черная субстанция ядро располагается в каком мозге

Черная субстанция ядро располагается в каком мозге

Это заболевание нервной системы, при котором нейроны постепенно теряются в определенных центрах ствола головного мозга. Это приводит к потере дофаминсодержащих нейронов, вещества, которое очень важно для передачи возбуждения. Затем пациент перестает контролировать свои мышцы.

Есть много причин для этого заболевания. Это может быть вызвано вирусным воспалением головного мозга, отравлением марганцем или угарным газом, травмой или длительным использованием некоторых лекарственных средств, таких как антидепрессанты или наркотики. Наследственность тоже играет свою роль. Некоторые источники, такие как исследования израильских ученых, также указывают на связь между пестицидами и болезнью Паркинсона.

Симптомы болезни Паркинсона.

Жесткое выражение лица, скованность мышц, замедленные движения, отдыхающая дрожь пальцев руки, позже также дрожание век, челюсти, языка, лба и нижних конечностей, усталость, затруднение речи, депрессия и головокружение. Частыми проявлениями являются тремор или чувство усталости и скованности в конечностях и спине, судороги, более частые запоры и проблемы со сном.

Пациенты могут производить впечатление почти здоровых людей и, с другой стороны, с трудом сидеть неподвижно или страдать от движений, которые они не могут контролировать по своей воле. Болезнь Паркинсона является заболеванием, типичным для людей старше 50 лет, но пациенты моложе 40 лет также могут заразиться.

Дифференциальный диагноз

Многие нейродегенеративные заболевания во многом пересекаются, и болезнь Паркинсона не исключение.

Радиологические особенности

При длительном течении заболевании может быть выявлена неспецифическая генерализованная потеря объема головного мозга при МРТ иследовании.

Особенности болезни Паркинсона на Т1ВИ:

– может проявляться умеренная гиперинтенсивность компактных и ретикулярных частей черной субстанции и красных ядер (из-за накопления железа).

– может проявлять потерю нормальной гиперинтенсивности в черной субстанции из-за потери нейромеланина.

Особенности на T2 * (GRE / SWI):

– отсутствия ласточкина хвоста ( «ласточкин хвост» описывает нормальную осевую визуализацию нигросомы-1 внутри черной субстанции на МРТ с высоким разрешением T2 * / SWI).

– нигросома-1 обычно гиперинтенсивна по SWI, но она не визуализируется при болезни Паркинсона. – может показывать потерю сигнала от черной субстанции и красных ядер (из-за потери меланин-содержащих нейронов).

– точечные участки гиперинтенсивности в компактной части черной субстанции.

Лечение болезни Паркинсона.

Полное излечение невозможно, только течение болезни можно облегчить. Лечение включает в себя различные препараты, которые доставляют недостающий дофамин. Иногда возможна и операция на головном мозге.

Первый препарат для лечения болезни Паркинсона называется леводопа (L-дигидрокси-фенилаланин). Это один из наиболее часто вводимых и наиболее эффективных препаратов. Лечение леводопой стабилизирует содержание дофамина в черном веществе и базальных ганглиях до уровня, близкого к норме, тем самым облегчая симптомы заболевания. Большинство пациентов (около 75%) положительно отвечают на лечение.

Однако, чем дольше длится лечение, тем больше препарат становится менее эффективным. Наблюдается постепенное снижение подвижности, скованности и тремора. Поэтому вводят другие средства для пролонгирования действия левопод, такие как карбидопа, бенсеразид или энтакапон.

Другие вводимые препараты действуют иначе. Например, так называемые дофаминергические агонисты, такие как Бромокриптин, ропинирол и перголид, действуют непосредственно на клетки-мишени в черном веществе, которые продуцируют дофамин. Иногда назначают тригексифенидил и бензтропин (мускариновые антагонисты). Эти вещества подавляют тремор. Селегилин используется в Чешской Республике. Он влияет на один из ферментов, моноаминоксидазу B, которая участвует в распаде дофамина. Некоторые пациенты имеют нарушения сна как побочные эффекты этого лекарства. Поэтому это лекарство дают утром и в полдень.

Все препараты, используемые для лечения болезни Паркинсона, имеют побочные эффекты. Они, конечно, индивидуальны у пациентов. Некоторые из них почти не затронуты, но другие реагируют очень чутко. Лечение индивидуальное и иногда требуется врач, чтобы найти правильный вариант для конкретного человека.

Хирургия.

Операция не проводится до тех пор, пока не будут исчерпаны все возможности неинвазивного лечения. Повреждение или разрушение нервных клеток является постоянным и поэтому операция имеет значительные риски. Принцип этой процедуры заключается либо в стимуляции, либо в разрушении определенного участка мозга, что достигается введением тонкой иглы в мозговую ткань. Направление и глубина введения иглы предварительно рассчитываются на основе компьютерных методов визуализации-томографии.

Одним из таких вмешательств является паллидотомия. Он используется только у пациентов с агрессивным течением заболевания, или у пациентов, где они больше не работают. В черепе просверливается небольшое отверстие, через которое входит электрический зонд. Этот зонд разрушает небольшую часть нервной ткани, называемую бледным ядром (globus pallidus), которое большинство экспертов считают сверхактивным при болезни Паркинсона.

Другой вариант-стимуляция мозга (DBS). Процедура заключается в имплантации очень тонкого электрода в участок мозга, называемый globus pallidus или в субталамическое ядро. Этот электрод испускает слабые электрические импульсы, которые стимулируют мозг и блокирует нервные сигналы, вызывающие симптомы, тем самым улучшая двигательные функции.

Источник

Черная субстанция ядро располагается в каком мозге

Из разнообразных нейронных проекций в системе базальных ганглиев наиболее изучены так называемые нигро-стриарные связи, простирающиеся от черной субстанции до хвостатого ядра. В 1965 г. было окончательно доказано, что в указанной системе связей дофамин выполняет медиаторную функцию.

В периферической нервной системе дофамин является предшественником норадреналина — основного медиатора в симпатической нервной системе. В центральной нервной системе млекопитающих и человека дофамин выполняет уже самостоятельную и очень важную медиаторную функцию.

Дофаминергические нейроны расположены не только в черной субстанции, но и в структурах среднего мозга (например, в nucleus accumbens, поражение которого, кстати, наблюдается и при паркинсонизме) и в некоторых важнейших образованиях лимбико-ретикулярного комплекса: в лимбической и префронтальной коре, в ядрах миндалевидного комплекса, а также в тубероинфундибулярной системе, связывающей гипоталамус с гипофизом.

Уже простого перечисления этих структур, по-видимому, достаточно для того, чтобы получить представление о функциональном значении дофамина, принимающего участие в контролировании психических, двигательных и эндокринных функций организма.

черная субстанция ядро располагается в каком мозге

Знание топографии дофаминергических систем мозга необходимо в силу ряда важных для невролога обстоятельств. Во-первых, высказано предположение, что паркинсонизм представляет собой системное заболевание дофаминергических нейронов мозга и, следовательно, не ограничивается поражением только нигростриарных дофаминергических путей.

Во-вторых, лечебное воздействие на дофаминергические системы с помощью средств, блокирующих или стимулирующих эти системы, часто приводит к нежелательным побочным эффектам, характер которых зависит от того, на какие дофаминергические системы мозга оказывает свое преимущественное влияние тот или иной препарат.

Дело в том, что в настоящее время предполагается существование специфических типов дофаминергических рецепторов в разных частях мозга. Поэтому изучение различных дофаминергических систем мозга является необходимым условием для разработки более целенаправленных средств лечебного воздействия, а также для прогнозирования и профилактики побочных эффектов при лечении самых разнообразных неврологических заболеваний, в том числе и паркинсонизма.

Изложение современных представлений о моноаминергических системах мозга, разумеется, не входит в задачи этой книги. Мы остановимся лишь на некоторых механизмах функционирования дофаминергического нейрона, необходимых для понимания патогенеза паркинсонизма и основных принципов и перспектив его лечения.

Наиболее полная сводка работ, посвященных моноаминергическим, в том числе дофаминергическим, системам мозга, представлена в монографиях Кална, А. Ю. Буданцева, в обобщающих статьях С. Л. Левина, Фьюкса и других авторов.

В черной субстанции расположены тела нейронов, аксоны которых, составляющие нигро-стриарный путь, проходят через ножки мозга, внутреннюю капсулу и оканчиваются в неостриа-туме в виде широкого сплетения терминальных микровезикул с высоким содержанием дофамина. Именно этот путь является тем местом в мозге, поражение которого приводит к формированию синдрома паркинсонизма.

Источник

Транскраниальное УЗИ черной субстанции при болезни Паркинсона.

Обращаем Ваше внимание на то, что в соответствии с п. 10.ст.16 Федерального Закона «Об обязательном медицинском страховании» №326-ФЗ от 29.11.2010 года, при каждом обращении за медицинской помощью в ОКДЦ, вы должны предъявить свой полис ОМС в регистратуре центра.

Как узнать результаты исследований?

Уважаемые пациенты!

В приемном отделении ОКДЦ с 8.00 до 15.00 работает процедурный кабинет, где по назначению врача, на платной основе выполняются инъекции, включая:
-внутривенно-капельную инфузию,
-внутривенно-струйную инъекцию,
-внутримышечную инъекцию,
— подкожную инъекцию,
-премедикацию (обезболивание) перед проведением исследований МРТ. СКТ, коронарографии, ФГДС, ФКС и бронхоскопии.

Если Вы хотите получить эту медицинскую услугу, Вам необходимо обратиться в регистратуру ОКДЦ, имея при себе заключение Вашего лечащего врача и его рекомендации.

Уважаемые пациенты!

Запись на повторный прием проводится только через телефон Вашего лечащего врача ОКДЦ, информация об этом имеется в маршрутном листе.

На первичный прием Вы можете записаться самостоятельно через сайт или единый телефон Call-центра 8(863) 227-00-00

Уважаемые пациенты!

С целью предупреждения распространения вирусных инфекций, таких как грипп, ОРВИ, новый коронавирус 2019-nCoV, а так же ввиду отсутствия в ГАУ РО «ОКДЦ» врача-инфекциониста, пациентам с температурой, насморком, чиханием, кашлем, головной болью, болью в горле, рекомендовано обращаться к врачу-инфекционисту либо врачу-терапевту в медицинскую организацию по месту жительства.

Источник

Средний мозг: строение и функции

черная субстанция ядро располагается в каком мозге

В работе описаны новые данные, а также систематизированы старые об анатомии, физиологии, нейропсихологии среднего мозга. Описаны инновационные критерии для нейропсихологической диагностики. А также новые техники и упражнения, которые показали высокую эффективность на практике.В данной книге описаны анатомия, физиология и функции среднего мозга. Материалы будут полезны и интересны всем специалистам, работающим с детьми, а также родителям, желающим помочь своим детям.

Оглавление

Приведённый ознакомительный фрагмент книги Средний мозг: строение и функции предоставлен нашим книжным партнёром — компанией ЛитРес.

Глава 1. Общие представления о среднем мозге

1.1. Общие данные о структуре и функциях среднего мозга

черная субстанция ядро располагается в каком мозге

Рис. Средний мозг; вид с саггитальной плоскости (рисунок из интернета).

На его вентральной поверхности находятся два массивных пучка нервных волокон — ножки мозга, по которым проводятся сигналы из коры в нижележащие структуры мозга.

В среднем мозге присутствуют различные структурные образования: четверохолмие, красное ядро, чёрная субстанция и ядра глазодвигательного и блокового нервов. Каждое образование выполняет определённую роль и способствует регуляции целого ряда приспособительных реакций. Через средний мозг проходят все восходящие пути, передающие импульсы к таламусу, большим полушариям и мозжечку, и нисходящие пути, проводящие импульсы к продолговатому и спинному мозгу. К нейронам среднего мозга поступают импульсы через спинной и продолговатый мозг от мышц, зрительных и слуховых рецепторов по афферентным нервам.

Передние бугры четверохолмия являются первичными зрительными центрами, и к ним поступает информация от зрительных рецепторов. При участии передних бугров осуществляются зрительные ориентировочные и сторожевые рефлексы путём движения глаз и поворота головы в сторону действия зрительных раздражителей.

Нейроны задних бугров четверохолмия образуют первичные слуховые центры и при получении возбуждения от слуховых рецепторов обеспечивают осуществление слуховых ориентировочных и сторожевых рефлексов (у животного напрягаются ушные раковины, оно настораживается и поворачивает голову в сторону нового звука). Ядра задних бугров четверохолмия обеспечивают сторожевую приспособительную реакцию на новый звуковой раздражитель: перераспределение мышечного тонуса, усиление тонуса сгибателей, учащение сокращений сердца и дыхания, повышение артериального давления, т. е. животное подготавливается к защите, бегу, нападению.

Чёрная субстанция получает информацию с рецепторов мышц и тактильных рецепторов. Она связана с полосатым телом и бледным шаром. Нейроны чёрной субстанции участвуют в формировании программы действия, обеспечивающей координирование сложных актов жевания, глотания, а также тонуса мышц и двигательных реакций.

Красное ядро получает импульсы с рецепторов мышц, от коры больших полушарий, подкорковых ядер и мозжечка. Оказывает регулирующее влияние на мотонейроны спинного мозга через ядро Дейтерса и руброспиналъный тракт. Нейроны красного ядра имеют многочисленные связи с ретикулярной формацией ствола мозга и совместно с ней регулируют мышечный тонус. Красное ядро оказывает тормозное влияние на мышцы-разгибатели и активирующее влияние на мышцы-сгибатели. Устранение связи красного ядра с ретикулярной формацией верхней части продолговатого мозга вызывает резкое повышение тонуса разгибательных мышц. Это явление называется децеребрационной ригидностью.

черная субстанция ядро располагается в каком мозге

Рис. 1. Общая таблица отделов среднего мозга (рисунок из интернета)

1.2. Рефлексы на уровне среднего мозга

С участием продолговатого и среднего мозга осуществляется перераспределение тонуса различных мышц в зависимости от положения тела в пространстве за счёт возникновения статических и статокинетических тонических рефлексов.

Статические рефлексыподразделяются на две большие группы: рефлексы положения, или позотонические, обеспечивающие сохранение положения или позы тела; и выпрямительные, способствующие возвращению тела из неестественного положения в нормальное.

Позотонические рефлексы регулируются центрами продолговатого мозга с участием спинного мозга. Они осуществляются с рецепторов вестибулярного аппарата и проприорецепторов мышц шеи и рецепторов фасции шеи, а также при активации рецепторов кожи. Главная структура, участвующая в реализации этих рефлексов, — вестибулярные ядра. При положении тела животного спиной вверх с вестибулярного аппарата обеспечивается рефлекторное повышение тонуса мышц разгибателей конечностей. При запрокидывании головы с помощью сигналов от рецепторов мышц шеи происходит повышение тонуса мышц-разгибателей грудных конечностей и понижение тонуса мышц-разгибателей тазовых конечностей. При опускании головы проявляются противоположные изменения тонуса мышц грудных и тазовых конечностей. При повороте головы возникает раздражение рецепторов мышц шеи, и в ответ повышается тонус мышц-разгибателей конечностей той стороны, в которую повёрнута голова, и тонус мышц-сгибателей конечностей противоположной стороны.

Тонические выпрямительныерефлексы также регулируются средним мозгом. Два рефлекса обеспечивают выпрямление головы и два — выпрямление туловища.

Первый рефлекс, обеспечивающий выпрямление головы, возникает при наклоне головы набок. При этом возбуждаются рецепторы вестибулярного аппарата, и информация с этих рецепторов поступает в нервные центры среднего мозга. В результате происходит перераспределение тонуса мышц головы и шеи, и голова возвращается в естественное положение.

Второй рефлекс выпрямления головы задействуется в случае, когда животное ложится на бок: раздражаются рецепторы кожи этого бока животного, и информация поступает в центры среднего мозга, где формируется программа действия. Эта программа по эфферентным волокнам поступает к мышцам головы и шеи, вызывает перераспределение их тонуса, животное возвращает голову в естественное положение.

Один из рефлексов, регулирующих правильную установку туловища, если животное лежит на боку, возникает при повороте шеи. В этом случае раздражаются проприорецепторы шейных мышц и перераспределяется тонус мышц туловища: оно приводится в соответствие положению шеи и выпрямляется. Сначала поднимается голова, затем туловище животного принимает естественную позу.

Рефлекс выпрямления туловища может возникать и при возбуждении только рецепторов кожи бока, на котором лежит животное. С этих рецепторов через центры среднего мозга обеспечивается перераспределение тонуса мышц туловища и его выпрямление.

Статокинетические рефлексы направлены на сохранение позы (равновесия) и ориентации в пространстве при изменении скорости движения.

Они возникают при движении животного или при перемещении отдельных частей тела. Различают четыре статокинетических рефлекса.

Рефлекс с рецепторов мыши, одной конечности на мышцы других конечностей отмечается при движении животного, когда изменяется положение отдельных частей тела. Например, при сгибании одной конечности повышается тонус мышц разгибателей остальных трех конечностей, что обеспечивает устойчивое положение тела в пространстве.

Нистагм головы происходит при вращательных движениях головы, например, при вращении цирковой лошади на арене. Этот рефлекс заключается в движении головы в сторону, противоположную вращению туловища, а затем она быстро возвращается в исходное положение.

Нистагм глаз также возникает при вращательных движениях туловища и проявляется движением глаз в сторону, противоположную вращению туловища.

«Лифтные рефлексы» проявляются при быстром подъёме и спуске животного или человека, например, в лифте. Отсюда и произошло название данных рефлексов. В случае быстрого подъёма происходит повышение тонуса сгибателей, и человек или животное непроизвольно приседает. А при быстром спуске повышается тонус разгибателей конечностей, и человек сильно выпрямляется.

Рефлексы среднего мозга являются безусловными рефлексами, и знание закономерностей тонических рефлексов широко используют в практике работы с животными при их фиксации.

1.3. Ядра среднего мозга: общая информация

Центры среднего мозга представлены рядом ядерных групп, расположенных на этом уровне ЦНС, однако в настоящем разделе рассматриваются только важнейшие из них.

Ядра верхних холмиков. Эти ядра представлены чувствительными, вставочными и моторными нейронами. На их чувствительные нейроны конвергируют аксоны ганглиозных клеток сетчатки, которые в виде коллатералей ответвляются от аксонов зрительного нерва и следуют к нейронам верхних холмиков. К чувствительным нейронам верхних холмиков поступают афферентные слуховые сигналы из нижних холмиков и височной слуховой коры, а также сигналы из областей коры, контролирующих движения глаз (глазные поля затылочно-теменной, лобной областей коры). К нейронам верхних холмиков поступают сигналы из чёрной субстанции, таламуса, базальных ганглиев, мозжечка и других областей ЦНС. Через ядра верхних холмиков запускаются рефлекторные движения глаз и головы на действие света или звуков, при этом движениям придаётся определённая направленность к цели — источнику света или звука (сторожевые рефлексы).

Однако верхние холмики не могут самостоятельно обеспечить достаточную точность выполняемых движений. Для её достижения нейроны ядер верхних холмиков посылают копию двигательных команд в кору, таламус и мозжечок. Последний является обязательным отделом мозга, необходимым для организации осуществления точных движений глаз и головы в сторону источника раздражения.

Ядра верхних холмиков и латерального коленчатого тела принято считать первичными центрами зрения, в которых происходит недифференцированное восприятие световых сигналов и их простейший анализ. Результаты этого анализа используются для осуществления сторожевых рефлексов на действие света.

Ядра нижних холмиков. Нейроны этих ядер являются частью сложных слуховых путей передачи и анализа звуковых сигналов. К ним поступают слуховые сигналы но аксонам нейронов нижележащих слуховых ядер — нижних олив, противоположного нижнего холмика, первичной слуховой (височной) коры и коры мозжечка. Нейроны ядер являются переключателями сигналов в слуховых путях. При этом сигналы высокочастотных звуков переключаются в вентральной части ядра, а низкочастотных — в дорсальной части (как и в улитке). Ядро непосредственно обслуживает функцию слухового внимания. Обработанные и проанализированные слуховые сигналы передаются нейронами нижних холмиков в медиальное коленчатое тело и далее в первичную слуховую кору, противоположный нижний холмик, верхние холмики, мозжечок. Таким образом, нижние холмики являются ядром, переключающим слуховые сигналы в кору мозга и мозжечок и локализующим источник звука в пространстве.

Ядра нижних холмиков и медиального коленчатого тела принято считать первичными центрами слуха. В них осуществляется восприятие слуховых сигналов, активируется слуховое внимание, формируется недифференцированное слуховое ощущение. Результаты анализа используются для осуществления акустических, в том числе сторожевых рефлексов в виде поворотов головы и глаз в сторону неожиданного звукового раздражителя.

Претектальные ядра. Представлены чувствительными нейронами, расположенными в крыше претектальной области. Получая сигналы об освещённости сетчатки по аксонам ганглиозных клеток, эти ядра играют первостепенную роль в осуществлении зрачковых рефлексов, регуляции просвета зрачка и поддержании оптимальной освещённости сетчатки. Обработанные сигналы об освещённости сетчатки нейроны ядер посылают к моторным преганглионарным нейронам парасимпатической нервной системы ядра Эдингера — Вестфаля, расположенного в комплексе субъядер глазодвигательного ядра среднего мозга.

Ядра глазодвигательного нерва (III пара черепных нервов). Глазодвигательное ядро расположено на уровне верхних холмиков. Оно представлено соматическими и висцеральными моторными нейронами. Соматические моторные нейроны иннервируют своими аксонами мышцу, поднимающую веко и все наружные мышцы глазного яблока, за исключением латеральной прямой, которая иннервируется аксонами нейронов ядра отводящего нерва, и верхней косой, иннервируемой волокнами блокового нерва. Соматическое ядро представлено субъядрами, иннервирующими отдельные глазные мышцы. Содержащиеся в ядре глазодвигательного нерва нейроны парасимпатического отдела АНС (автономной нервной системы) входят в понятие ядра Якубовича — Эдингера — Вестфаля.

Нейроны соматической части ядра глазодвигательного нерва получают сигналы из коры мозга по кортико-ретикуло-бульбарным волокнам, из промежуточного мозга (ядра Кахала, рострального интерстициального ядра медиального продольного пучка), моста и продолговатого мозга (вестибулярные ядра, ядро отводящего нерва), мозжечка.

Нейроны висцеральной части ядра получают сигналы от нейронов претектальных ядер. Аксоны нейронов ядра Эдингера — Вестфаля идут вместе с аксонами соматических нейронов вплоть до орбиты. В орбите они отделяются и следуют к ганглионарным нейронам цилиарного ганглия. Постганглионарные волокна нейронов цилиарного ганглия иннервируют мышцу, суживающую зрачок, и цилиарные мышцы. Повреждение висцерального компонента глазодвигательного нерва ведёт к расширению зрачка, который становится нечувствительным к действию света или нарушению аккомодации.

Повреждение ядра глазодвигательного нерва или повреждение глазодвигательного нерва после его выхода из ствола мозга ведёт к развитию паралича мышц, иннервируемых его волокнами. Это проявляется птозом, нарушением установки глаза, развитием двоения (диплопии), парезом сфинктера зрачка и ресничных мышц, что приводит к расширению зрачка ипсилатерального глаза (на той же стороне), его нечувствительности к действию света и нарушению аккомодации.

Ядра блокового нерва (IV пара черепных нервов). Ядро располагается в вентральной части центрального серого вещества среднего мозга. Ядро блокового нерва состоит из моторных нейронов, иннервирующих аксонами верхнюю косую мышцу глаза. К нейронам ядра поступают сигналы от нейронов коры мозга по кортико-бульбарным волокнам и от верхнего и медиального вестибулярных ядер по волокнам медиального продольного пучка.

При повреждении ядер блокового нерва наблюдается парез контралатеральной верхней косой мышцы, а при повреждении нерва после его выхода из ствола мозга развивается парез или паралич ипсилатеральной верхней косой мышцы. Эта мышца осуществляет поворот глаза внутрь, книзу и отведение. При повреждении блокового нерва больные жалуются на вертикальное двоение (особенно при взгляде вниз во время опускания по ступенькам).

Мезенцефалическое ядро тройничного нерва. К нейронам ядра по волокнам мезенцефалического тракта поступают сигналы проприоцептивной чувствительности от жевательных мышц и периодонтальных мембран. Результаты анализа этих сигналов используются для рефлекторной регуляции жевательных движений.

Пигментное ядро (locus ceruleus) локализуется в ростральном мосту и каудальной части среднего мозга. Содержит 30–50 тысяч пигментированных клеток, которые содержат меланиновые гранулы. Пигментированность ядра уменьшается при болезни Паркинсона. Нейроны пятна обеспечивают норадренергическую иннервацию большинства областей ЦНС. Аксоны нейронов пятна широко ветвятся и рассеяны по всему мозгу, в том числе в таламусе, гипоталамусе, мозжечке, сенсорных ядрах ствола мозга и спинном мозге. Полагают, что нейроны этого ядра участвуют в регуляции циклов сна и бодрствования, дыхания и быстрых движений глаз в парадоксальную фазу сна.

Чёрная субстанция является скоплением непигментированных нейронов и нейронов, содержащих пигмент меланин и соединения железа. Чёрная субстанция расположена между ножкой мозга и покрышкой. Характер нейронных связей чёрной субстанции предполагает, что она играет важную роль в регуляции движений. Синаптическая передача сигналов нейронами чёрной субстанции осуществляется с использованием дофамина (пигментированные нейроны), ацетилхолина и ГАМК (непигментироваиные нейроны). Отмечается определённый характер потери нейронов чёрной субстанцией при некоторых заболеваниях мозга и особенно дофаминергических при болезни Паркинсона. Заболевания, при которых чёрная субстанция вовлекается в патологический процесс, почти всегда проявляются развитием паркинсонизма и такими нарушениями как тремор, ригидность, снижение моторной активности.

Красное ядро расположено в покрышке среднего мозга. Отличается богатой васкуляризацией и на свежих срезах имеет розоватый оттенок. Это обстоятельство объясняет название ядра. К нейронам красного ядра поступают сигналы из премоторной и первичной моторной областей коры головного мозга (по кортико-рубральному пути) и от глубоких ядер мозжечка.

Нейроны красного ядра посылают эфферентные сигналы по руброспинальному пути к нейронам вентральных рогов, иннервирующим дистальные мышцы конечностей. Подобно нейронам моторной коры мозга, формирующим кортикоспинальный тракт, нейроны красного ядра через руброспинальный тракт облегчают активацию флексорных мотонейронов и ингибируют экстензорные мотонейроны. Нейроны красного ядра через руброспинальный тракт принимают непосредственное участие в координации моторных функций спинного мозга. При повреждениях ядра или волокон руброспинального пути возникает контралатеральный тремор конечностей.

Интерстициальное ядро Кахала расположено в ростральном отделе среднего мозга. Нейроны ядра имеют обширные связи с ростральными и каудальными структурами мозга. Они получают сигналы из лобного глазного поля, глубоких ядер мозжечка и через медиальный продольный пучок — от вестибулярных ядер. Аксоны нейронов ядра Кахала следуют к нейронам ядер глазодвигательного, блокового черепных нервов, а также в ядра ствола мозга и спинной мозг. Нейроны интерстициального ядра контролируют осуществление вращательных и вертикальных движений глаз и их следящих движений.

Ростральное интерстициальное ядро медиального продольного пучка. Это ядро расположено ростральнее ядра Кахала и ядра III пары черепных нервов, почти на границе соединения среднего и промежуточного мозга. К нейронам ядра поступают сигналы от вестибулярного ядра через медиальный продольный пучок и из ядра горизонтального взора моста. Аксоны нейронов рострального ядра следуют к нейронам субъядра нижней прямой мышцы глазодвигательного ядра и контролируют осуществление движения глаз книзу. Нейроны интерстициального ядра Кахала и рострального интерстициального ядра медиального продольного пучка формируют нейронную сеть, выполняющую функцию центра вертикальных движений глаз (вертикального взора). При его повреждении могут развиться ограничение или невозможность вертикальных движений глаз.

Центральное околоводопроводное серое вещество. Околоводопроводное серое вещество среднего мозга расположено вокруг сильвиева водопровода и представлено рассеянными нейронами. Сигналы к нейронам серого вещества поступают из гипоталамуса, амигдалы, ретикулярной формации ствола мозга, голубоватого пятна, спинного мозга. При активации серого вещества его нейроны высвобождают энкефалин, субстанцию Р, нейротензин, серотонин, динорфин, соматостатин. Центральное серое вещество участвует в формировании боли. Нейромедиаторы его нейронов действуют на серотонинергические нейроны продолговатого мозга, которые посылают аксоны к афферентным нейронам, проводящим болевые сигналы в заднем роге спинного мозга и в зависимости от активации нейронов различных отделов центрального серого вещества вызывают снижение болевой чувствительности (аналгезию) или её повышение. Кроме того, центральное серое вещество участвует в вокализации, контроле репродуктивного поведения, модуляции активности респираторных центров ствола мозга, формировании агрессивного поведения.

1.4. Средний мозг в онтогенезе

На протяжении всего эмбрионального развития клетки в среднем мозге непрерывно размножаются; это происходит в гораздо большей степени вентрально, чем дорсально. Наружное расширение сдавливает все ещё формирующийся водопровод мозга, что может привести к частичной или полной непроходимости, приводящей к врождённой гидроцефалии.

черная субстанция ядро располагается в каком мозге

Рис. 2. Показано расположение среднего мозга (midbrain) в процессе эмбрионального развития (рисунок из интернета).

черная субстанция ядро располагается в каком мозге

Рис. 3. Развитие среднего мозга представлено в виде таблицы. Видно, что средний мозг в отличие от переднего и заднего мозга на 5 неделе не имеет деления на подструктуры (рисунок из интернета).

черная субстанция ядро располагается в каком мозге

Рис. 4. Здесь показаны отличия старого понимания (картинка сверху) того, какие области занимают определённые структуры от нового (картинки снизу), после более подробного генетического анализа. Важные ошибки в том, что мост занимает верхнюю часть заднего мозга; что истмус распознают как первый сегмент заднего мозга и что диэнцефальные структуры включаются в средний мозг (рисунок из интернета).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *