Чарльз бэббидж разработал проект машины для выполнения научных и технических расчетов в каком году
Аналитическая машина Бэббиджа. Часть первая — кто такой Бэббидж и зачем нужны счётные машины
Аналитическую машину Чарльза Бэббиджа считают первым прообразом современного компьютера. Эта машина фактически на века опередила прогресс. Но как и многие колоссы, опережавшие своё время, так и не была воплощенна в металле. Как всякое великое изобретение она не могла родиться на пустом месте, а её создатель не мог быть заурядным человеком. В последующих постах я хочу немного рассказать о биографии этого человека, что его подтолкнуло с созданию этой машины и чем закончилось главное дело его жизни.
Откуда берутся гении
Родился Чарльз Бэббидж в семье банкира Бенджамина Бэббиджа, 26 декабря 1791 года. В связи со слабым здоровьем, Чарльз не посещал школы, однако рос весьма любознательным ребёнком. Получая новую игрушку, он неизменно задавал вопрос «Мама, а что находится внутри?» и пока не получал ответ, не давал покоя ни игрушке ни окружающим. Если ответ его не устраивал, игрушка подвергалась вскрытию. Я думаю многие читатели хабра узнают в себе подобную черту — блог «старое железо» не страдает от отсутствия контента.
К одиннадцати годам родители всё таки решаются отправить Чарльза в частную школу и помещают под опеку священника, содержащего школу в городке Алфингтон в Девоншире. Бенджамин Бэббидж попросил священника не давать сыну сильных учебных нагрузок, дабы не подорвать его слабое здоровье.
По окончанию этой школы у Чарльза начинается настоящее обучение — его отправляют в академию в Энфилде, где он знакомится с учебником, определившим увлечение всей его дальнейшей жизни. Это было «Руководство Уорда для юных математиков». Он настолько увлёкся алгеброй, что поступив в Кэмбридж с удивлением обнаружил что знает о ней куда больше, чем его репетитор.
В 1811 году Чарльз становится студентом Тринити Коледжа — самого знаменитого коледжа Кембриджа. На тот момент из дверей этого учебного заведения уже вышли такие знаменитые личности как Исаак Барроу и его ученик Исаак Ньютон. Ближе к нашим дням данный колледж оканчивали такие личности как Бертран Рассел, ряд британских монархов и принцев (включая принца Чарльза).
(Тринити коледж, 1838 год)
Но вернёмся к нашему студенту. Обучаясь в Кэмбридже, Чарльз пришёл в выводу что Британия сильно отстала от континентальной Европы по уровню математической подготовки. Как результат родилось «Аналитическое общество», куда входили его друзья — Джон Гершель и Джордж Пикок. На встречах общества друзья обсуждают труды континентальных коллег, издают «Записики Аналитического общества».
Чарльз считал способности своих друзей куда выше собственных и дабы не быть третьим в Тринити коледже он переходит в колледж святого Петра, который он заканчивает на первом месте.
Перед нами вырисовывается портрет пытливого, способного, талантливого и честолюбивого молодого человека. Данное сочетания черт мало кому может позволить прожить жизнь тихо и спокойно. Наш герой не стал исключением. Естественно он интересовался актуальными и передовыми проблемами математики. Одной из таких проблем была проблема эффективного быстрого и точного составление различных таблиц — логарифмических, арифметических, таблиц процентов и т.п.
Почему именно таблицы?
Предпосылки появления вычислительных машин
Стоит вспомнить что на конец восемнадцатого — начало девятнадцатого века пришёлся пик промышленной революции, лидером которой была Британия. Переход от ручного труда к промышленным масштабам сопровождался, так сказать, бурным ростом других секторов экономики. Росло банковское и страховое дело, увеличивался объём морских перевозок, строительства — всё это требовало большого количества вычислений — расчёт сложных процентов, вычисление географических координат, инженерных расчётов и т.п. Уже в восемнадцатом веке мореходами активно использовались различные таблицы.
В 1776 году появился на свет «Морской календарь» (его автор — ученый доктор Маскелин, впоследствии королевский астроном). Календарь представлял из себя свод астрономических, навигационных и логарифмических таблиц, основанных на наблюдениях астронома Брэдли. Не смотря на невиданную доселе тщательность, данный труд имел немало ошибок и неточностей, порождённых малой точностью исходных данных, неточностью вычислений и ошибками при переписывании.
Интересный случай показывает к чему могут привести подобные ошибки. После окончания Англо-Испанской войны в средиземном море встретились Английское и Испанское суда. Свежеиспечёные друзья решили оказать друг другу знаки почтения и обменятся подарками. На счастье Английского капитана, его Испанский коллега решил преподнести ему лишь серебряный поднос. А вот Испанскому капитану повезло меньше — Англичанин преподнёс ему, без всякого злого умысла, навигационные таблицы Томаса Юнга. Издание было высочайшего качества, однако таблицы были совершенно не верными, так как не учитывали високосных годов. Испанского капитана, принявшего такой дар, больше никто никогда не видел, а вот Английский капитан прекрасно добрался до места назначения, используя французские и итальянские таблицы.
(Навигационный прибор 18го века. Источник)
«Морской календарь» выходил ежегодно, издателям приходилось держать большой штат корректоров, но даже это не спасало от ошибок.
В конце 18го века был предложен оригинальный способ организации вычислительного труда, повышающий надежность вычислений. Его автором был математик Гаспар Клэр Франсуа маркиз де Прони.
Вычисления были организованны по «конвеерной системе» состоящей из трёх групп. Первая, наиболее малочисленная, наиболее квалифицированная состояла из 5-6 математиков. Она занималось выбором формул и составлением схем расчётов. Вторая из 7-8 математиков по выбранным формулам определяла значения функций с шагом 5-6 интервалов. Третья же, наиболее многочисленная, состояла из девяноста вычислителей низкой квалификации, которые занимались уплотнением таблицы, заполняя интервалы, вычисленные на предыдущем этапе. Две группы вычислителей работали параллельно, сверяя свои результаты.
Бэббидж заинтересовался данной схемой и у него родилась идея заменить последний этап ручных вычислений, механической машиной, которая позволяла бы автоматизировать, как он писал «самые примитивные действия человеческого интеллекта».
(Калькулятор Блеза Паскаля. 17ый век. Источник)
Машины, способные производить простые операции сложения, вычитания и даже умножения к тому времени создавались уже не первый век различными математиками и механиками, хотя большого распространения на тот момент не получили. Бэббидж же задумал не просто «механические счёты». У него родилась идея специализированного вычислительного устройства, заточенного под создание таблиц, позволявшего вычислять их быстро, эффективно, требовавших невысокой квалификации персонала, а также (что немаловажно) позволявших фиксировать результаты проведённых вычислений на бумаге.
Для второго десятилетия девятнадцатого века это была весьма смелая задумка. Однако даже сам Бэббидж ещё не догадывался как далеко его заведёт, родившаяся в его голове в 1812-м году идея.
В следующей части я расскажу о создании разностной машины Чарльза Бэббиджа и рождении идеи создания Аналитической машины.
Основной источник, использованный при подготовке текста — «От абака до компьютера», Р. С. Гутер, Ю. Л. Поплунов, Москва 1981г.
Чарльз Бэббидж
Charles Babbage
Чарльз Бэббидж родился 26 декабря 1791 года в городе Лондон. Мальчик вырос в семье банкира. В связи со слабым здоровьем при обучении, учителя избегали сильных учебных нагрузок. Поэтому настоящее обучение началось в академии в Энфилде, где юноша начал проявлять повышенный интерес к математике. Обучаясь в Тринити-колледже в Кембридже, молодой человек много занимался самостоятельным образованием, в итоге обогнав своих преподавателей математики. В 23 года получил степень бакалавра, в 36 лет стал профессором математических наук в Кембридже. Оставив пост через двенадцать лет, занялся разработкой вычислительной машины.
Деятельность Чарльза Бэббиджа была очень разносторонней: экспедиция на Везувий, погружения в водолазном колоколе, археологические раскопки, геология, изучение безопасности железнодорожного движения, участие в реформировании почтовой системы в Англии. В его поле интересов находилось изучение теории функционального анализа, электромагнетизма, философии и политической экономии, вопросы шифрования, оптика.
Изобретатель и создатель спидометра, тахометра, офтальмоскопа, сейсмографа, устройства для наведения артиллерийского орудия, Чарльз разработал много оборудования для обработки металла: поперечно-строгальный и токарно-револьверный станки, методы изготовления зубчатых колес, заточки инструментов и литья под давлением.
Ученый выступал одним из основателей Лондонского статистического общества. Кроме того, Бэббидж являлся очень общительным человеком. Часто, по субботам собирал в доме гостей. Иногда приходило до 200 или 300 человек, среди которых были такие знаменитые люди того времени, как: Фуко, Пьер Лаплас, Чарльз Дарвин, Чарльз Диккенс, Александр Гумбольдт. Помимо этого поддерживал близкие отношения с Юнгом, Фурье, Пуассоном, Бесселем, Мальтусом.
Впервые Бэббидж задумался о создании механизма, который позволил бы производить автоматически сложные вычисления с большой точностью в 1812 году. На эти мысли его натолкнуло изучение логарифмических таблиц, при пересчете которых выявлены многочисленные ошибки в вычислениях, обусловленные человеческим фактором. Еще тогда ученый начал осмысливать возможность проведения сложных математических расчетов при помощи механических аппаратов.
Помимо этого, очень большое влияние на Бэббиджа оказали работы французского ученого барона де Прони, который предложил идею разделения труда при вычислении больших таблиц: логарифмических и тригонометрических. Чарльз предлагал разделить процесс вычисления на три уровня. Первый уровень: несколько выдающихся математиков, подготавливающих математическое обеспечение. Второй уровень: образованные технологи, которые организовывали рутинный процесс вычислительных работ. Третий уровень занимали сами вычислители, от которых требовалось лишь умение складывать и вычитать. Идеи Прони навели Бэббиджа на мысль о замене третьего уровня механическим устройством.
Однако Бэббидж не сразу начал заниматься развитием идеи построения вычислительного механизма. Лишь в 1819 году, когда заинтересовался астрономией, более точно определил свои идеи и сформулировал принципы вычисления таблиц разностным методом при помощи машины, которую впоследствии назвал разностной. Эта машина должна была производить комплекс вычислений, используя только операцию сложения.
В 1819 году Чарльз Бэббидж приступил к созданию малой разностной машины. Через три года, закончив ее строительство, 20 ноября 1822 года выступил перед Королевским Астрономическим обществом с докладом о применении машинного механизма для вычисления астрономических и математических таблиц. Ученый продемонстрировал работу машины на примере вычисления членов последовательности.
Работа разностной машины основана на методе конечных разностей. Малая машина являлась полностью механической и состояла из множества шестеренок и рычагов. В ней использовалась десятичная система счисления. Механизм оперировал 18-разрядными числами с точностью до восьмого знака после запятой и обеспечивала скорость вычислений 12 членов последовательности в 1 минуту. Машина могла считать значения многочленов 7-й степени.
За создание малой разностной машины Бэббидж награжден золотой медалью Астрономического общества. Однако малая разностная машина являлась экспериментальной, так как имела небольшую память и не могла использоваться для больших вычислений.
В 1822 году Бэббидж задумался о создании большой разностной машины, которая позволила бы заменить огромное количество людей, занимающихся вычислением различных астрономических, навигационных и математических таблиц. Это позволило бы сэкономить затраты на оплату труда, а также избавиться от ошибок, связанных с человеческим фактором.
Со своим предложением профинансировать создание большой разностной машины Чарльз Бэббидж обратился в Королевское и Астрономическое общества. И те, и другие отозвались на это предложение положительно. В 1823 году Чарльз получил 1500 фунтов стерлингов и приступил к разработке новой машины. Математик планировал сконструировать машину за три года. Однако Бэббидж не учел сложности конструкции, а также технические возможности того времени. Уже к 1827 году оказалось затрачено 3500 фунтов стерлингов, из которых более 1000 составляли его личные деньги. Ход работы по созданию разностной машины сильно замедлился.
Кроме того, на процесс конструирования машины большое влияние оказали трагические события в жизни Бэббиджа в 1827 году. В этот год ученый похоронил отца, жену и двоих детей. После этих событий у него ухудшилось самочувствие, и не мог заниматься конструированием машины. Чтобы восстановить здоровье, поехал в путешествие по континенту.
После этого, в 1828 году Чарльз Бэббидж продолжил разработку, но денег уже не было. Изобретатель обращался ко многим обществам и правительству с просьбой о помощи. Только в 1830 году получил от правительства еще девять тысяч фунтов стерлингов, после чего продолжил конструирование разностной машины.
В 1834 году работы по созданию машины снова приостановились. На тот момент уже затрачено 17000 фунтов государственных денег и от 6000 до 7000 личных. С 1834 по 1842 год Правительство обдумывало, оказывать поддержку проекту или нет, а в 1842 году полностью отказалось финансировать проект. Разностная машина так и не была достроена. Механизм должна был состоять из 25 000 деталей, весить почти 14 тонн и быть 2,5 метра высотой. Кроме того, разностная машина должна была быть оснащена печатным устройством для вывода результатов. Память рассчитана на 1000 50-разрядных чисел.
В 1851 году Чарлз Бэббидж предпринял попытку сконструировать улучшенную версию разностной машины: «Разностную машину 2». Но и этот проект оказался неудачным. Однако труды ученого по созданию разностной машины не пропали даром. Через три год шведский изобретатель Шойц по работам Бэббиджа построил несколько разностных машин. А еще через некоторое время Мартин Виберг усовершенствовал машину Шойца и использовал ее для расчетов и публикации логарифмических таблиц.
Несмотря на неудачу с разностной машиной, Бэббидж задумался о создании программируемой вычислительной машины, которую назвал аналитической, выступавшей прообразом современного компьютера. В отличие от разностной машины, аналитическая позволяла решать более широкий ряд задач. Именно она стала делом его жизни и принесла посмертную славу. Математик предполагал, что построение новой машины потребует меньше времени и средств, чем доработка разностной машины, так как должна состоять из более простых механических элементов.
Архитектура современного компьютера во многом схожа с архитектурой аналитической машины. В аналитической машине Бэббидж предусмотрел следующие части: склад, фабрика или мельница, управляющий элемент и устройства ввода-вывода информации. Склад предназначался для хранения как значений переменных, с которыми производятся операции, так и результатов операций. В современной терминологии это называется памятью. Мельница, по типу современного процессора должна была производить операции над переменными, а также хранить в регистрах значение переменных, с которыми в данный момент осуществляет операцию.
Третье устройство, которому Бэббидж не дал названия, осуществляло управление последовательностью операций, помещением переменных в склад и извлечением их из склада, а также выводом результатов. Оно считывало последовательность операций и переменные с перфокарт. Перфокарты являлись двух видов: операционные карты и карты переменных. Из операционных карт можно составить библиотеку функций. Кроме того, по замыслу Бэббиджа, Аналитическая машина должна содержать устройство печати и устройство вывода результатов на перфокарты для последующего использования.
Для создания компьютера в современном понимании оставалось лишь придумать схему с хранимой программой, что было сделано 100 лет спустя Эккертом, Мочли и Фон Нейманом. Бэббидж разрабатывал конструкцию аналитической машины в одиночку. Изобретатель часто посещал промышленные выставки, где были представлены различные новинки науки и техники. Именно там состоялось его знакомство с Адой Августой Лавлейс, дочерью Джорджа Байрона, которая стала его очень близким другом, помощником и единственным единомышленником.
Бэббидж ездил по приглашению итальянских математиков в Турин, где читал лекции о своей машине. Луиджи Менабреа, преподаватель туринской артиллерийской академии, создал и опубликовал конспект лекций на французском языке. Позже Ада Лавлейс перевела эти лекции на английский язык, дополнив их комментариями по объему превосходящими исходный текст. В комментариях Ада сделала описание ЦВМ и инструкции по программированию к ней. Это были первые в мире программы. Именно поэтому Аду Лавлейс справедливо называют первым программистом. Однако, аналитическая машина так и не была закончена.
Вот, что писал Бэббидж в 1851 году: «Все разработки, связанные с Аналитической машиной, выполнены за мой счет. Я провел целый ряд экспериментов и дошел до черты, за которой моих возможностей не хватает. В связи с этим я вынужден отказаться от дальнейшей работы». Несмотря на то, что Бэббидж подробно описал конструкцию аналитической машины и принципы ее работы, она так и не была построена при его жизни. Чарльз не стал просить помощи у правительства, так как понимал, что после неудачи с разностной машиной ему все равно откажут.
В 1864 году Чарлз Бэббидж написал: «Пройдет, вероятно, полстолетия, прежде чем люди убедятся, что без тех средств, которые я оставляю после себя, нельзя будет обойтись». В своем предположении ошибся на 30 лет. Только через 80 лет после этого высказывания построена машина МАРК-I, которую назвали «осуществленной мечтой Бэббиджа». Архитектура МАРК-I являлась очень схожа с архитектурой аналитической машины. Говард Эйкен на самом деле серьезно изучал публикации Бэббиджа и Ады Лавлейс перед созданием своей машины, причем его машина идеологически незначительно ушла вперед по сравнению с недостроенной аналитической машиной. Производительность МАРК-I оказалась всего в десять раз выше, чем расчетная скорость работы аналитической машины.
Только после смерти Чарлза Бэббиджа его сын, Генри Бэббидж, продолжил начатое отцом дело. В 1888 году Генри сумел построить по чертежам отца центральный узел аналитической машины. А в 1906 году, совместно с фирмой Монро построил действующую модель аналитической машины, включающую арифметическое устройство и устройство для печатания результатов. Машина Бэббиджа оказалась работоспособной.
Умер Чарльз Бэббидж 18 октября 1871 года в Лондоне в возрасте 79 лет от почечной недостаточности. Похоронен на кладбище Кенсал Грин в Лондоне. Ученый внес огромный вклад в развитие вычислительной техники и являлся первым автором идеи создания компьютера.
Аналитическая машина Бэббиджа. Часть вторая — трагическая судьба вычислительной техники XIX века
Первую часть статьи вы можете найти по этой ссылке.
Идея разностной машины посетила Чарльза Бэббиджа то ли 1812, то ли 1813 году. Более точную дату история от нас скрывает. Что же должна была делать задуманная машина?
Для того что бы понять это — придётся вспомнить немного математики.
Как мы помним из предыдущей статьи, машина была задумана для табулирования, то есть вычисления математических таблиц.
Немного теории
Предположим, необходимо табулировать функцию N=n^4 (n=1,2. ).
Рассмотрим нижеприведённую таблицу:
Аргумент (n) | Значение (R1) | Разность №1 (R2) | Разность №2 (R3) | Разность №3 (R4) | Разность №4 (R5) |
1 | 1 | 15 | 50 | 60 | 24 |
2 | 16 | 65 | 110 | 84 | 24 |
3 | 81 | 175 | 194 | 108 | 24 |
4 | 256 | 369 | 302 | 132 | 24 |
5 | 625 | 571 | 434 | 156 | 24 |
6 | 1296 | 1105 | 590 | 180 | |
7 | 2401 | 1695 | 770 | ||
8 | 4096 | 2465 | |||
9 | 6561 |
Первый столбец — это аргумент функции, второй — это значение функции для данного аргумента. Третий столбец — это разность последующих значений функции и предыдущих. То есть строка №1 = 16 – 1, строка №2 = 81-16 и так далее. Проделаем то же самое несколько раз (столбцы «Разность №2», «Разность №3»). Нетрудно заметить, что четвёртые разницы у нас полностью совпали. И это неспроста — если функция является многочленом n-ой степени, то в таблице с постоянным шагом (в нашем примере шаг равен единице) её n-е разности постоянны. Эта маленькая хитрость даёт нам одно преимущество — чтобы найти последующие значение функции, необходимо сложить все разности до четвёртой с текущим значением функции.
Например, 9^4 = 4096+1695+590+156+24 = 6561 (кто не верит, может воспользоваться калькулятором).
Бэббидж предполагал вычислять функции с постоянными шестыми разностями. Для этого машина должна была иметь семь регистров — по регистру для каждой разности и один для результата, и результат должен был получаться в результате семи сложений. Весьма затратный по времени вариант, и Бэббидж придумал способ как его оптимизировать. Он предложил записывать разности нечетного порядка из предыдущей строки, тогда вычислить следующее значение функции можно в два приёма, вычисляя сначала параллельно нечётные разницы, а затем уже чётные и значение функции.
Например, рассчитываем для N=8 на первом этапе R2 = 1105 + 590 = 1695, R4 = 132 + 24 = 156, на втором этапе R1 = 2401 + 1695 = 4096, R3 = 434 + 156 = 590. (Если вы запутались, советую заполнить электронную таблицу и выделить попарно соответствующие ячейки, разглядывая их сумму). Уже в 19 веке люди старались оптимизировать вычисления — и в наши дни стоит брать с них пример!
(Механизм передачи десятков в машине Паскаля, источник — Вокруг Света)
Каждый регистр представлял собой набор из восемнадцати десятичных счетных колёс, аналогичных колёсам машины Паскаля. Вычисление происходило в два этапа — первый этапа сложение без учёта переноса, второй этап — сложение с переносом от младшего разряда к старшему (последовательный перенос). Такая схема переноса требует последовательного сложения всех разрядов с учётом переноса, который мог возникнуть на предыдущей ячейке. Это наиболее простая, но самая неэффективная схема переноса, и Бэббиджа она не устроила. В дальнейшем, работая над аналитической машиной, он разработал схему сквозного переноса.
Для табулирования логарифмической, тригонометрической и прочих функций, таблицу предполагалось разбивать на участки, каждый из которых приближался своим многочленом. Переходя от одного участка к другому, оператор должен был вручную изменить значения разностей. Машина была снабжена звонком, который звонил после выполнения определённого числа шагов. Также разностная машина была снабжена печатающим механизмом, который запечатлевал результат на медной пластине. Такую пластину можно было использовать для неограниченного числа оттисков, при этом исключалась возможность внесения ошибки наборщиком.
Стоит заметить, что идея разностной машины была высказана ещё 1786 году Иоганном Гельфрейхом Мюллером, но он даже не приступал к её постройке, и по всей вероятности Бэббидж ни чего не знал об этой идеи.
Начало работ
К воплощению машины в металле и дереве, Бэббидж приступил в 1820 году. В 1822 году он заканчивает создание малой разностной машины. Она была способна вычислять функции с постоянными вторыми разностями с точностью до восьмого знака.
(Счётные колёса разностной машины Бэббиджа. Источник wikipedia)
Бэббидж начинает всячески популяризировать идею вычисления таблиц с помощью машин. В 1823-м году он получает финансирование от правительства в размере 1500 фунтов и начинает работу над машиной, которая смогла бы табулировать функции с постоянными шестыми разностями с точностью до двадцатого знака. Однако к 1828-му году выделенные средства полностью исчезают, также как и средства, выделенные из собственных доходов. В дальнейшем финансирование и постройка машины продолжаются с переменным успехом, однако к началу 1833 года удаётся закончить и испытать часть машины, которая может табулировать с точностью до пятого знака многочлены с постоянными вторыми разностями.
1833 год был также знаковым, так как в этом году было законченно строительство специального пожарозащищённого здания для машины, как сейчас бы сказали — датацентра. Переезд в новое здание вызвал паузу в создании машины. С одной стороны это создало новые проблемы — главный инженер, работавший над созданием машины, потребовал оплатить простой рабочих. Требование было отклонено, и он немедленно уволил всех рабочих и забрал все инструменты и оборудование, созданные во время работы над машиной, что вполне соответствовало английским законам того времени.
Однако вынужденная пауза привела к тому, что Бэббиджу пришла идея создания машины, которая могла бы вычислять не только таблицы, но и решала бы всё то многообразие задач, с которым сталкиваются инженеры и математики. В 1834-м году Бэббидж разрабатывает основные принципы новой машины, которую он называет аналитической. Однако о ней мы поговорим в следующей части статьи.
Как же обстоят дальнейшие дела с разностной машиной? 1834 год выходит статья доктора Дионисия Ларднера «Вычислительная машина Бэббиджа», в которой весьма подробно описывается принцип и устройство машины. Эта статья побудила двух шведов — Георга и Эдварда Шютца (отца и сына) к созданию своей собственной машины.
Трагический финал
Очередная проблема ждёт нашего героя — 1842-му году правительство отказывается от финансирования постройки разностной машины, т.к. будущие затраты на много превосходят изначально предполагавшийся бюджет.
В сороковых годах Бэббидж безуспешно пытается получить финансирование на достройку машины, которую он к тому времени заметно усовершенствовал, работая над идеями аналитической машины.
В тоже время шведы успешно продолжают работу над своей версией разностной машины, и к 1854 году успешно заканчивают её создание. Демонстрация машины состоялась на всемирной выставке в Париже 1855 году, и Бэббидж всячески приветствовал эту демонстрацию. Его сын Генри подготовил плакаты, поясняющие работу машины.
При жизни Бэббидж так и не смог довести своё детище до конца. Готовая часть машина была отправлена в музей Королевского колледжа, а 1862-м году она неудачно выставлялась на международной выставке в Лондоне, где ей отвели маленькую проходную комнату, откуда она вновь возвращается в музей. На этот раз это был научный музей в Южном Кенсингтоне, так как музей Королевского колледжа отказывался принять машину.
(Рабочая разностная машина в музее компьютерной истории в Маунтейн Вью, Калифорния. Источник wikipedia)
Как не парадоксально, но, не смотря на отказ Бэббиджу, в 1858-м году правительство заказывает у английского инженера создание копии шведской разностной машины. Эта копия впоследствии широко использовалась для вычисления таблиц смертности, по которым страховые компании делали свои начисления.
Работая над разностной машиной, Бэббидж пришёл к идее универсальной машины, которая смогла бы решать целый круг математических и инженерных задач. Его идея оказалась настолько оригинальной и опережающей своё время, что её реализация в задуманном виде воплотилась намного позже жизни её автора. Об этой машине, а также о первой программистке, в честь которой был назван язык Ада, и пойдёт речь в следующей части статьи.