Что идет после 999 миллионов

В повседневной жизни большинство людей оперируют достаточно небольшими числами. Десятки, сотни, тысячи, очень редко – миллионы, почти никогда – миллиарды. Примерно такими числами ограничено обычное представление человека о количестве или величине. Про триллионы приходилось слышать почти всем, но употреблять их, в каких-либо подсчетах, мало кому доводилось.

Что идет после 999 миллионов

Какие они, числа-гиганты?

Между тем, числа обозначающие степени тысячи известны людям давно. В России и многих других странах используется простая и логичная система обозначений:

• Тысяча;
• Миллион;
• Биллион;
• Триллион;
• Квадриллион;
• Квинтиллион;
• Секстиллион;
• Септиллион;
• Октиллион;
• Нониллион;
• Дециллион.

В этой системе каждое следующее число получается умножением предыдущего на тысячу. Биллион обычно называют миллиардом.

Многие взрослые могут безошибочно написать такие числа как миллион – 1 000 000 и миллиард – 1 000 000 000. С триллионом уже сложнее, но почти все справятся – 1 000 000 000 000. А дальше начинается неведомая многим территория.

Знакомимся ближе с большими цифрами

Сложного, впрочем, ничего нет, главное – понять систему образования больших чисел и принцип наименования. Как уже говорилось, каждое следующее число превосходит предыдущее в тысячу раз. Это значит, что для того чтобы правильно написать следующее в порядке возрастания число, нужно к предыдущему приписать еще три нуля. То есть, у миллиона 6 нулей, у миллиарда их 9, у триллиона – 12, у квадрильона – 15, а у квинтиллиона – уже 18.

С названиями тоже можно разобраться, если есть желание. Слово «миллион» произошло от латинского «mille», которое означает «больше тысячи». Следующие числа были образованы путем приставления латинских слов «би» (два), «три» (три), «квадро» (четыре) и т.д.

Теперь попробуем представить себе эти цифры наглядно. Большинство довольно хорошо представляют себе разницу между тысячью и миллионом. Каждый понимает, что миллион рублей – это хорошо, но миллиард – больше. Гораздо больше. Также у всех есть представление о том, что триллион – это что-то абсолютно необъятное. Но насколько триллион больше миллиарда? Насколько он громаден?

Для многих дальше миллиарда начинается понятие «уму непостижимо». Действительно, миллиард километров или триллион – разница не очень большая в том смысле, что такое расстояние все равно не пройти за всю жизнь. Миллиард рублей или триллион тоже не особо отличается, потому что таких денег все равно не заработать за всю жизнь. Но давайте немного посчитаем, подключив фантазию.

Жилой фонд России и четыре футбольных поля как примеры

На каждого человека на земле приходится площадь суши размером 100х200 метров. Это примерно четыре футбольных поля. Но если людей будет не 7 миллиардов, а семь триллионов, то каждому достанется только кусочек суши 4х5 метров. Четыре футбольных поля против площади палисадника перед подъездом – таково соотношение миллиарда к триллиону.

В абсолютных значениях картина также впечатляет.

Если взять триллион кирпичей, то можно построить более 30 миллионов одноэтажных домов площадью по 100 квадратных метров. То есть около 3 миллиардов квадратных метров частной застройки. Это сопоставимо с общим жилым фондом РФ.

Если строить десятиэтажные дома, то получится примерно 2,5 миллиона домов, то есть 100 миллионов двух- трехкомнатных квартир, около 7 миллиардов квадратных метров жилья. Это в 2,5 раза больше всего жилого фонда России.

Одним словом, во всей России не наберется триллион кирпичей.

Один квадриллион ученических тетрадей покроет всю территорию России двойным слоем. А один квинтиллион тех же тетрадей накроет всю сушу слоем толщиной в 40 сантиметров. Если же удастся раздобыть секстиллион тетрадей, то вся планета, включая океаны, окажется под слоем толщиной в 100 метров.

Досчитаем до дециллиона

Давайте посчитаем еще. Например, спичечный коробок, увеличенный в тысячу раз, будет размером с шестнадцатиэтажный дом. Увеличение в миллион раз даст «коробок», который по площади больше Санкт-Петербурга. Увеличенный в миллиард раз, коробок не поместится на нашей планете. Наоборот, Земля поместится в такой «коробок» 25 раз!

Если считать дальше, то масштабы Земли окажутся уже недостаточными. Увеличенный в триллион раз коробок мог бы вместить в себя все планеты Солнечной системы вместе с их спутниками, а также астероиды и кометы. В коробке, который увеличен в квадриллион раз, Солнечная система могла бы поместиться полностью.

Увеличение коробка дает увеличение его объема. Вообразить себе такие объемы при дальнейшем увеличении будет уже почти невозможно. Для простоты восприятия попробуем увеличивать не сам предмет, а его количество, и расположим спичечные коробки в пространстве. Так будет легче ориентироваться. Квинтиллион коробков выложенных в один ряд, протянулись бы дальше звезды α Центавра на 9 триллионов километров.

Еще одно тысячекратное увеличение (секстиллион) позволит спичечным коробкам, выстроенным в линию, перегородить всю нашу галактику Млечный путь в поперечном направлении. Септиллион спичечных коробков растянулись бы на 50 квинтиллионов километров. Такое расстояние свет сможет пролететь за 5 миллионов 260 тысяч лет. А выложенные в два ряда коробки протянулись бы до галактики Андромеды.

Осталось только три числа: октиллион, нониллион и дециллион. Придется напрячь воображение. Октиллион коробков образует непрерывную линию в 50 секстиллионов километров. Это боле пяти миллиардов световых лет. Не каждый телескоп, установленный на одном краю такого объекта, мог бы разглядеть его противоположный край.

Считаем дальше? Нониллион спичечных коробков заполнил бы собой все пространство известной человечеству части Вселенной со средней плотностью 6 штук на кубический метр. По земным меркам вроде бы не очень-то и много – 36 спичечных коробков в кузове стандартной «Газели». Но нониллион спичечных коробков будет иметь массу в миллиарды раз больше чем масса всех материальных объектов известной Вселенной вместе взятых.

Дециллион. Величину, а скорее даже величественность этого исполина из мира чисел трудно себе вообразить. Только один пример – шесть дециллионов коробков уже не поместились бы во всей доступной человечеству для наблюдения части Вселенной.

Еще более поразительно величественность этого числа видна, если не умножать количество коробков, а увеличить сам предмет. Спичечный коробок, увеличенный в дециллион раз, вместил бы в себя всю известную человечеству часть Вселенной 20 триллионов раз. Невозможно такое себе даже просто представить.

Небольшие подсчеты показали, насколько огромны числа, известные человечеству уже несколько веков. В современной математике известны числа во много раз превосходящие дециллион, но применяются они только в сложных математических вычислениях. Сталкиваться с подобными числами приходится только профессиональным математикам.

Самым известным (и самым маленьким) из таких чисел является гугол, обозначаемый единицей со ста нулями. Гугол больше чем общее число элементарных частиц в видимой нам части Вселенной. Это делает гугол абстрактным числом, которое не имеет большого практического применения.

Источник

Названия больших чисел

Существует десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Числа состоят из цифр. Число 52 состоит из двух цифр: 5 и 2. Числа с 1 впереди и последующими нулями имеют названия. Всем известны: 10 — десять, 100 — сто, 1000 — тысяча, 1 000 000 — миллион. Так как большие числа с большим числом нулей записывать неудобно, используют сокращения в виде степеней: запись 10 11 означает число с 11-ю нулями, запись 10 52 означает число с 52-мя нулями и т.д. Приведем названия чисел с десятками и сотнями нулей.

Названия «круглых» чисел, которые можно встретить в школьной программе:
1 000 000 — миллион (6 нулей)
1 000 000 000 — миллиард или биллион (9 нулей)
1 000 000 000 000 — триллион (12 нулей)
1 000 000 000 000 000 — квадриллион (15 нулей)
1 000 000 000 000 000 000 — квинтиллион (18 нулей)
1 000 000 000 000 000 000 000 — секстиллион (21 нуль)
1 000 000 000 000 000 000 000 000 — септиллион (24 нуля)
1 000 000 000 000 000 000 000 000 000 — октиллион (27 нулей)
1 000 000 000 000 000 000 000 000 000 000 — нониллион (30 нулей)
1 000 000 000 000 000 000 000 000 000 000 000 — дециллион (33 нуля)

Еще некоторые примеры интересных названий:
10 100 — гугол, googol (100 нулей)
10 10 100 — гуголплекс, googolplex (десять в степени гугол)
10 140 — асанкхейя, asankhyeya или сто квинквадрагинтиллионов
10 303 — центиллион, centillion
10 3003 — миллиллион, millillion
10 3000003 — милли-миллиллион, milli-millillion

Самого большого числа в мире не существует, так как любое большое число всегда можно увеличить, умножить, возвести в степень, и получится другое большее число. Бесконечность не является числом.

Из известных самых больших чисел, имеющих название (математическое доказательство) можно выделить: число TREE(3), число SCG(13), число Лоудера, число Мозера, число Скьюза, число Райо, число Грэма, инфитеиплеон.

Таблица больших чисел с указанием количества нулей и названиями на русском и английском.

Источник

Не вошедшее в сборник сочинений

Аркадий Сладков

Что идет после 999 миллионов Что идет после 999 миллионов Что идет после 999 миллионов Что идет после 999 миллионов Что идет после 999 миллионов

Какое самое большое число вы знаете?

Но вернемся к нашей родной шкале. Хотите знать, что идет после триллиона? Пожалуста:

10 3 тысяча
10 6 миллион
10 9 миллиард
10 12 триллион
10 15 квадриллион
10 18 квинтиллион
10 21 секстиллион
10 24 септиллион
10 27 октиллион
10 30 нониллион
10 33 дециллион
10 36 ундециллион
10 39 додециллион
10 42 тредециллион
10 45 кваттуордециллион
10 48 квиндециллион
10 51 cедециллион
10 54 септдециллион
10 57 дуодевигинтиллион
10 60 ундевигинтиллион
10 63 вигинтиллион
10 66 анвигинтиллион
10 69 дуовигинтиллион
10 72 тревигинтиллион
10 75 кватторвигинтиллион
10 78 квинвигинтиллион
10 81 сексвигинтиллион
10 84 септемвигинтиллион
10 87 октовигинтиллион
10 90 новемвигинтиллион
10 93 тригинтиллион
10 96 антригинтиллион

На этом числе наша короткая шкала не выдерживает, и в дальшейшем мантиса увеличивается прогрессивно.

10 100 гугол
10 123 квадрагинтиллион
10 153 квинквагинтиллион
10 183 сексагинтиллион
10 213 септуагинтиллион
10 243 октогинтиллион
10 273 нонагинтиллион
10 303 центиллион
10 306 центуниллион
10 309 центдуоллион
10 312 центтриллион
10 315 центквадриллион
10 402 центтретригинтиллион
10 603 дуцентиллион
10 903 трецентиллион
10 1203 квадрингентиллион
10 1503 квингентиллион
10 1803 сесцентиллион
10 2103 септингентиллион
10 2403 окстингентиллион
10 2703 нонгентиллион
10 3003 миллиллион
10 6003 дуомилиаллион
10 9003 тремиллиаллион
10 3000003 милиамилиаиллион
10 6000003 дуомилиамилиаиллион
10 10 100 гуголплекс
10 3×n+3 зиллион

Гугол (от англ. googol) — число, в десятичной системе счисления изображаемое единицей со 100 нулями:
10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
1938 году американский математик Эдвард Каснер (Edward Kasner, 1878—1955) гулял по парку с двумя своими племянниками и обсуждал с ними большие числа. В ходе разговора зашла речь о числе со ста нулями, у которого не было собственного названия. Один из племянников, девятилетний Милтон Сиротта (Milton Sirotta), предложил назвать это число «гуголом» (googol). В 1940 году Эдвард Кэснер совместно с Джеймсом Ньюманом написал научно-популярную книгу «Математика и воображение» («New Names in Mathematics»), где и рассказал любителям математики о числе гугол.
Термин «гугол» не имеет серьёзного теоретического и практического значения. Каснер предложил его для того, чтобы проиллюстрировать разницу между невообразимо большим числом и бесконечностью, и с этой целью термин иногда используется при обучении математике.

Гуголплекс (от англ. googolplex) — число, изображаемое единицей с гуголом нулей. Как и гугол, термин «гуголплекс» был придуман американским математиком Эдвардом Каснером (Edward Kasner) и его племянником Милтоном Сироттой (Milton Sirotta).
Число гугол больше числа всех частиц в известной нам части вселенной, которое составляет величину от 1079 до 1081. Таким образом, число гуголплекс, состоящее из (гугол+1) цифр, в классическом «десятичном» виде записать невозможно, даже если всю материю в известной части вселенной превратить в бумагу и чернила или в компьютерное дисковое пространство.

Зиллион (англ. zillion) — общее название для очень больших чисел.

Этот термин не имеет строгого математического определения. В 1996 году Конвей (англ. J. H. Conway) и Гай (англ. R. K. Guy) в своей книге англ. The Book of Numbers определили зиллион n-ой степени как 10 3×n+3 для системы наименования чисел с короткой шкалой.

Источник

Что идет после миллиона?

В повседневной практике, даже при сложнейших вычислениях, редко используются числа больше миллиарда.

Дадим простор своему воображению и попытаемся проверить это утверждение. Вычислим площадь Земли в квадратных миллиметрах — можно надеяться, что получится головокружительная величина. Ничего подобного. Площадь земного шара равна 5X1020 квадратных миллиметров.

Если же подсчитаем объем Земли в кубических миллиметрах, то получим чуть большее число — 1030. Но и это слишком мало по сравнению с гуголом. Если предположить, что в одном кубическом миллиметре вместится десять песчинок, и подсчитать их количество в объеме Земли, то получится всего tO31. Иными словами, Земля слишком мала для какого бы то ни было вычисления в масштабах гугола.

Возьмем просторы космоса и попытаемся выразить расстояние между звездами в ангстремах — один ангстрем равен одной десятимиллионной части миллиметра. Обычно межзвездные расстояния измеряют в световых го- — это расстояние, которое солнечный луч проходит за год, — приблизительно 9,5 триллиона километров. И если выразить световой год в ангстремах, то получим 1026 ангстрема. И расстояние до самых удаленных галактик не превышает 6X1027 ангстрем.

Предположим, что Вселенная имеет ограниченные размеры (что не доказано) и сопоставим этот самый крупный физический объект, известный людям, с ядром атома — одним из самых малых объектов, изученных физиками. Соотношение между ними составит 1040. Это также не гугол.

А теперь подсчитаем возраст Вселенной. Самое короткое время, которое мы используем в этом вычислении, составляет тот миг, который необходим световому лучу, чтобы пересечь диаметр атомного ядра. Получается, что возраст Вселенной в этих единицах составляет также 1040.

Пересчитаем все атомные частицы, существующие в известной нам Вселенной: протоны, электроны, нейтроны, а также нейтрино и фотоны. Даже в одной пылинке содержится несколько миллиардов элементарных частиц. А во Вселенной их 1088— то есть миллионная миллионной части гугола!

До сих пор мы пользовались только статистическими величинами: длиной, объемом, количеством частиц. Интересно затронуть и динамические величины, например энергию. Энергия, излучаемая всеми звездами во Вселенной, должна быть исключительно велика. Но даже выраженная в микроваттах, она не достигает 1040.

Гугол недостижим, даже если подсчитать, сколько энергии содержится во всем веществе Вселенной.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *