходимую для его работы теплоту. Но идеального ничего не бывает, поэтому в выхлопных газах, как правило, присутствует некоторое количество оксида углерода, который в быту называют угарным газом.
Любое топливо, в том числе и получаемое из нефтепродуктов, содержит посторонние примеси, химические вещества и элементы в связанном или свободном состоянии. Безусловно, они тоже участвуют в процессах горения, образуя различные окислы, зачастую очень токсичные.
К таковым относятся, в первую очередь различные соединения серы и азота. Выделяя малое количество теплоты, эти вещества значительно обогащают отработавшие газы вредными примесями, т. е. являются крайне нежелательным топливным балластом.
Поэтому повышение качества топлива напрямую связано с его очисткой от механических, сернистых и азотных примесей в процессе переработки нефти. Очень выгодным в этом плане является применение газообразного топлива для двигателей, поскольку в нефтяных и природных газах посторонних примесей существенно меньше, что положительно сказывается на экологичности отходов сгорания.
Нейтрализация отработавших газов
Для очистки продуктов сгорания от токсичных и вредных веществ на двигателях, использующих в качестве топлива бензин, применяют системы нейтрализации отработавших газов вместе с системой их рециркуляции и системой улавливания паров топлива.
Основным элементом в системе нейтрализации отработавших газов является каталитический нейтрализатор, устанавливаемый в выпускной системе автомобильного двигателя.
Нейтрализатор внешне похож на обычный резонатор и часто устанавливается вместо него. Он представляет собой химический реактор с катализатором – веществом, активизирующим протекание реакций превращения одних веществ в другие.
Главными элементами каталитического нейтрализатора являются один или два каталитических сотовых блока, представляющие собой керамические или листовые гофрированные металлические цилиндры с множеством продольных каналов. На поверхность этих каналов (сот блока) нанесен пористый каталитический состав, содержащий благородные металлы (платина, палладий, родий).
Каталитический блок помещается в корпус из жаростойкой и коррозионно-стойкой стали.
При использовании каталитического нейтрализатора нельзя применять этилированный бензин, поскольку содержащийся в нем свинец, осаждаясь на внутренних поверхностях выпускной системы, нарушает газовую проницаемость микропор активного каталитического слоя.
В результате отработавшие газы свободно выходят в атмосферу, не соприкоснувшись с активной поверхностью катализатора.
Нейтрализатор отработавших газов начинает эффективно работать при температуре не менее 300 ˚С, при этом он начинает дополнительно разогреваться в результате происходящих в нем химических процессов. Важно так разместить нейтрализатор в системе выпуска отработавших газов, чтобы его температура во время работы не превышала 900…950 ˚С, иначе возможно разрушение каталитического слоя, сот и даже корпуса нейтрализатора.
В этом случае сгоревший нейтрализатор не только перестает выполнять свою функцию, но и существенно снижает мощность двигателя, оказывая сопротивление выпуску отработавших газов, и ухудшая тем самым наполняемость цилиндров свежим зарядом.
Особенно велика вероятность повреждения нейтрализатора при отказе в работе одного из цилиндров двигателя. При этом несгоревшая в цилиндре горючая смесь загорается в нейтрализаторе, интенсивно разогревая и сжигая активную каталитическую поверхность его сот.
Для обеспечения эффективной работы нейтрализатора отработавших газов и точного дозирования топлива, подаваемого в цилиндры двигателя, используется лямбда-зонд, или кислородный датчик, который отслеживает состав выхлопных газов и корректирует посредством электронного блока управления количество подаваемого в цилиндры топлива.
Системы нейтрализации выхлопных газов машины
Статья о нейтрализации выхлопов на бензине и дизеле: состав выхлопных газов, системы нейтрализации. В конце статьи — видео о том, что делать с запахом выхлопа в салоне. Статья о нейтрализации выхлопов на бензине и дизеле: состав выхлопных газов, системы нейтрализации. В конце статьи — видео о том, что делать с запахом выхлопа в салоне.
Проблема загрязнения воздуха и окружающей среды не нова – первые серьезные изменения были отмечены еще в 70-х годах прошлого века. Однако сегодня, спустя почти полвека, ситуация значительно усугубилась: автомобильного транспорта стало значительно больше, вместе с ним возросла концентрация вредных веществ и соединений, попадающих в атмосферу мегаполиса и вызывающих у сограждан серьезные нарушения здоровья.
Борьба за чистоту воздуха привела к созданию так называемых нейтрализаторов для двигателей бензинового и дизельного типа. Сегодня такие системы часто интегрированы в бортовую электронику транспортного средства. Что это за системы и как они работают? Рассмотрим детально.
Выхлопные газы
Во время работы различные системы автомобиля (ДВС, топливная, вентиляционная, а также ходовая часть) выделяют вредные вещества в виде газа и мелкодисперсной пыли. Часть из них – неядовитые соединения, которые содержатся в обычном воздухе. Другая часть является ядовитыми, токсичными и канцерогенными веществами, которые не только негативно влияют на окружающую среду, но и разрушают здоровье человека. Основные загрязнители:
В современном законодательстве проблема экологии и нормы предельно допустимых выхлопных газов для автотранспортных средств регулируются техрегламентом Таможенного союза ТР ТС 018/2011 в поправке от 11.07.2016. Однако с 11 ноября 2018 и в него будут внесены поправки, ну а пока допускаются следующие предельные показатели: СО — 85 г/кВт•ч, НС — 5 г/кВт•ч, NO — 17 г/кВт•ч.
А к обязательным компонентам автомобилей относятся системы нейтрализации отработавших газов, в том числе сменные каталитические нейтрализаторы (за исключением систем нейтрализации на основе мочевины).
Решение для бензиновых двигателей
Системы нейтрализации выхлопных газов автомобиля бывают двухкомпонентными и трехкомпонентными, причем последние появились сравнительно недавно. Как устроена и работает данная система?
Принцип действия
Работа нейтрализатора заключается в окислении токсичных веществ при помощи катализаторов, в результате чего продукты неполного сгорания топлива дожигаются или разлагаются на безвредные химические элементы и вещества.
Активными компонентами (катализаторами) выступают драгоценные металлы — палладий, платина. Популярны и менее затратны катализаторы на основе оксида меди, кобальта, никеля, ванадия, марганца, железа, алюминия. Нередки катализаторы на основе сплавов стали нержавеющей или легированной, бронзы или латуни.
Конструкция
Основные элементы нейтрализатора – корпус из нержавеющей жаропрочной стали, внутренняя поверхность которой выстлана терморасширительной прокладкой. Внутри бака — газоподводящий и отводящий цилиндр и ячеистые соты, на которые нанесен слой вещества — катализатора.
Устройство в автомобильных системах и порядок работы
Системы нейтрализации выхлопных газов располагаются в непосредственной близости от ДВС, под днищем транспортного средства. Через шарнирное соединение нейтрализатор подсоединяется к выпускному коллектору с одной стороны, и выхлопной системе – с другой.
Для обеспечения качественной химической реакции с участием кислорода системы нейтрализации используют воздушные насосы или виброклапаны. При разогреве системы нейтрализации до 400-800 градусов CO (оксид углерода) и CH (углеводороды) под действием катализаторов превращаются в углекислый газ и воду. Близкое расположение нейтрализаторов к ДВС позволяет снизить количество NОх (окисла азота) сразу после запуска двигателя.
Обратную связь с блоком управления автомобиля нейтрализатору обеспечивают лямбда-зонды, специальные кислородные датчики, или четырехгазовые анализаторы, которые на входе и выходе из системы определяют уровень кислорода и качество очистки выхлопных газов.
Решение для дизельных двигателей
Аналогично бензиновым двигателям, дизели имеют системы нейтрализации выхлопных газов. Однако главной проблемой остается сажа: не до конца сгоревшее топливо под действием химических процессов превращается в твердые мелкодисперсные частицы — канцерогены.
Нейтрализаторы решить эту проблему не способны. Поэтому перед тем, как выхлопной газ попадет в систему нейтрализации, он проходит очистку сажевым фильтром.
Конструкция
Аналогично нейтрализатору, фильтр имеет ячеистые соты, которые в шахматном порядке закрыты накопительными перегородками-фильтрами частиц. Для каждого производителя автомобиля с дизельным двигателем используется своя система контроля данного параметра. Среди видов таких фильтров можно выделить:
Проблемы системы нейтрализации выхлопных газов
Все вышеописаные системы характерны для автомобилей импортного производства и моделей последнего поколения. Для отечественного автопрома с карбюраторами установка нейтрализатора не популярна, не пользуется спросом, а также может быть весьма накладна.
Существенная стоимость систем нейтрализации выхлопных газов при их выходе из строя на импортных автомобилях чаще всего приводит к попытке избавиться от такой «нужной» детали. А выйти из строя он может по ряду причин:
Предугадать точный пробег нейтрализатора невозможно: на одних машинах он едва ли переваливает за 100 тыс. км, на других отлично ведет себя при пересечении отметки в 200 тысяч.
Как решить проблему системы нейтрализации выхлопных газов? Не стоит спешить и демонтировать нейтрализаторы, ведь борьба за экологию только началась. Кроме того, что могут возникнуть непредвиденные поломки, которые не сможет диагностировать «обманутая» электроника, требования к выхлопам при прохождении ТО ужесточаются, а значит, не все владельцы смогут его пройти. Да и токсичные выхлопы и канцерогены смогут в большой концентрации попасть в салон и нанести непоправимый вред здоровью водителя и пассажиров.
Гораздо целесообразнее проводить своевременную профилактическую проверку состояния нейтрализатора и сажевого фильтра и при возникновении критической для работы поломки или неисправности – заменить на новый. Ведь суммарная стоимость устранения возникших по причине отсутствия этого важного элемента неполадок может быть существенно выше.
Видео о том, что делать с запахом выхлопа в салоне:
Пути оздоровления атмосферы
Борьба с выхлопными газами автотранспорта.Причины «дымления» автомобилей разнообразны: неисправность двигателя, неотлаженность системы питания или зажигания. Если автомобильные двигатели будут правильно отрегулированы, выброс вредных веществ в атмосферу уменьшится в 3
Оценка автомобилей по токсичности выхлопов. Важным средством борьбы с выбросами автотранспорта является ограничение количества вредных веществ, выделяемых автомобилем.
Созданы портативные газоанализаторы, с помощью которых измеряют степень загрязнения атмосферы выбросами карбюраторными двигателями.
Суммарный выброс токсичных веществ у автомобилей, работающих на сжиженном газе, значительно меньше, чем у машин с бензиновыми двигателями. Так, грузовик ЗИЛ-130, переведенный на газ, имеет токсичность почти в 4 раза меньше, чем бензиновый двигатель.
Наряду с сжиженным газом в настоящее время используется сжатый газ.
Дизель экономичнее карбюраторного двигателя на 20-30%. Более того, для производства одного литра дизельного топлива требуется в два с половиной раза меньше энергии, чем для производства того же количества бензина.
Совершенствование двигателей внутреннего сгорания. Благодаря совершенствованию конструкции автомобиля в целом, его отдельных узлов и агрегатов, широкому использованию электроники и микропроцессорной техники для контроля за процессами работы двигателей внутреннего сгорания, применению смеси циркуляции и каталитической нейтрализации отработанных газов удалось снизить выброс токсичных веществ.
Электромобиль. В настоящее время, когда автомобиль с бензиновым двигателем стал одним из существенных факторов, приводящих к загрязнению окружающей среды, специалисты все чаще обращаются к идее создания «чистого» автомобиля-электромобиля. В некоторых странах уже начинается их серийное производство.
Системы управления автотранспортом. Автомобиль выбрасывает в несколько раз больше вредных веществ при остановке и наборе скорости. Поэтому в настоящее время разрабатываются кольцевые системы регулирования уличного движения, которые сводили бы к минимуму возможность образования пробок и частые остановки транспорта. Расширяются улицы между проезжей частью дорог и жилыми домами. Строятся автомагистрали в обход городов. Предельная скорость движения в городе устанавливается 40 км/ч, т. к. именно на эту скорость у легковых автомобилей приходится минимум вредных выбросов. При резком увеличении или уменьшении скорости движения выброс возрастает более чем вдвое.
Большое значение в регулировании движения приобретает и светофор. Напряженный и все усложняющийся ритм автомобильных потоков в Алматы регулирует более 800 светофоров. На сорока двух магистратях они работают по четкой системе, известной как «Зеленая волна».
Сделать городской воздух чище, понизив содержание в нем выхлопных газов, а водителям автомобилей и трамваев экономить бензин и электроэнергию поможет новая система светофоров, управляемая компьютером. В результате умелого управления транспортными потоками автомобили меньше простаивают на перекрестках, вхолостую расходуя горючее и загрязняя воздух выхлопными газами.
Экономические методы управления и создание рынка купли-продажи прав на загрязнение.Среди экономических рычагов и стимулов основное место занимают платежи и налоги за загрязнение. Они представляют собой косвенные рычаги воздействия и выражаются в установлении платы за выбросы или сбросы. Уровень платежа соответствует социально-экономическому ущербу от загрязнения или какому-либо другому показателю, например, экономической оценке ассимиляционного потенциала природной среды. Налоги на загрязнение и платежи хороши потому, что эта система предоставляет максимальную свободу загрязнителю в выборе стратегии сочетания степени очистки и платы за остаточный выброс, позволяющую минимизировать издержки на превышение внешнего фактора загрязнения во внутреннюю статью издержек для них. Если природоохранные издержки низки, то фирма значительно сократит выбросы (вместо того, чтобы платить налог). В теории она сократит их до оптимального уровня, когда приростные затраты на добавочную очистку становятся равными ставке платежа.
Налогами могут быть обложены также первичные ресурсы, конечная продукция или технологии. Хотя чисто внешне по воздействию на предприятие налоги и платежи эквивалентны, необходимо все же провести грань между этими двумя инструментами. Когда мы произносим слово «налог», то подразумеваем, что, во-первых, он направляется в бюджет, а, во-вторых, нет особых причин, кроме пополнения казны, чтобы его вводить. Когда говорится о платеже, то уже сразу подразумевается, что плательщик оплачивает что-то. В данном случае платеж за загрязнение — это плата за право использования ассимиляционным потенциалом природной среды. Пользователь этого ресурса платит за него так же, как он платит за приобретаемое сырье, электроэнергию и т. д.
Дата добавления: 2015-06-10 ; просмотров: 903 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Методы снижения токсичности отработавших газов автомобилей
Методы, используемые для снижения токсичности отработавших газов двигателей с искровым зажиганием, делятся на две основные категории: конструктивные методы и очистка отработавших газов. Основные промышленно развитые страны стремятся внедрить у себя (или уже приняли) строгие нормы предельной токсичности отработавших газов. Выполнение этих норм требует использования систем снижения токсичности, включающих трехкомпонентный каталитический нейтрализатор, который уже доказал свою эффективность в США, Европе и Японии
Снижение токсичности методом дозирования топлива
Рабочая смесь, качество которой определяется коэффициентом избытка воздуха λ, оказывает решающее влияние на состав отработавших газов.
Двигатель обеспечивает получение максимального крутящего момента при λ = 0,9 – эта величина обычно программируется для режима полной нагрузки двигателя. Оптимальная топливная экономичность достигается при смесях, характеризующихся λ = 1,1. Это совпадает с возможностью получения низких выбросов CO и CH. Однако выбросы оксидов азота (NOx) при этом оказываются максимальными. Коэффициент избытка воздуха λ = 0,9 … 1,05 выбирается для режима холостого хода двигателя.
Слишком обедненная смесь приводит к появлению пропусков воспламенения, а так как смесь постепенно обедняется и далее, это влечет за собой быстрое увеличение выбросов СН.
Для предотвращения работы двигателя на сверхвысоких оборотах, когда требуется постоянное использование богатой смеси, осуществляется полное прекращение подачи топлива к двигателю.
Системы впрыска топлива позволяют добиться более точного контроля за составом смеси и значительно снизить количество выбросов отработавших газов.
Снижение токсичности отработавших газов точным смесеобразованием
Однородность смеси, ее послойное распределение и температура в зоне свечи являются основными факторами при определении способности смеси к воспламенению и последующему сгоранию с соответствующим влиянием на состав отработавших газов.
Однородные смеси и регулируемое послойное смесеобразование (богатая смесь у свечи зажигания и бедная смесь вблизи стенок камеры сгорания) представляют два пути совершенствования процесса смесеобразования.
На двигателях с одноточечным впрыском топлива для предотвращения отложения пленки топлива на стенках впускного трубопровода используется предварительный нагрев воздуха и впускного трубопровода.
Равномерное распределение
Максимальный коэффициент полезного действия (к.п.д.) двигателя может быть достигнут только при одинаковом коэффициенте избытка воздуха в каждом цилиндре.
Рециркуляция отработавших газов как способ снижения токсичности отработавших газов
Отработавшие газы направляются обратно в камеру сгорания для снижения максимальной температуры сгорания с целью снижения образования NOx. Оптимизация системы EGR может также приводить к снижению расхода топлива. Система EGR используется любым из двух способов:
— внутренней рециркуляцией отработавших газов, обеспечиваемой соответствующей установкой фаз газораспределения (перекрытия клапанов);
— внешней рециркуляцией отработавших газов с применением управляемых клапанов.
Изменение фаз газораспределения
Большой угол перекрытия клапанов (при раннем открытии впускного клапана) позволяет увеличить внутреннюю рециркуляцию отработавших газов и поэтому может помочь в снижении выбросов NOx. Однако, так как рециркулирующие отработавшие газы вытесняют свежую топливовоздушную смесь, то раннее открытие впускного клапана также ведет к уменьшению максимального крутящего момента. Кроме того, чрезмерная рециркуляция отработавших газов, особенно при работе двигателя на холостом ходу, может стать причиной перебоев в зажигании, что, в свою очередь, приводит к увеличению выбросов углеводородов (НС). Оптимальным решением является применение изменяемых фаз газораспределения, когда фазы газораспределения варьируются для оптимального приспосабливания процесса сгорания к условиям работы двигателя.
Влияние степени сжатия на количество токсичных компонентов отработавших газов
Ранее считалось, что повышение термического коэффициента полезного действия (к.п.д.) путем роста степени сжатия представляется эффективным мероприятием для улучшения топливной экономичности. Однако при этом одновременно увеличивается и максимальная температура сгорания, которая вызывает более высокую концентрацию выбросов NOx.
Конструкция камеры сгорания
Снижение выбросов CH обеспечивается компактной камерой сгорания, имеющей минимальную площадь поверхности с отсутствием выемок. Центральное расположение свечи зажигания обеспечивает короткий путь распространения пламени, позволяя получить быстрое и относительно полное сгорание рабочей смеси, что приводит, кроме низких выбросов CH, к пониженному расходу топлива. Турбулизация рабочей смеси в камере сгорания обеспечивает более быстрое сгорание. Кроме создания двигателей, способных работать на обедненных смесях, оптимизация формы камеры сгорания дает возможность снизить концентрацию CH при λ = 1.
Создания вихревого движения смеси во впускном канале и оптимизация формы камеры сгорания позволяют использовать переобедненные рабочие смеси (λ = 1,4…1,6). Такие двигатели характеризуются низкой токсичностью и очень хорошей экономичностью, они не нуждаются в каталитической очистке отработавших газов. Разработки в области снижения выбросов NOx у двигателей, работающих на переобедненных смесях, еще находятся в начальной стадии. Такие двигатели вплоть до настоящего времени с успехом применялись в Европе и Японии. Имелось только несколько моделей, использующих концепцию обедненных смесей, когда достигался компромисс между токсичностью отработавших газов и расходом топлива.
Система зажигания автомобилей
Конструкция свечи зажигания, ее положение в камере сгорания, а также энергия и продолжительность искрового разряда – все эти параметры оказывают существенное влияние на воспламенение смеси, продолжительность ее сгорания, а поэтому и на токсичность компонентов отработавших газов. Важность этих факторов возрастает в прямой зависимости от обеднения смеси (λ > 1,1). Установка момента зажигания оказывает решающее влияние как на токсичность, так и на расход топлива. При выборе момента зажигания приходится (иногда в ущерб расходу топлива) для снижения выбросов CH и NOx выбирать более поздние углы опережения зажигания. Вместе с подачей в избытке кислорода это поднимает температуру в выпускной системе и позволяет дожигать СО и СН.
Этот метод приводит к снижению выбросов NOx и несгоревших углеводородов, но за счет увеличенного расхода топлива. С другой стороны, если выбирается слишком большое опережение зажигания, это приводит к увеличению расхода топлива и выбросов NOx и СН.
Вентиляция картера двигателя
Концентрация углеводородов в картере двигателя может во много раз превышать регистрируемую в отработавших газах. Система регулирования вентиляции картера перепускает картерные газы во впускной тракт двигателя, откуда они попадают в камеру сгорания для дожигания. Раньше эти газы выпускались неочищенными непосредственно в атмосферу; сейчас наличие системы снижения токсичности картерных газов является обязательным требованием.