Что идет после гиперзвука
Гиперзвук или на испуг
Если бы подобная гласность существовала в СССР, то высока вероятность, что такие проекты, как многоразовая ракетно-космическая система «Энергия-Буран», так бы и остались на бумаге. Не стали бы создавать и «Спираль». Или взять, к примеру, самолет Т-4, титановую «Сотку». Вовремя спохватились, сэкономив огромные деньги. А сколько вложили средств в разработку ядерных силовых установок для самолетов, и все впустую. Не лучше обстояло дело и с проектом пассажирского Ту-144. Правда, из всех этих проектов что-то извлекли полезное, но эта малость не окупала вложенных затрат.
Таких примеров, связанных с ненужными или не имеющими практического применения разработками, можно найти немало не только в авиастроении, но и в других областях. Но самым неприятным является то, что вроде бы образованные люди не желают учиться на ошибках прошлого, предлагая и поддерживая вредные для страны идеи.
Одно дело проводить исследования, направленные на обеспечение перспективных разработок, а другое, сходу «брать быка за рога», запуская в серийное производство экспериментальные образцы, не выдержавшие испытание. Главным источником таких нелепых решений была политика, но она, похоже, и сегодня одолевает умы некоторых специалистов. А прессе остается лишь раздувать брошенные известными личностями слова.
Последнее время все чаше можно услышать рассуждения о гиперзвуковых летательных аппаратах. О полетах, со скоростью в пять и более раз превышающую звуковую, начали говорить в специальной литературе свыше полувека назад, причем на полном серьезе, когда мы еще толком не имели представления даже о сверхзвуковых скоростях. Рассматривались различные схемы силовых установок и самих летательных аппаратов (ЛА), даже пытались что-то моделировать на наземных стендах и в полете. Но до полномасштабной реализации гиперзвуковых проектов за прошедшие десятилетия дело не дошло. Единственными ЛА, летающими с гиперзвуковой скоростью, до сих пор являются спускаемые космические аппараты и головные части межконтинентальных баллистических ракет, но они даже косвенного отношения к авиастроению не имеют.
Конечно, можно сослаться на полеты экспериментального американского самолета Х-15, а также космических аппаратов «Спейс шаттл» и «Буран», но при этом следует уяснить, что продолжительность их полета с гиперзвуковой скоростью исчисляется минутами. Зато появляются разного рода сенсационные сообщения, лишь подстегивающие гонку вооружения.
Не так давно в Государственной думе РФ проходили слушания о возобновлении серийного производства истребителя-перехватчика МиГ-31, казалось бы, не имеющего к этому никакого отношения. Этот самолет завершил эволюцию семейства Е-15 ОКБ А.И. Микояна. Правда, задачи, стоящие перед ним, еще актуальны, но уровень технологии машиностроения, на которой он основывался, ушел в прошлое. Это породило разговоры о создании нового истребителя-перехватчика. Его даже окрестили как МиГ-41, и некоторые издания тиражируют гипотетические рисунки будущей машины. Впрочем, как показывает опыт, на деле новая машина обычно получается совсем с другим обликом, более приближенным к земному, чем это подается в СМИ.
При этом заслуженный летчик-испытатель, Герой России Анатолий Квочур в феврале 2014 года, комментируя сообщение депутата Госдумы Александра Тарнаева о разработке в России МиГ-41 на базе МиГ-31, в интервью РИА Новости сообщил, что новейший истребитель-перехватчик МиГ-41 должен летать со скоростью, превосходящей звуковую не менее, чем в 4–4,3 раза, то есть близкой к гиперзвуковой. Только мало кто задумывается о том, что дадут перехватчику эти лишние 1000 км/ч? Если это правда, а не дезинформация, то новый «МиГ» может стать реальностью не ранее 2030 года.
Заявление Квочура последовало после публикации в американском журнале Aviation Week & Space Technology от 1 ноября 2013 года статьи Гая Норриса под названием Exclusive: Skunk Works Reveals SR-71 Successor Plan о разработке компанией Lockheed Martin перспективного высотного разведчика SR-72 с турбопрямоточными двигателями, способного совершать полет со скоростью, в 5,5–6 раз превосходящую звуковую. Его первый летный образец планируется поднять в воздух в 2020 году. Но американский проект относить к разряду ударных не стоит, он будет таким дорогим, что если дело и дойдет до серийного производства, то за океаном ограничатся выпуском не более десятка машин, в лучшем случае.
Не представляется возможным реализовать в обозримом будущем и российский проект. Такие самолеты будут чрезвычайно дороги и намного сложнее МиГ-31, поскольку придется решать многочисленные проблемы, связанные с созданием турбопрямоточных двигателей (это самые наукоемкие агрегаты в самолетостроении) и с охлаждением очень теплонапряженных элементов конструкции планера, нагревающихся от трения о воздух до 500–600 градусов Цельсия (предел для титана), и обеспечением жизнедеятельности экипажа.
Да, в нашей стране наука не стоит на месте, и имеется определенный опыт по созданию прямоточных воздушно-реактивных двигателей, в том числе и предназначенных для полета с гиперзвуковой скоростью (ГПВРД). В «НВО» об этом неоднократно сообщалось. В частности, рассказывалось о совместном создании в 1970-е годы Химкинским КБ «Факел» и ЦИАМ гиперзвуковой летающей лаборатории (ГЛЛ) «Холод». Ее основой стала зенитная ракета 5В28 комплекса С-200В. При этом на носовой части изделия 5В28 разместили экспериментальный ГПВРД Э-57. По сообщениям СМИ, исследования прошли успешно и был получен бесценный экспериментальный результат.
Но одно дело, ГПВРД, а другое дело – комбинированная турбопрямоточная силовая установка, поскольку самолет должен взлететь с аэродрома, разогнаться до скорости не менее 3 тыс. км/ч, а затем в работу должны вступить ГПВРД, а ТРД – отключиться. Подобные силовые установки рассматривались инженерами полвека назад, но они так и не появились. Нельзя исключать, что для гиперзвукового ЛА, самостоятельно взлетающего с аэродрома, придется создавать еще более сложные двигатели, в том числе переменного цикла.
В качестве примера приведу температуру поверхности самолета SR-71 при полете на крейсерском режиме со скоростью, соответствующей числу М=3. Температура передних кромок и внутри воздухозаборника – приблизительно 427 градусов Цельсия, а на наружной поверхности обшивки в области форсажных камер двигателей – почти 600 градусов.
Вспомните слова А.Н. Туполева, брошенные суховцам по поводу Т-4: «Вы хотите разорить страну?». Время подтвердило правоту Андрея Николаевича, поскольку его место занял более простой и дешевый бомбардировщик-ракетоносец Ту-22М3.
Можно, конечно, вернуться к стальному корпусу, подобного тому, что использовали на МиГ-25, или к тонкостенным конструкциям «Стальных» самолетов 1930-х годов. И наверняка эти конструкции должны быть охлаждаемыми, особенно это касается их самых теплонапряженных узлов. Но будет ли при этом достигнут конечный результат, неизвестно.
В 1958 году мы уже наступали на почти «гиперзвуковые грабли», когда военные хотели увидеть перехватчик Е-155, летящий со скоростью 4 тыс. км/ч на высоте от 30 до 50 км, и осуществлять перехват любой воздушной цели на рубеже 140–170 км. К счастью, такой цели не оказалось, и вовремя одумались.
Гиперзвуковая скорость в авиастроении не за горами. Но столь скоростными делать надо не пилотируемые аппараты, а беспилотные разведчики и боевые ракеты. Но и здесь есть «подводные камни»: к примеру, как защитить от того же нагрева ядерную боевую часть. А без нее в будущей войне не обойдешься, несмотря на огромный запас кинетической энергии быстродвижущейся ракеты. Да и стартовать такие изделия, вероятно, будут не с гиперзвуковых, а сверхзвуковых пилотируемых самолетов-носителей, и это направление вполне реально.
Правда, даже в этом качестве создать подобные изделия будет не просто, и на это уйдет не одно десятилетие. Один лишь пример: на разработку крылатой сверхзвуковой ракеты Х-31 при активном ее финансировании понадобилось свыше 20 лет, работы шли с 1977 года.
Гонка гиперзвука: «Острота» против американской X-51A Waverider — кто мощнее
Кто первым сделает ракету — МКБ «Радуга» или Boeing?
В обозримом будущем у России появится еще одна гиперзвуковая ракета, получившая название «Острота». Она станет частью сил неядерного сдерживания. В 2022 году намечено начало ее лётных испытаний. Таким образом, к трем гиперзвуковым боеприпасам — «Кинжал», «Авангард» и «Циркон» — прибавится и четвертый. Причем эта ракета по сравнению с тремя своими «старшими сестрами» будет иметь существенно меньшие габариты и массу.
О ракете «Острота», которая разрабатывается в МКБ «Радуга» им. А.Я. Березняка, газете «Известия» сообщил источник в оборонном ведомстве.
Характеристики «Остроты» не приводятся. Но источник «Известий» поделился ценной информацией, которая свидетельствует о том, что это будет первая российская ракета с двигателем нового типа.
На «Кинжале» и «Цирконе» установлены твердотопливные реактивные двигатели, работающие на смесевом топливе, которое одновременно является и топливом и окислителем. «Авангард» двигателя не имеет, он приобретает гиперзвуковую скорость от ракеты-носителя, от которой впоследствии отделяется.
Вот что говорится о перспективной «Остроте»: «Специально для новой сверхскоростной ракеты разработан прямоточный воздушно-реактивный двигатель, известный под обозначением „изделие 71“. Его создание поручено Тураевскому машиностроительному КБ „Союз“ (входит в корпорацию „Тактическое ракетное вооружение“)».
То есть речь идет о создании гиперзвукового прямоточного воздушно-реактивного двигателя (ГПВРД).
Конструкция ГПВРД проста, количество подвижных элементов минимально. Схематично он представляет собой две воронки, которые соединены друг с другом узкими отверстиями. Через первую воронку (широкий раструб) поступает воздух, это воздухозаборник. В месте сужения воздух смешивается с топливом, и эта смесь сгорает.
Выход второй воронки — это сопло, обеспечивающее реактивную тягу. Теоретически ГПВРД может развивать скорость до 25 М, но практический потолок ниже — порядка 17 М-19 М.
Достоинство ГПВРД состоит в том, что, в отличие от жидкостного реактивного двигателя (ЖРД) (как на космических ракетах), не требуется заряжать ракету сжиженным окислителем, в данном случае кислородом. Кислород берется из воздуха.
Однако ГПВРД обладает существенным недостатком — его можно запустить лишь на скорости, превышающей 3 М. Поэтому гиперзвуковую ракету с ГПВРД приходится разгонять либо при помощи твердотопливного ускорителя, либо использовать для запуска какой-либо носитель — ракету или самолет. Если схема этого двигателя проста, то он имеет ряд существенных особенностей, отличающих его от ЖРД. Как, например, меньшая эффективность воздуха в сравнении с жидким кислородом. Проще говоря, ГПВРД очень капризен. Что приводит к высокой сложности его разработки и испытаний.
В Советском Союзе в 70-е годы созданием летательного аппарата, скорость которого достигала бы 5 М и выше, занялось расположенное в подмосковной Дубне МКБ «Радуга», ныне входящее в состав КТРВ.
Для решения этой задачи авиационный турбореактивный двигатель (ТРД) не годился. Из-за чрезмерного увеличения скоростного напора воздуха при скоростях выше 3 М падает эффективность ТРД, поскольку резкое повышение температуры поступающей в камеру сгорания воздушно-топливной смеси существенно снижает кпд. И чем выше температура, тем меньше тяга. Также существует угроза пластической деформации лопаток турбины с их последующим расплавлением.
В 80-е годы МКБ «Радуга» построила несколько опытных образцов гиперзвуковой ракеты с ГПВРД, которая получила название Х-90 («Коала» по версии НАТО). При расчетной скорости, равной 5 М, ракета весила 15 тонн, имела длину 9 метров, размах крыла — 7 метров. Предполагаемая дальность полета составляла 3000 километров.
Было совершено несколько испытательных полетов, во время которых устойчиво достигалась скорость от 3 М до 4 М. Но, несмотря на обнадеживающие результаты, в 1992 году проект был свернут в связи прекращением финансирования.
Та же самая участь постигла и разработку московского Центрального института авиационного моторостроения им. П.И. Баранова (ЦИАМ). Здесь в 1979 году стартовала НИР «Холод» по созданию ГПВРД, использующего криогенные технологии для охлаждения топлива. На базе зенитной ракеты 5В28 от ЗРК С-200 была создана летающая лаборатория, на которой испытывались различные варианты построения ГПВРД. Наивысший результат был получен в 1998 году, когда была достигнута скорость в 6,5 М.
После чего ЦИАМ совместно с целым рядом соисполнителей приступил к выполнению НИР «Холод-2». Предполагалось достигнуть скорость в 14 М. Разумеется, теоретически. Но все ограничилось постройкой макета, который показали на авиасалоне МАКС-99. И тут тоже закончились деньги.
Необходимо сказать, что российские конструкторы здорово помогли американцам, которые тогда называли нас «друзьями». Компании Boeing были проданы все результаты испытаний летающей лаборатории по теме «Холод». А последнее испытание, в 1998 году, было проведено на американские деньги. То есть Boeing получила доступ ко всем бесценным материалам.
После чего немедленно приступил к созданию гиперзвуковой ракеты X-51A Waverider с ГПВРД. По расчетам, ее скорость должна достигать 6−7 М. Испытания первого опытного образца, запускаемого с подвески стратегического бомбардировщика В-52, начались в 2010 году. Третьи испытания, состоявшиеся в 2013 году, были признаны успешными. Ракета развила скорость 5,1 М, пролетев за 6 минут 425 километров. Затем наступила длительная пауза.
Возобновились испытания в марте 2021 года. Однако прежнюю рекордную скорость достичь не удалось. К тому же непонятно, как обстоят дела с управляемостью ракеты, с перегрузочной способностью, то есть с динамикой маневрирования, с точностью наведения на цель.
Так что неясно, когда же в результате испытаний и доработок ВВС США получит долгожданную и работоспособную гиперзвуковую ракету. И когда завершатся испытания «Остроты». То есть, кто же первым начнет эксплуатировать ракету с ГПВРД?
В заключение необходимо сказать, что ракеты, создаваемой в МКБ «Радуга», еще нет, но уже выбраны для нее носители. Их пока два. Ракетоносец Дальней авиации Ту-22М3М. И бомбардировщик фронтовой авиации Су-34.
А между тем «Известия» ранее сообщали, что в 2023 году на государственные испытания должна выйти еще одна ракета с ГПВРД — «Гремлин». Ее создает тоже МКБ «Радуга». Известно лишь, что она будет развивать скорость 6 М и иметь дальность порядка 1500 км. То есть это будет более дальнобойная ракета. И, судя по всему, она имеет более высокую степень готовности, чем «Острота».
Даёшь « гиперзвук» — или нет?
Что такое гиперзвук? Для начала определимся: правильно было бы сказать « гиперзвуковая скорость». Проблема в том, что слово « гиперзвук» обозначает также упругие волны, подобные просто звуковым и ультразвуковым. Но мы ведь имеем в виду аэродинамику и, чтобы не путаться в терминах, будем говорить « гиперзвуковая скорость».
В аэродинамике « гиперзвуковая скорость» значительно превосходит скорость звука — по аналогии со сверхзвуком, только ещё быстрее.
Где-то с семидесятых годов прошлого века устоялась следующая градация: до одного Маха — дозвуковая скорость, от одного до пяти Махов — сверхзвуковая, более пяти Махов — гиперзвук.
Число Маха ( М) в нашем контексте проще всего определить как отношение скорости тела к скорости звука в окружающей среде. Когда скорость летательного аппарата достигает М=1, это означает, что его скорость сравнялась со скоростью звука.
« Так в чём тогда соль?» — спросит внимательный читатель. Раз гиперзвука достигли в сороковых годах, и все баллистические ракеты его достигают — в чём тут интерес и новшество? Проблема в том, что ракеты пусть и развивают гиперзвуковую скорость, но летят в этот момент по баллистической траектории, активно не маневрируют и вообще лишний раз стараются не шелохнуться… это чревато катастрофой.
А вот создание крылатой ракеты или летательного аппарата, способного перемещаться на гиперзвуковых скоростях и маневрировать, стало серьёзнейшей задачей, над решением которой до сих пор бьются конструкторы и инженеры.
Гиперзвуковой летательный аппарат
Начнём с управляемости и создания пилотируемого летательного аппарата, способного двигаться на гиперзвуковой скорости, тормозить и осуществлять посадку.
Первыми этого добились американцы, создав в 1959 году самолёт-ракетоплан X-15. Само слово ракетоплан прозрачно намекает, что речь идёт о ракете с крылышками. Так и есть, X-15 — это глубокая переработка идей и чертежей немецких ракетчиков 1940-х годов. Многие параметры весьма схожи с ракетой « Фау-2». Зато у американцев внутри сидел пилот, а не банальная боеголовка.
X-15 стартовала из-под крыла стратегического бомбардировщика B-52 на высоте порядка 15 километров, затем запускался ракетный двигатель, поднимавший ракетоплан до практического потолка, после чего следовали баллистический спуск, торможение и посадка на аэродроме. Всего прошло чуть меньше двухсот полётов.
Так что гиперзвуковые скорости покорились человечеству почти шестьдесят лет назад.
Гиперзвуковой двигатель
Когда в настоящее время говорят о современных гиперзвуковых аппаратах, имеют в виду летательные аппараты, оснащённые гиперзвуковым прямоточным воздушно-реактивным двигателем.
Тут всё просто. Есть классический жидкостный ракетный двигатель, в котором топливо и окислитель « везутся с собой» в двух разных баках. Летательный аппарат может достигать гиперзвуковой скорости, но он, увы, дорогой, сложный и ОЧЕНЬ неэкономичный. На современных самолётах стоят турбореактивные двигатели. В них в качестве окислителя в процессе горения используется атмосферный воздух, за счёт чего они гораздо легче и экономичней ( по сравнению с ракетным двигателем, конечно). К сожалению, эти двигатели теряют эффективность на скоростях более М 3.
Для достижения максимальных сверхзвуковых скоростей используют прямоточный воздушно-реактивный двигатель. В нём нет турбины, и он малоэффективен на низких скоростях полёта, зато может достигать больших максимальных скоростей. Но даже с его помощью добраться до гиперзвуковой скорости нереально. Знаменитый Lockheed SR-71 имел именно такую схему: турбореактивный двигатель, способный на больших скоростях работать как прямоточный, однако и он достиг максимальной скорости лишь около 3,4 чисел Маха.
Для совершения дальних и экономичных атмосферных полётов на гиперзвуковой скорости создали гиперзвуковой прямоточный воздушно-реактивный двигатель. Он также использует в качестве окислителя атмосферный воздух. При этом воздух, поступающий в воздухозаборник, тормозится до сверхзвуковой скорости, участвует в процессе сгорания топлива и выходит через сопло, создавая реактивную тягу.
Проблема гиперзвука
Всё прекрасно, кроме одного: работает такой двигатель на скоростях выше шести-восьми чисел Маха. При меньшей скорости он просто не запустится, или двигатель сдетонирует. Узнать его можно по воздухозаборнику, больше похожему на модный ручной пылесос.
В настоящее время основная проблема конструкторов — преодоление « разрыва» между максимальной скоростью прямоточного воздушно-реактивного двигателя и минимальной скоростью работы гиперзвукового.
Есть различные разработки, в том числе и установка третьего « промежуточного» двигателя, который может обеспечить нужный разгон во время « разрыва». Впрочем, пока широкой публике сообщают только об испытаниях подобных двигателей.
В 1950–60-е годы существовали проекты ядерных прямоточных воздушно-реактивных двигателей, также обещавшие достижение скоростей в районе М 3 — М 4. Наиболее известен проект двигателя « Плутон» для Вот американцы, например, поставили реактор на крылатую ракету. Зачем, и что из этого вышло? Сейчас расскажем.
‘ title=>сверхзвуковой крылатой ракеты неограниченной дальности SLAM.
Противокорабельная ракета « Циркон»
До настоящего времени самой известной гиперзвуковой российской разработкой была противокорабельная ракета « Циркон». Точных данных нет, но скорее всего, она имеет гибридную силовую установку — ракетный двигатель, выводящий ракету на скорости работы гиперзвукового двигателя, — и ГПРВД ( гиперзвуковой прямоточный воздушно-реактивный двигатель), работающий большую часть времени полёта ракеты. В пользу этой версии говорит её шахтное размещение. Предполагается использовать « Циркон» на российских боевых кораблях и подлодках нового поколения.
Что характерно, несмотря на сообщения об удачных испытаниях, российскую ракету широкой публике так и не показали. Чаще всего для её иллюстрации использовали картинку с изображением американской разработки Boeing Х-51 ( да-да, тот самый автомобильный пылесос).
Подведение итогов
Противокорабельную ракету « « Кинжал»?’ data-src=/system/images/000/090/270/teaser/8c304c6eba70db2122965262ec751912fa78c4c7.jpg?1579248442 data-lead=’Ракетный комплекс « Кинжал» реален. Однако вопросы его происхождения остаются открытыми. Прототип ракеты уже удалось установить. Но что лежит в основе носителя? У нас есть одно предположение.
‘ title=>Кинжал», созданную на базе ракеты « Искандер», бессмысленно называть гиперзвуковой. Да, во время полёта она достигает скорости более пяти чисел Маха, но при этом летит по аэробаллистической траектории. Также нет смысла говорить о гиперзвуковой скорости, описывая стратегический ракетный комплекс « Сармат». Как и большинство баллистических ракет, он развивает гиперзвуковую скорость — и это нормально.
Битва за гиперзвук
Отдельно хочется отметить, что при проектировании сверхзвукового перехватчика МиГ-31 авиаконструктор Г.Е. Лозино-Лозинский использовал в конструкции планера передовые материалы (титан, молибден и др.), что позволило самолету достигнуть рекордной высоты пилотируемого полёта (МиГ-31Д) и максимальной скорости в 7000 км/час в верхних слоях атмосферы. В 1977 году летчик-испытатель Александр Федотов установил на его предшественнике МиГ-25 абсолютный мировой рекорд высоты полета – 37650 метров (для сравнения, у SR-71 максимальная высота полета составила 25929 метров). К сожалению, двигатели для полетов на больших высотах в условиях сильно разреженной атмосферы тогда ещё не были созданы, так как эти технологии только разрабатывались в недрах советских НИИ и КБ в рамках многочисленных экспериментальных работ.
Новым этапом в развитии технологий гиперзвука стали исследовательские проекты по созданию авиационно-космических систем, которые совмещали в себе возможности авиации (пилотаж и манёвр, посадка на ВПП) и космических аппаратов (выход на орбиту, орбитальный полет, спуск с орбиты). В СССР и США эти программы отработали частично, явив миру космические орбитальные самолёты «Буран» и «Спейс Шаттл».
Почему частично? Дело в том, что вывод летательного аппарата на орбиту осуществлялся с помощью ракеты-носителя. Стоимость вывода была огромной, порядка 450 миллионов долларов (по программе «Спейс Шаттл»), что в разы превышало стоимость самых дорогих гражданских и военных самолётов, не позволяло сделать орбитальный самолёт массовым изделием. Необходимость вложения гигантских средств в создание инфраструктуры, обеспечивающей сверхбыстрые межконтинентальные перелёты (космодромы, центры управления полётом, топливно-заправочные комплексы) окончательно похоронила перспективу пассажирских перевозок.
Единственным заказчиком, хоть как-то заинтересованным в гиперзвуковых аппаратах, остались военные. Правда, этот интерес носил эпизодический характер. Военные программы СССР и США по созданию авиационно-космических самолётов шли разными путями. Наиболее последовательно они были реализованы всё-таки в СССР: от проекта по созданию ПКА (планирующего космического аппарата) до МАКС (многоцелевая авиационная космическая система) и «Бурана» была выстроена последовательная и непрерывная цепочка научно-технических заделов, на основании которых создавался фундамент будущих экспериментальных полётов прототипов гиперзвуковых самолётов.
Ракетные КБ продолжали совершенствовать свои МБР. С появлением современных комплексов ПВО и ПРО, способных сбивать боевые части МБР на большом удалении, к поражающим элементам баллистических ракет стали предъявлять новые требования. Боеголовки новых МБР должны были преодолевать противовоздушную и противоракетную оборону противника. Так появились боевые части, способные преодолевать ВКО на гиперзвуковых скоростях (М=5-6).
Активизация геополитического соперничества США с Россией и Китаем реанимировала тему гиперзвука как перспективного инструмента, способного обеспечить преимущество в сфере космических и ракетно-авиационных вооружений. Повышение интереса к этим технологиям обусловлено и концепцией нанесения максимального ущерба противнику обычными (не ядерными) средствами поражения, которая фактически реализуется странами НАТО во главе с США.
Действительно, если в распоряжении военного командования будет хотя бы сотня гиперзвуковых аппаратов в неядерном оснащении, которые легко преодолевают существующие системы ПВО и ПРО, то этот «последний довод королей» напрямую влияет на стратегический баланс между ядерными державами. Мало того, гиперзвуковая ракета в перспективе может уничтожать элементы стратегических ядерных сил как с воздуха, так и из космоса в сроки не более часа от момента принятия решения до момента поражения цели. Именно такая идеология заложена в американской военной программе Prompt Global Strike (быстрый глобальный удар).
Осуществима ли подобная программа на практике? Аргументы «за» и «против» разделились примерно поровну. Давайте разберёмся.
Американская программа Prompt Global Strike
Первым направлением PGS, и наиболее реалистичным с технической точки зрения, стало использование МБР с высокоточными неядерными боевыми блоками, в том числе с кассетными, которые оснащаются набором самонаводящихся суббоеприпасов. В качестве отработки этого направления была выбрана МБР морского базирования Trident II D5, доставляющая поражающие элементы на максимальную дальность 11300 километров. В данное время идут работы по снижению КВО боеголовок до значений в 60-90 метров.
Вторым направлением PGS выбраны стратегические гиперзвуковые крылатые ракеты (СГКР). В рамках принятой концепции реализуется подпрограмма X-51A Waverider (SED-WR). По инициативе ВВС США и поддержке DARPA с 2001 года разработку гиперзвуковой ракеты ведут фирмы Pratt & Whitney и Boeing.
Первым результатом проводящихся работ должно стать появление к 2020 году демонстратора технологий с установленным гиперзвуковым прямоточным воздушно-реактивным двигателем (ГПВРД). По оценкам экспертов СГКР с этим двигателем может иметь следующие параметры: скорость полёта М = 7–8, максимальная дальность полета 1300-1800 км, высота полета 10-30 км.
В мае 2007 года после детального рассмотрения хода работ по X-51A «WaveRider» военные заказчики утвердили проект ракеты. Экспериментальная СГКР Boeing X-51A WaveRider представляет собой классическую крылатую ракету с подфюзеляжным ГПВРД и четырехконсольным хвостовым оперением. Материалы и толщина пассивной теплозащиты выбирались в соответствии с расчетными оценками тепловых потоков. Носовой модуль ракеты выполнен из вольфрама с кремниевым покрытием, который выдерживает кинетический нагрев до 1500°С. На нижней поверхности ракеты, где ожидаются температуры до 830°С, используются керамические плитки, разработанные Boeing ещё для программы «Спейс Шаттл». Ракета X-51A должна отвечать высоким требованиям по малозаметности (ЭПР не более 0,01 м2). Для разгона изделия до скорости, соответствующей M = 5 планируется установка тандемного ракетного ускорителя на твердом топливе.
В качестве основного носителя СГКР предполагается использовать самолеты стратегической авиации США. Пока нет сведений о том, как будут размещаться эти ракеты – под крылом или внутри фюзеляжа «стратега».
Теоретическое обоснование дало старт проектам двух гиперзвуковых аппаратов (Falcon HTV-2 и AHW), которые будут запускаться на орбиту ракетами-носителями и в боевом режиме смогут планировать в атмосфере с наращиванием скорости при подлёте к цели. Пока эти разработки находятся на стадии эскизного проектирования и экспериментальных пусков. Основными проблемными вопросами пока остаются системы базирования в космосе (космические группировки и боевые платформы), системы высокоточного наведения на цель и обеспечение скрытности выведения на орбиту (любой запуск и орбитальные объекты вскрываются российскими системами предупреждения о ракетном нападении и контроля космического пространства). Проблему скрытности американцы надеются решить после 2019 года, с запуском в эксплуатацию многоразовой авиационной космической системы, которая будет выводить полезную нагрузку на орбиту «по самолётному», посредством двух ступеней – самолёта-носителя (на основе Боинг 747) и беспилотного космического самолёта (на основе прототипа аппарата Х-37В).
Китайский проект гиперзвукового самолёта DF-ZF
27 апреля 2016 года американское издание «Washington Free Beacon» со ссылкой на источники в Пентагоне сообщило миру о седьмом испытании гиперзвукового китайского летательного аппарата DZ-ZF. Летательный аппарат был запущен с космодрома Тайюань (провинция Шаньси). По данным газеты самолёт совершал манёвры на скорости от 6400 до 11200 км/ч, и упал на полигоне в Западном Китае.
Несмотря на многочисленные публикации иностранных СМИ о том, что китайский гиперзвуковой летательный аппарат (ГЛА) предназначен для поражения американских авианосцев, китайские военные эксперты отнеслись к таким заявлениям скептически. Они указали на общеизвестный факт, что сверхзвуковая скорость ГЛА создаёт вокруг аппарата облако плазмы, которое мешает работе бортовой РЛС при корректировке курса и наведении на такую подвижную цель, как авианосец.
Как заявил в интервью China Daily профессор Командного колледжа ракетных войск НОАК полковник Шао Юнлин: «Сверхвысокая скорость и дальность делает его (ГЛА) превосходным средством уничтожения наземных целей. Он, в перспективе, может заменить межконтинентальные баллистические ракеты».
В СССР работы над гиперзвуковым самолётом начались в ОКБ Туполева в середине 1970-х годов, на основе серийного пассажирского самолёта Ту-144. Проводилось исследование и проектирование самолёта, способного развивать скорость до М=6 (ТУ-260) и дальностью полёта до 12000 км, а также гиперзвукового межконтинентального самолёта ТУ-360. Его дальность полёта должны была достигать 16000 км. Был даже подготовлен проект пассажирского гиперзвукового самолёта Ту-244, рассчитанного на полёт на высоте 28-32 км со скоростью М=4,5-5.
В феврале 1986 года в США начался НИОКР по создание космоплана Х-30 с воздушно-реактивной силовой установкой, способного выходить на орбиту в одноступенчатом варианте. Проект National Aerospace Plane (NASP), отличался обилием новых технологий, ключевой из которых был двухрежимный гиперзвуковой прямоточный воздушно-реактивный двигатель, позволяющий летать на скоростях М=25. По полученным разведкой СССР сведениям, NASP прорабатывался для гражданских и военных целей.
Ответом на разработку трансатмосферного X-30 (NASP) стали постановления правительства СССР от 27 января и 19 июля 1986 о создании эквивалента американскому воздушно-космическому самолёту (ВКС). 1 сентября 1986 года Министерство обороны выпустило техническое задание на одноступенчатый многоразовый воздушно-космический самолет (МВКС). По этому техзаданию МВКС должен был обеспечить эффективную и экономичную доставку на околоземную орбиту грузов, высокоскоростную трансатмосферную межконтинентальную транспортировку, решение военные задач, как в атмосфере, так и в ближнем космическом пространстве. Из представленных на конкурс работ ОКБ Туполева, ОКБ Яковлева и НПО «Энергия» одобрение получил проект Ту-2000.
В результате предварительных исследований по программе МВКС выбиралась силовая установка на основе отработанных и проверенных решений. Существующие воздушно-реактивные двигатели (ВРД), использовавшие атмосферный воздух, имели ограничения по температуре, они использовались на самолётах, скорость которых не превышала М=3, а ракетные двигатели должны были нести большой запас топлива на борту и не годились для продолжительных полётов в атмосфере. Поэтому было принято важное решение – чтобы самолёт мог летать на сверхзвуковых скоростях и на всех высотах, его двигатели должны иметь черты и авиационной, и космической техники.
Из-за сложности решения комплекса научно-технических и технологических задач по созданию одноступенчатого МВКС программа была разбита на два этапа: создание экспериментального гиперзвукового самолета со скоростью полета до М=5-6, и разработка прототипа орбитального ВКС, обеспечивающего проведение лётного эксперимента во всём диапазоне полетов, вплоть до выхода в космос. Помимо этого на втором этапе работ МВКС намечалось создать варианты космического бомбардировщика Ту-2000Б, который проектировался как двухместный самолёт с дальностью полёта 10000 км и взлетным весом 350 тонн. Шесть двигателей с питанием на жидком водороде должны были обеспечить скорость М=6-8 на высоте в 30-35 км.
По данным специалистов ОКБ им. А.Н.Туполева, стоимость постройки одного ВКС должна была составить около 480 млн. долларов, в ценах 1995 года (при затратах на ОКР 5,29 млрд. долларов). Предполагаемая стоимость запуска должна была составить 13,6 млн. долларов, при количестве 20 пусков в год.
Первый раз макет самолета Ту-2000 был показан на выставке «Мосаэрошоу-92». До остановки работ в 1992 году, для Ту-2000 были изготовлены: кессон крыла из никелевого сплав, элементы фюзеляжа, криогенные топливные баки и композитные топливопроводы.
Давний «конкурент» по стратегическим летательным аппаратам ОКБ им. Туполева – Экспериментальный машиностроительный завод (сейчас ЭМЗ им. Мясищева) также занимался разработками одноступенчатого ВКС в рамках НИОКР «Холод-2». Проект получил название «М-19» и предусматривал проработку по следующим темам:
Тема 19-1. Создание летающей лаборатории с силовой установкой на жидком водородном топливе, отработка технологии работ с криогенным топливом;
Тема19-2. Проектно-конструкторские работы по определению облика гиперзвукового самолета;
Тема 19-3. Проектно-конструкторские работы по определению облика перспективного ВКС;
Тема 19-4. Проектно-конструкторские работы по определению облика альтернативных вариантов
ВКС с ядерной двигательной установкой.
Работы по перспективному ВКС проводились под непосредственным руководством Генерального конструктора В.М. Мясищева и Генерального конструктора А.Д. Тохунца. Для выполнения составных частей НИОКР были утверждены планы совместных работ с предприятиями МАП СССР, в том числе: ЦАГИ, ЦИАМ, НИИАС, ИТПМ и многими другими, а также с НИИ Академии наук и Министерства обороны.
Облик одноступенчатого ВКС М-19 определился после исследования многочисленных альтернативных вариантов аэродинамической компоновки. В части исследований характеристик силовой установки нового типа проводились испытания моделей ГПВРД в аэродинамических трубах на скоростях, соответствующих числам М=3-12. Для оценки эффективности будущего ВКС были также проработаны математические модели систем аппарата и комбинированной силовой установки с ядерным ракетным двигателем (ЯРД).
Комбинированная двигательная установка (КДУ) включала в себя:
В качестве топлива для ДТРДФ и ГПВРД использовался водород, он же являлся и рабочим телом в замкнутом контуре ЯРД.
В завершенном виде концепция М-19 выглядела так: взлет и первоначальный разгон 500-тонный ВКС совершает как атомный самолёт с двигателями замкнутого цикла, причем в качестве теплоносителя, передающего тепло от реактора к десяти турбореактивным двигателям, служит водород. По мере разгона и набора высоты, водород начинает подаваться в форсажные камеры ТРД, чуть позже в прямоточные ГПРВД. Наконец, на высоте 50 км, при скорости полёта более 16М, включается атомный ЯРД с тягой 320 тс, который обеспечивал выход на рабочую орбиту высотой 185-200 километров. При взлетной массе около 500 тонн ВКС М-19 должен был выводить на опорную орбиту с наклонением 57,3° полезную нагрузку массой порядка 30-40 тонн.
Необходимо отметить малоизвестный факт, что при расчетах характеристик КДУ на турбопрямоточном, ракетно-прямоточном и гиперзвуковом режимах полета использовались результаты экспериментальных исследований и расчетов, проведенных в ЦИАМ, ЦАГИ и ИТПМ СО АН СССР.
Работы по созданию гиперзвукового самолёта проводились и в СКБ «Нева» (г. Санкт-Петербург), на основе которого было образовано Государственное научно-исследовательское предприятие гиперзвуковых скоростей (ныне ОАО «НИПГС» ХК «Ленинец»).
Предполагалось, что маршевый МПХД будет способен изменять скорость полёта в широком диапазоне полетного числа Маха. За счет торможения гиперзвукового потока магнитным полем создавались оптимальные условия в сверхзвуковой камере сгорания. При испытаниях в ЦАГИ было выявлено, что созданное в рамках концепции «Аякс» углеводородное топливо сгорает в несколько раз быстрее, чем водород. МГД-ускоритель мог «разгонять» продукты сгорания, увеличивая максимальную скорость полета до М=25, что гарантировало выход на околоземную орбиту.
Российская концепция гиперзвука – ракеты и ПАК ДА
Работы, проведенные в СССР и в первые годы существования новой России по гиперзвуковым технологиям позволяют утверждать, что оригинальная отечественная методология и научно-технический задел сохранены и задействованы для создания российских ГЛА – как в ракетном, так и самолётном исполнении.
Судя по ТТХ этой ракеты, стратегический бомбардировщик Ту-160 может брать на борт две Х-90. Остальные же характеристики выглядят так: масса ракеты — 15 тонн, маршевый двигатель — ГПВРД, ускоритель — РДТТ, скорость полета – 4-5 М, высота пуска – 7000 м, высота полёта – 7000-20000 м, дальность пуска 3000-3500 км, число боеголовок — 2, мощность боеголовки — 200 кт.
В споре о том, что лучше самолёт или ракета, чаще всего проигрывали самолёты, так как ракеты оказывались быстрее и результативнее. А самолёт стал носителем крылатых ракет, способных поражать цели на расстоянии 2500-5000 км. Запуская ракету по цели, стратегический бомбардировщик не заходил в зону противодействующей ПВО, поэтому делать его гиперзвуковым не имело смысла.
Оценим ситуацию. На вооружении дальней авиации, входящей в ВКС России, состоят 60 турбовинтовых самолётов Ту-95МС и 16 реактивных бомбардировщиков Ту-160. Срок службы Ту-95МС истекает через 5-10 лет. Министерство обороны приняло решение об увеличение количества Ту-160 до 40 единиц. Ведутся работы по модернизации Ту-160. Таким образом, в ВКС скоро начнут поступать новые Ту-160М. ОКБ Туполева также является основным разработчиком перспективного авиационного комплекса дальней авиации (ПАК ДА).
Наш «вероятный противник» не сидит, сложа руки, он вкладывает деньги в развитие концепции Prompt Global Strike (PGS). Возможности военного бюджета США по объёму финансирования значительно превышают возможности бюджета России. Министерство финансов и Министерство обороны спорят о размере финансирования Госпрограммы вооружений на период до 2025 года. И речь идёт не только о текущих расходах на закупку нового ВВТ, но и о перспективных разработках, к которым относятся ПАК ДА и технологии ГЛА.
В создании гиперзвуковых боеприпасов (ракеты или снаряда) не всё однозначно. Явное преимущество гиперзвука – скорость, короткое время подлёта к цели, высокая гарантия преодоления систем ПВО и ПРО. Однако немало и проблем – дороговизна одноразового боеприпаса, сложность управления при изменении траектории полёта. Эти же недостатки стали решающими аргументами при сокращении или закрытии программ по пилотируемому гиперзвуку, то есть по гиперзвуковым самолётам.
Появление в арсенале любой армии гиперзвуковой зенитной ракеты (ГЗР) вынудит стратегическую авиацию «прятаться» на аэродромах, т.к. максимальное расстояние, с которого могут применяться крылатые ракеты бомбардировщика, такие ГЗР преодолеют за несколько минут. Повышение дальности, точности и манёвренности ГЗР позволит им сбивать МБР противника на любых высотах, а также срывать массированный налёт стратегических бомбардировщиков до выхода их на рубежи пуска крылатых ракет. Пилот «стратега», возможно и обнаружит запуск ГЗР, но увести самолёт от поражения вряд ли успеет.
Курс на «сдерживание» России, провозглашенный главной задачей НАТО, объективно способен привести к агрессии против нашей страны, в которой будут участвовать подготовленные и вооружённые современными средствами армии «Североатлантического договора». По количеству личного состава и вооружений НАТО превосходит Россию в 5–10 раз. Вокруг России выстраивается «санитарный пояс», включающий военные базы и позиции ПРО. По сути, проводимые НАТО мероприятия в военных терминах описывается как оперативная подготовка театра военных действий (ТВД). При этом главным источником поставок вооружений остаётся США, как было и в Первую, и Второю мировые войны.
Гражданский ГЛА может стать технической основой прорыва в развитии межконтинентальных перелётов и космических технологий. Научно-технический задел проектов Ту-2000, М-19 и «Аякс» по-прежнему актуален и может быть востребован.
«Кто ещё до сражения побеждает предварительным расчетом, у того шансов много. Кто ещё до сражения не побеждает расчетом, у того шансов мало. У кого шансов много – побеждает. У кого шансов мало – не побеждает. Тем более тот, у кого шансов нет вовсе». /Сунь Цзы, «Искусство войны»/