Что идет после клетки

Жизнедеятельность клетки. Деление и рост клетки

Урок 2. Биология. Сложные вопросы. Ботаника

Что идет после клетки

Что идет после клетки

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Что идет после клетки

Что идет после клетки

Что идет после клетки

Конспект урока «Жизнедеятельность клетки. Деление и рост клетки»

Вы уже знаете, что всё пространство клетки заполнено бесцветным вязким веществом – цитоплазмой. Она находится в постоянном движении. Движение цитоплазмы способствует перемещению в клетках питательных веществ и воздуха. Чем активнее жизнедеятельность клетки, тем больше скорость движения цитоплазмы. Если клетку сильно нагреть или заморозить, то цитоплазма разрушается, и клетка погибает.

Цитоплазма одной живой клетки обычно не изолирована от цитоплазмы других живых клеток, расположенных рядом. Нити цитоплазмы (плазмодесмы) соединяют соседние клетки, проходя через клеточные стенки.

Что идет после клетки

Растения имеют клеточное строение, так как их органы состоят из клеток. А каждая клетка – это микроскопически малая составная часть растения.

Каждая живая клетка дышит, питается, выделяет ненужные ей вещества, реагирует на воздействие внешней среды, в течение определённого времени растёт и размножается.

Клетки в процессе жизни потребляют различные вещества – воду, кислород, углекислый газ, органические и неорганические соединения. Они поступают в клетку в виде растворов и необходимы клетке для питания, дыхания и роста. А само растение получает необходимые вещества из воздуха и почвы.

Поступление веществ в клетку и их переработка называется питанием. В клетке из поступивших простых неорганических веществ образуются сложные вещества (белки, жиры и углеводы). Эти вещества идут на образование ядра, цитоплазмы и других частей клетки.

Фотосинтез – это сложный процесс, который происходит только в хлоропластах клеток растений только на свету. Более подробно мы рассмотрим этапы фотосинтеза при изучении отдельной темы. А сейчас запишем уравнение фотосинтеза – это процесс образования из двух неорганических веществ (углекислого газа и воды) органического вещества глюкозы. В результате фотосинтеза происходит выделение в окружающую среду кислорода. Фотосинтез происходит только на свету.

Что идет после клетки

Часть образованных питательных веществ идёт на построение клетки, а другая часть расходуется на получение энергии.

Дыхание происходит в живых клетках в течение всей их жизни. Растения – аэробные организмы (аэробы) – они используют для клеточного дыхания кислород.

Внутри клетки кислород вступает в реакции с органическими веществами. При этом происходят химические реакции, в результате которых сложные органические вещества превращаются в неорганические (воду и углекислый газ) и выделяется энергия. Такой процесс называется дыханием. Высвобождаемая энергия запасается в молекулах АТФ (аденозинтрифосфорной кислоты) – сложного химического соединения. Энергия нужна для обеспечения процессов жизнедеятельности – движения цитоплазмы, превращения одних веществ в другие.

Что идет после клетки

Заполним таблицу, в которой сравним процессы клеточного дыхания и фотосинтеза, используя следующие показатели: время суток, в которое происходит процесс; вещества, служащие исходным материалом; образующиеся вещества; тип используемой энергии. Клеточное дыхание происходит всегда, фотосинтез – только днём. Для клеточного дыхания необходимы органические вещества и кислород, для фотосинтеза – углекислый газ и вода. В результате дыхания образуются углекислый газ и вода, а в результате фотосинтеза – глюкоза и кислород. Для дыхания используется энергия химических связей, а при фотосинтезе – световая энергия.

Что идет после клетки

В течение жизни в клетке образуются ненужные вещества (избыток воды и солей, конечные продукты обмена). Все они выделяются в окружающую среду. Процесс освобождения организма от данных веществ называется выделением или экскрецией.

Одно из главных свойств живых систем – постоянный обмен веществ и энергии с окружающей средой. В клетках непрерывно идут процессы синтеза (пластический обмен, ассимиляция), то есть из простых неорганических соединений (углекислого газа, воды, минеральных солей) образуются сложные органические вещества (белки, жиры и углеводы). Все процессы синтеза идут с затратами энергии.

Примерно с такой же скоростью идёт энергетический обмен (диссимиляция). Это процесс расщепления сложных органических веществ до более простых соединений, сопровождающийся выделением энергии. Конечные продукты энергетического обмена: углекислый газ, вода и аммиак.

Совокупность реакций пластического и энергетического обмена, лежащих в основе жизнедеятельности и обуславливающих связь организма с окружающей средой, называется обменом веществ (или метаболизмом).

Заполним схему взаимосвязи обмена веществ и превращения энергии в организме. В ходе энергетического обмена сложные органические вещества расщепляются до конечных продуктов обмена и высвобождается энергия.

В результате пластического обмена происходит образование сложных органических веществ. При этом происходит поглощение энергии, которая образована в результате реакций энергетического обмена. Часть энергии расходуется на процессы жизнедеятельности.

Получается, что пластический и энергетический обмены неразрывно связаны. Они являются противоположными сторонами единого процесса обмена веществ.

Вещества, которые образуются в ходе энергетического обмена, могут использоваться в пластическом обмене для образования сложных органических соединений. И наоборот.

В молодых клетках преобладает процесс пластического обмена, в результате чего обеспечивается накопление веществ, рост и развитие. В старых клетках преобладает процесс энергетического обмена.

Что идет после клетки

Жизнь клетки с момента её образования в процессе деления материнской клетки до собственного деления (включая это деление) или гибели называется клеточным циклом. В течении этого цикла каждая клетка растёт и развивается таким образом, чтобы успешно выполнять свои функции в организме. В процессе жизни клетки растут и увеличиваются в размерах. Молодые растительные клетки содержат много мелких вакуолей, которые растут и в результате сливаются, заполняя практически весь объем клетки.

Что идет после клетки

У разных видов живых организмов клеточный цикл, во время которого клетка выполняет свои функции, занимает разное время: например, у бактерий он длится около 20 минут, у инфузории-туфельки – от 10 до 20 часов. Клетки многоклеточных организмов на ранних стадиях развития делятся часто, а затем клеточные циклы удлиняются.

Жизнь клетки включает два периода: деление, в результате которого образуются две дочерние клетки, – митоз; период между двумя делениями, который носит название интерфазы. Рассмотрим поближе данные периоды.

Интерфаза – промежуток клеточного цикла между двумя делениями. Вспомним, что в ядре находятся тельца цилиндрической формы – хромосомы. Они передают наследственные признаки от клетки к клетке. В течение всей интерфазы хромосомы деспирализованы (раскручены), они находятся в ядре клетки в виде нитей. В этот период клетка растёт и выполняет свои функции. Происходит обмен веществ, синтез белков и АТФ. Происходит удвоение числа хромосом, соответственно и генетического материала в клетке. При этом образуются два набора хромосом, несущие одинаковую информацию о жизненных процессах.

Что идет после клетки

Размножение клеток – это увеличение их количества. Новые клетки возникают в результате деления уже существующих клеток. Размножение является одним из обязательных свойств живого.

Для эукариотических клеток характерен митоз, в результате которого из одной материнской клетки образуются две дочерние с таким же набором хромосом. Сейчас мы с вами рассмотрим последовательные фазы митоза. Их четыре: профаза, метафаза, анафаза и телофаза.

Что идет после клетки

В метафазе завершается формирования веретена деления. Хромосомы располагаются упорядоченно в экваториальной плоскости клетки. Образуется метафазная пластинка. В эту фазу можно легко посчитать количество хромосом в клетке и изучить их строение.

В анафазе нити веретена деления укорачиваются, в результате чего хроматиды каждой хромосомы отделяются друг от друга и расходятся к противоположным полюсам клетки.

В телофазе хромосомы оказываются у полюсов клетки и деспирализуются (раскручиваются). Вокруг ядерного материала каждого полюса формируются ядерные оболочки. В двух образовавшихся ядрах образуются ядрышки. Нити веретена деления разрушаются.

На этом деление ядра заканчивается, и начинается деление клетки надвое. В экваториальной плоскости клеток растений из содержимого пузырьков комплекса Гольджи образуется срединная пластинка, которая разделяет две дочерние клетки, являющиеся копиями друг друга и исходной материнской клетки. С момента разделения дочерних клеток каждая из них вступает в интерфазу нового клеточного цикла.

Биологическое значение митоза заключается в том, что он обеспечивает передачу наследственных признаков и свойств от клетки к клетке, что необходимо для нормального развития многоклеточного организма. Митоз обуславливает важнейшие процессы жизнедеятельности – рост, развитие, восстановление повреждённых частей растения. Митотическое деление лежит в основе бесполого размножения многих живых организмов.

Клеточная гибель бывает двух видов: некроз и апоптоз. Рассмотрим, в чём же их отличия.

Что идет после клетки

Некроз – отмирание клеток, которое вызвано действием повреждающих факторов (низкие или высокие температуры, химические вещества, ионизирующие излучения). В повреждённых клетках нарушается проницаемость мембран, прекращается образование белков и другие процессы обмена веществ, происходит разрушение ядра, органоидов и, наконец, всей клетки.

Апоптоз – запрограммированная гибель клеток, которая регулируется организмом. От своего образования в результате деления до апоптоза клетки проходят определённое количество клеточных циклов.

Источник

Деление клетки

Что такое деление клетки

Деление клетки – важнейший биологический процесс, без него невозможно существование живых организмов. Доказано, что клетки всех живых организмов сходны по строению и химическому составу. Путем деления исходной клетки увеличивается число вновь образовавшихся клеток. Клетка – это наименьшая единица строения любого живого организма. Из нее состоят ткани и органы.

Клетка растет, развивается, она способна к самостоятельному воспроизведению. Для клетки свойственно протекание таких процессов, как метаболизм, раздражение, саморегуляция.

Клетка существует с момента ее появления в результате деления и до ее окончательной гибели или последующего деления. Это время называется клеточным циклом. На длительность цикла влияет тип клетки и условия внешней среды. Промежуток между делениями клеток называют интерфазой.

Для прокариотов, или простейших организмов, характерно отсутствие ядра. Им присуще бинарное деление клеток, то есть деление клетки пополам с копированием ДНК, находящегося в цитоплазме. ДНК, или дезоксирибонуклеиновая кислота, это сложная уникальная молекула, хранящая в себе наследственную информацию об организме в виде генетического кода.

Для эукариотических организмов характерно наличие клеток с одним или несколькими ядрами. Ядро – важнейший компонент клетки, состоящий из ядерной оболочки, ядрышка, хроматина и кариоплазмы. Ядрышко синтезирует рибосомы. В нем сосредоточено наибольшее количество белка в клетке.

Особенности деления клеток

Что идет после клетки

Эукариотические клетки с образованием хромосом способны делиться только двумя способами: митозом и мейозом. Хромосомами называют совокупность органоидов клеточного ядра, определяющих наследственные свойства клеток и живых организмов.

Все клетки можно разделить на 2 группы в зависимости от хромосомного набора, содержащегося в ядре:

Совокупность хромосом, которые содержатся в ядре, это хромосомный набор. Число хромосом в клетке одинаково для каждого вида живых организмов. Так, у клеток человека этот показатель составляет 46.


Первый способ деления — митоз

Митоз («нить») – наиболее распространенный (непрямой) способ деления клеток по сравнению с мейозом. Его также называют кариокинезом, или непрямым делением. Митоз – способ деления ядер эукариотических клеток, при котором сохраняется постоянным число хромосом.

С помощью митоза делятся соматические клетки многоклеточных животных, кроме половых клеток.

При делении этим способом материнская клетка делится на дочерние клетки, которые не отличаются от нее генетически, то есть наследственной информацией.

Процесс деления клетки с помощью митоза называют митотическим. Клеточный цикл состоит из митотического цикла и периода покоя. Митотический цикл состоит из интерфазы и митотического деления.

Что идет после клеткиThe study made the unexpected finding that in certain forms of replication stress, an active checkpoint actually allows cells to divide, causing worse damage than if it were missing entirely, said USC expert Susan Forsberg. (Illustration/iStock)

Интрефаза длится по времени намного дольше по сравнению с митотическим делением. Во время этой стадии происходит рост клетки, синтез белка и органических веществ, а также накопление веществ, необходимых для деления клетки. Интерфаза может длиться от нескольких минут до нескольких дней. Она состоит из 3 фаз:

В целом процесс митотического деления длится от нескольких минут до нескольких часов в зависимости от вида живого организма. Правильное протекание митоза возможно без внешнего вредного воздействия, например, излучения рентгена, попадания этилового спирта. Неблагоприятные факторы могут привести к нарушениям в процессе распределения хромосом или даже полной гибели клетки.

Фазы митоза

Хроматин перед началом деления преобразуется в хромосомы в форме нитей. Всего выделяют несколько фаз митоза в зависимости от внешнего вида и состояния хромосомы. Их называют профазой, метафазой, анафазой, телофазой.


Второй способ деления клетки — мейоз

Мейоз («уменьшение»), или прямое деление. Он еще носит название редукционного деления. Оно представляет собой деление ядра клетки эукариотического организма, при котором общая численность хромосом сокращается вдвое. Дочерние клетки, получившиеся при этом делении, названы гаметами. Они наследуют половину наследственной информации от родительской клетки, и численность хромосом соответственно снижается в два раза.

Что идет после клетки

Необходимо понимать, в чем заключается различие диплоидной и гаплоидной клеток. Как известно, плоидность – количество одинаковых наборов хромосом, находящихся в ядрах клеток организма. В диплоидной клетке имеется основной набор хромосом – от каждой материнской клетки присутствует один набор. При слиянии клеток хромосомы не накапливаются. После деления диплоидных клеток в ядре новых клеток оказывается уже один набор хромосом. Для гаплоидной клетки характерно содержание всего одного набора хромосом. Она образуется из диплоидной путем митотического деления.


Фазы мейоза

Этот способ состоит из двух следующих друг за другом делений с короткой интерфазой между ними. Это приводит к тому, что из одной диплоидной клетки формируются четыре клетки гаплоидные. Восстановление плоидности происходит в результате оплодотворения.

Непосредственно мейоз состоит из мейоза I и мейоза II. В очень короткой интерфазе между этими стадиями деления происходит удвоение ДНК. Далее происходит образование четырех дочерних клеток. Фазы мейоза I схожи с фазами, протекающими при митозе.

Мейоз II, иди эквационное деление, имеет те же самые фазы:


Отличие мейоза от митоза


Биологическая роль деления клетки

Деление клетки – очень важный и значимый процесс, лежащий в основе роста, развития и размножения организмов. Главной особенностью живых организмов является их способность к росту.

Отдельно стоит отметить биологическое значение процессов митоза и мейоза.

Что идет после клетки

Биологическая роль митоза:

Биологическое значение мейоза:

Источник

Деление клетки: мейоз — фазы и биологическое значение

Что идет после клетки

В этой статье мы разберемся, что такое мейоз и через какие фазы он проходит. Поймем какой хромосомный набор на каждом этапе такого деления и что обозначают все эти n и c. А самое главное — какое биологическое значение у мейоза. В конце сравним его с митозом, выявим сходства и различия между ними.

Что же такое мейоз?

Мейоз — это способ деления клетки. Его еще называют редукционным делением, потому что из одной диплоидной клетки получается четыре гаплоидных, то есть происходит уменьшение хромосом в два раза.

Какие клетки могут так делиться? Эукариотические, но не все, а только избранные. Прежде всего, это предшественники половых клеток человека — сперматоциты и овоциты (или ооциты). Ещё таким способом образуются споры у высших растений.

Хромосомный набор

Начнем с хромосомы. Представьте себе мешок с картошкой. Вот хромосома — это такой мешок, только вместо картошки в ней длинная молекула ДНК, которая связана с белками — гистонами и негистонами.

Всего у нас 46 хромосом или 23 пары. Почему пары? Дело в том, что у каждой хромосомы есть своя сестричка — двойняшка (гомолог). Вроде они и очень похожи, но разница есть. Они содержат похожие молекулы ДНК, но не такие же! Гомологичные хромосомы могут содержать немного разные нуклеотидные последовательности, а значит по-разному проявляют признаки.

Когда у каждой хромосомы есть своя пара, то это диплоидный набор — 46 хромосом. Если пары нет, то это гаплоидный набор — 23 хромосомы.

n — это число хромосом. У каждой есть своя пара, значит всего 2n.

c — это число молекул ДНК, в одной хромосоме одна молекула. Всего молекул = 2c

Редукционный этап или первое деление мейоза

Его суть — изменение числа хромосом внутри клетки. То есть из одной диплоидной (2n4c) клетки получаем две гаплоидных (1n2c). Так стоп, откуда 4c? До этого же было 2n2c. Ах да… Сейчас разберемся.

Интерфаза

Перед вступлением в мейоз клетка проходит через интерфазу. Ей нужно подготовиться к делению — запасти энергетических субстратов (АТФ), синтезировать необходимые белки и удвоить количество молекул ДНК. Еще в интерфазу происходит удваивание центромер.

В интерфазу произошла репликация ДНК — образовалась идентичная цепь. Но эти две цепи, или хроматиды, связаны между собой при помощи центромеры, значит количество хромосом такое же. Итого набор — 2n4c

Ну вы ведь понимаете, что таким образом реплицируются все 46 хромосом. Просто удобнее показать на паре. Помните, что все 23 пар вступают в мейоз, а не только одна. После репликации начинается собственно мейоз, а именно его первая фаза:

Профаза мейоза I

Лептотена

Какая основная задача у клетки? Правильно, передать генетический материал своим потомкам. Поэтому она начинает упаковывать молекулы ДНК как можно плотнее, она собирает чемодан, ведь не хочет ничего не потерять в пути. Этот процесс называется спирализация или конденсация хромосомы. Клетка так старается, что невидимые раньше в микроскоп хромосомы становятся видимыми. Они похожи на длинные и тонкие нити.

Зиготена

Здесь происходит конъюгация хромосом — их сближение с образованием бивалентов. Связь обеспечивает синаптонемальный комплекс — он удерживает гомологичные хромосомы рядом это необходимо для запуска кроссинговера на следующем этапе.

Связи между хромосомами могут иметь разный вид, но они должны быть. Если в клетке останутся хромосомы, которые не сблизились, то она запускает апотоз и погибает. Клетка — с заботой о будущих поколениях!

Пахитена

Начинается с еще большей конденсации хромосом, они становятся короче и толще. Но в местах образования синаптонемальных комплексов происходит частичное раскручивание (деконденсация) хромосом.

Все это для начала кроссинговера — обмена участками ДНК у гомологичных хромосом. Обмен обеспечивает перекомбинацию генетического материала. Если бы мы могли рассоединить хромосомы сразу после кроссинговера, то увидели примерно такую картину:

Что идет после клеткиСхема. Кроссинговер.

В конце пахитены мостики между хромосомами разрушаются, они начинают отдаляться друг от друга.

Диплотена

Хромосомы расходятся в области центромер, но остаются связаны между собой в местах кроссинговера — перекрестах или хиазмах. В микроскоп можно увидеть все четыре хроматиды, так сильно они упаковались (спирализовались).

Диакинез

Хромосомный набор в конце профазы I

Метафаза мейоза I

В этой фазе заканчивается образование веретена деления. Нити веретена прикрепляются к центромерам и начинают притягивать хромосомы, из-за этого они располагаются на экваторе клетки.

Набор в метафазе I

Анафаза мейоза I

Нити веретена деления продолжают тянуть хромосомы на себя — они расходятся к полюсам клетки. На полюсах клетки располагается по 23 хромосомы, но они все еще состоят из двух нитей ДНК.

n2c у полюсов, но вся клетка 2n4c

Телофаза мейоза I

Образование двух гаплоидных клеток — n2c

Результат редукционного деления

Второй этап мейоза — эквационный

Начинается сразу же после первого. Эквация — это уравнивание. Так что задача клетки на этом этапе — сделать так, чтобы в одной хромосоме была одна молекула ДНК.

Он похож на митоз, здесь к полюсам клетки отправятся хроматиды, а не целые хромосомы и мы получим из каждой клетки по две — с набором nc.

Протекает он через такие же фазы, но с одним исключением. Здесь не будет интерфазы — клетка уже готова к делению, она запасла энергетические субстраты и белки ещё перед началом первого деления. Поэтому сразу начинается профаза II.

Профаза мейоза II

Клетка уже сделала свою работу — упаковала генетический материал как можно лучше. Ей ничего не нужно делать, ну почти. Разве что растворить ядерные оболочки и достроить веретено деления. Этим она и займется.

Вы конечно понимаете, что вторая клетка идет по такому же пути. Просто мне лень рисовать сразу две.

Набор в профазу II

Метафаза мейоза II

Прикрепление нитей веретена деления к центриолям — хромосомы снова на экваторе клетки.

Анафаза мейоза II

Торжественный момент — сейчас наши хроматиды станут полноценными хромосомами. Каждая разойдется к своему полюсу.

Поздравляем, ох уж эти хроматиды, они так быстро растут…

У полюсов — nc, всего 2n2c, так как каждая хроматида теперь — это полноценная хромосома.

Набор в анафазу II

Телофаза мейоза II

Вокруг хромосом формируются ядерные мембраны, появляется перетяжка и делит клетку на две.

Вторая клетка прошла через такое же деление. Всего из одной диплоидной клетки 2n2c получилось четыре гаплоидных с набором nc.

Четыре клетки с хромосомным набором — nc

Биологическое значение мейоза

1)Передать свой генетический материал будущим поколениям.

2)Поддержать диплоидный набор хромосом у организма. В конце мейоза формируются гаплоидные клетки, которые после оплодотворения образуют диплоидный набор.

3)Мейоз обеспечивает не только передачу генетической информации, но и ее преобразование — основа изменчивости. Кроссинговер обеспечивает взаимный обмен у гомологичных хромосом. В анафазу I к полюсам клетки независимо расходятся гомологичные хромосомы, а в анафазу II — хроматиды. Так формируются уникальные комбинации генов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *