Что изображено на картинке обрывник пусковой элемент дроссель разрядник
Разрядник
Разря́дник — электрический аппарат, предназначенный для ограничения перенапряжений в электротехнических установках и электрических сетях. Первоначально разрядником называли устройство для защиты от перенапряжений, основанный на технологии искрового промежутка. Затем, с развитием технологий, для ограничения перенапряжений начали применять устройства на основе полупроводников и металл-оксидных варисторов, применительно к которым продолжают употреблять термин «разрядник».
Содержание
Применение
В электрических сетях часто возникают импульсные всплески напряжения, вызванные коммутациями электроаппаратов, атмосферными разрядами или иными причинами. Несмотря на кратковременность такого перенапряжения, его может быть достаточно для пробоя изоляции и, как следствие, короткого замыкания, приводящего к разрушительным последствиям. [1] Для того, чтобы устранить вероятность короткого замыкания, можно применять более надежную изоляцию, но это приводит к значительному увеличению стоимости оборудования. В связи с этим в электрических сетях целесообразно применять разрядники.
Устройство и принцип действия
Разрядник состоит из двух электродов и дугогасительного устройства.
Электроды
Один из электродов крепится на защищаемой цепи, второй электрод заземляется. Пространство между электродами называется искровым промежутком. При определенном значении напряжения между двумя электродами искровой промежуток пробивается, снимая тем самым перенапряжение с защищаемого участка цепи. Одно из основных требований, предъявляемых к разряднику — гарантированная электрическая прочность при промышленной частоте (разрядник не должен пробиваться в нормальном режиме работы сети).
Дугогасительное устройство
После пробоя импульсом искровой промежуток достаточно ионизирован, чтобы пробиться фазным напряжением нормального режима, в связи с чем возникает короткое замыкание и, как следствие, срабатывание устройств РЗиА, защищающих данный участок. Задача дугогасительного устройства — устранить это замыкание в наиболее короткие сроки до срабатывания устройств защиты.
Виды разрядников
Воздушный разрядник закрытого или открытого типа (трубчатый разрядник)
Газовый разрядник
Вентильный разрядник
Вентильный разрядник состоит из двух основных компонентов: многократного искрового промежутка (состоящего из нескольких последовательно соединенных единичных искровых промежутков) и рабочего резистора (состоящего из последовательного набора вилитовых дисков). Многократный искровой промежуток последовательно соединен с рабочим резистором. В связи с тем, что вилит меняет характеристики при увлажнении, рабочий резистор герметично закрывается от внешней среды. Во время перенапряжения многократный искровой промежуток пробивается, задача рабочего резистора — снизить значение сопровождающего тока до величины, которая сможет быть успешно погашена искровыми промежутками. Вилит обладает особенным свойством — его сопротивление нелинейно — оно падает с увеличением значения силы тока. Это свойство позволяет пропустить больший ток при меньшем падении напряжения. Благодаря этому свойству вентильные разрядники и получили свое название. Среди прочих преимуществ вентильных разрядников следует отметить бесшумность срабатывания и отсутствие выбросов газа или пламени.
Магнитовентильный разрядник (РВМГ)
РВМГ состоит из нескольких последовательных блоков с магнитным искровым промежутком и соответствующего числа вилитовых дисков. Каждый блок магнитных искровых промежутков представляет собой поочередное соединение единичных искровых промежутков и постоянных магнитов, заключенное в фарфоровый цилиндр.
При пробое в единичных искровых промежутках возникает дуга, которая за счет действия магнитного поля, создаваемого кольцевым магнитом, начинает вращаться с большой скоростью, что обеспечивает более быстрое, по сравнению с вентильными разрядниками, дугогашение.
Ограничитель перенапряжений нелинейный (ОПН)
В процессе эксплуатации изоляция оборудования электрических сетей подвергается воздействию рабочего напряжения, а также различных видов перенапряжений, таких как грозовые, коммутационные, квазистационарные. Основными аппаратами для защиты сетей от грозовых и коммутационных перенапряжений являются вентильные разрядники (РВ) и нелинейные ограничители перенапряжений (ОПН). При построении или модернизации уже существующих схем защиты от перенапряжений с помощью ОПН и РВ необходимо решать две основные тесно связанные друг с другом задачи:
Защитные свойства РВ и ОПН основаны на нелинейности вольтамперной характеристики их рабочих элементов, обеспечивающей заметное снижение сопротивления при повышенных напряжениях и возврат в исходное состояние после снижения напряжения до нормального рабочего. Низкая нелинейность вольтамперной характеристики рабочих элементов в разрядниках не позволяла обеспечить одновременно и достаточно глубокое ограничение перенапряжений и малый ток проводимости при воздействии рабочего напряжения, от воздействия которого удалось отстроиться за счет введения последовательно с нелинейным элементом искровых промежутков. Значительно большая нелинейность окисно-цинковых сопротивлений варисторов ограничителей перенапряжений ОПН позволила отказаться от использования в их конструкции искровых промежутков, то есть нелинейные элементы ОПН присоединены к сети в течение всего срока его службы.
В настоящее время вентильные разрядники практически сняты с производства и в большинстве случаев отслужили свой нормативный срок службы. Построение схем защиты изоляции оборудования как новых, так и модернизируемых подстанций, от грозовых и коммутационных перенапряжений теперь оказывается возможным только с использованием ОПН.
Идентичность функционального назначения РВ и ОПН и кажущаяся простота конструкции последнего часто приводят к тому, что замену разрядников на ограничители перенапряжений проводят без проверки допустимости и эффективности использования устанавливаемого ОПН в рассматриваемой точке сети. Этим объясняется повышенная аварийность ОПН.
Помимо неверного выбора мест установки и характеристик ОПН еще одной причиной повреждений ОПН являются используемые при их сборке варисторы низкого качества, к которым, прежде всего, относятся китайские и индийские варисторы.
Cтержневые искровые промежутки
Cтержневые искровые промежутки также известные как «дугозащитные рога» применяются для защиты от пережога защищеных проводов и перевода однофазного к.з в двухфазное. Для возникновения дуги необходим ток к.з. превышающий 1 кА. Вследствие относительно низкого напряжения (6-10кВ против 20кВ в сетях Финляндии) и высокого сопротивления заземления «дугозащитные рога» в российских сетях не срабатывают.
В настоящее время на ВЛ 6-10 кВ они запрещены «Положением о технической политике» ФСК.
Разрядник длинно-искровой
Принцип работы разрядника основан на использовании эффекта скользящего разряда, который обеспечивает большую длину импульсного перекрытия по поверхности разрядника, и предотвращении за счет этого перехода импульсного перекрытия в силовую дугу тока промышленной частоты. Разрядный элемент РДИ, вдоль которого развивается скользящий разряд, имеет длину, в несколько раз превышающую длину защищаемого изолятора линии. Конструкция разрядника обеспечивает его более низкую импульсную электрическую прочность по сравнению с защищаемой изоляцией. Главной особенностью длинно-искрового разрядника является то, что вследствие большой длины импульсного грозового перекрытии вероятность установления дуги короткого замыкания сводится к нулю.
Существуют различные модификации РДИ, отличающиеся назначением и особенностями ВЛ, на которых они применяются.
РДИ предназначены для защиты воздушных линий электропередачи напряжением 6-10 кВ трехфазного переменного тока с защищёнными и неизолированными проводами от индуктированных грозовых перенапряжений и их последствий и прямого удара молнии; рассчитаны для работы на открытом воздухе при температуре окружающего воздуха от минус 60 °C до плюс 50 °C в течение 30-и лет.
Основное преимущество РДИ: разряд развивается вдоль аппарата по воздуху, а не внутри его. Это позволяет значительно увеличить срок эксплуатации изделий и повышает их надежность.
Обозначение
На электрических принципиальных схемах в России разрядники обозначаются согласно ГОСТ 2.727—68.
1. Общее обозначение разрядника
2. Разрядник трубчатый
3. Разрядник вентильный и магнитовентильный
4. ОПН
Схема подключения дросселя и его обозначение
Дроссель — это разновидность катушки индуктивности. В электрических схемах элемент используется для снижения влияния токов в определенном диапазоне. Эта деталь применяется при создании аппаратуры, она пассивна, но при этом обеспечивает стабильность работы всей схемы. Электронный дроссель обладает простым механизмом, но подходит для постоянного и переменного тока.
Что такое дроссель?
Деталь используется при составлении электроцепи для предотвращения нагрева и перегрузки. Катушка индуктивности задерживает влияние тока, при этом резкие перепады исключаются из-за закона самоиндукции. Так создается дополнительное напряжение.
Дроссель состоит всего из 4 элементов:
Электронный дроссель похож на железный трансформатор, отличается он обмоткой. Сердечник состоит из стали, а пластины располагаются так, чтобы они не соприкасались друг с другом. Индуктивность достигает 1Гн, катушка ограничивает резкие скачки тока в цепи. Если уровень снижается, то деталь поддерживает его на минимальных показателях, а при сильном повышении дроссель в устройстве ограничивает скачок. Элемент также используется для сглаживания, отделения определенных участков схемы, накапливания энергии и устранения помех.
Разбираясь в том, что такое дроссель, стоит уточнить, что его в основном ставят для сбора энергии и задержки тока в выбранном диапазоне. Некоторые виды люминесцентных ламп неспособны работать без такой детали. Это относится к уличным фонарям и домашним светильникам. Дроссель в контакте с ними выступает ограничителем, который передает электроды на лампу.
Созданные по этому принципу механизмы формируют напряжение, оно нужно для получения разряда. После этого загорается лампа. Процесс протекает настолько быстро, что напряжение создается всего через несколько долей секунды, без детали невозможна стабильная работа и включение предмета.
Функционирование
Электропроводная катушка, ограничивающая ферромагнитный сердечник, работает по принципу самоиндукции. При детальном рассмотрении прибора становится понятно, что он функционирует как электрический трансформатор, но при этом оснащен дополнительной обмоткой. Сердечник специально изолируют, чтобы в электронике не создавались дополнительные помехи.
Катушка обладает высокой индуктивностью, но весь механизм считается низкочастотным. Диапазон колебания тока составляет от 20 до 100 кГц. По этому критерию дроссели делят на низкие, ультразвуковые и сверхвысокие. В последних отсутствует сердечник, вместо него используется обычный резистор или пластиковый каркас.
Устройство
Дроссель-трансформатор имеет вид проводника, который наматывается по спирали. В зависимости от сферы использования его делают одно- или многожильным. Иногда в устройство добавляют диэлектрический каркас или оставляют деталь без него. В некоторых элементах дополнительно используется основание с круглым, квадратным или прямоугольным сечением.
Деталь состоит из множества витков, во время создания используется прогрессивная или универсальная намотка. При использовании первого вида они плавно меняются по всей длине, второго — расстояние между витками остается одинаковым.
Прогрессивная намотка используется в электрике, когда требуется сконструировать высокочастотное устройство. Для достижения результата приходится уменьшать паразитную емкость. Намотку выполняют в один или несколько слоев, из материалов подходит только медь, поскольку она выступает проводником.
Чтобы повысить индуктивность, используют ферромагнитный сердечник. В зависимости от места применения используют разные виды материала, поскольку некоторые из них подходят для подавления сильных помех, а другие берут при фильтрации звука. Когда требуется дросселирование механизмов на сверхвысоких частотах, то используют в основном латунь.
Во время производства производитель учитывает требуемую индуктивность, способности к выдерживанию тока и особенности индукции, поскольку иначе произойдет насыщение. Сначала определяется размер зазора, количество витков и сила тока, а потом высчитывается диаметр проволоки. В мелких машинах или электронных устройствах дроссель делают плоским, тогда проводник располагают в виде круга или зигзага.
Дроссель-трансформаторы выпускают в двух вариациях:
Детали с сердечниками занимают меньше места, поэтому подходят для малогабаритных приборов.
Также элементы классифицируют по назначению:
Помимо этого, есть модели, которые работают на вторичных импульсных источниках. Для этого устройство сначала накапливает энергию в своем поле, а потом переводит ее в нагрузку.
Обозначение дросселя на схеме
Такие детали всегда изображают по единому принципу, поэтому достаточно один раз в нем разобраться, чтобы потом регулярно читать такие схемы. При этом число полуокружностей выбирают почти любым, чаще оно составляет 3 или 4 единицы для удобного сопряжения с остальными элементами. Выводы обмотки направляют в одну или разные стороны, здесь все зависит от конфигурации схемы. Если нужно изобразить отвод, то рисуют рядом друг с другом сочленения полуокружностей, точку между ними не ставят.
Также есть цветная маркировка деталей, которая соответствует показателям индуктивности. Первые несколько меток указывают на показатели индуктивности в мкГн. Третья — множитель, а последняя — имеющийся допуск. Дроссели маркируют, используя 3 или 4 полоски, иногда их меняют на точки. Если на детали есть три метки, то допуск по умолчанию составляет 20%.
Дроссели используются не только в разных видах лампочек, но и во время сбора импульсных блоков питания, в которых выступают фильтром. В электрических цепях его чаще называют реактором, но принцип устройства остается прежним. Деталь также ставят в сварочные аппараты и применяют в промышленных целях.
Вентильные разрядники
Разрез разрядника РВС-10 (разрядник вилитовый станционный) показан на рисунке ниже:
Основными элементами данного разрядника являются искровые промежутки 2, вилитовые кольца 6, рабочие резисторы 4. Эти элементы располагаются внутри фарфорового кожуха 1, который имеет специальные фланцы с торцов 3. С помощью данных фланцев осуществляется присоединение и крепление разрядника.
Особое внимание уделено герметизации внутренней плоскости. При увлажнении рабочие резисторы 4 меняют свои характеристики. Влага, оседающая на деталях и стенках внутри вентильного разрядника, ухудшает его изоляцию, что создает возможность перекрытия. Герметизация достигается посредством пластин 5, закрывающих торцы разрядника. Пластины привинчиваются к фланцам, а между пластинами ставятся резиновые прокладки 7.
Принцип работы разрядника заключается в следующем.
В случае появления перенапряжения пробивается искровой промежуток и через рабочие резисторы ток уходит на землю.
Рабочие резисторы ограничивают ток пробоя и создают условия, при которых электрическая дуга может быть погашена одним искровым промежутком (рисунок выше б)).
После пробоя искровых промежутков напряжение на разряднике будет равно:
Если сопротивление Rp разрядника линейное, то с увеличением тока пробоя будет увеличиваться напряжение на разряднике, причем оно может стать выше допустимого для электрооборудования. Чтобы избежать данного эффекта сопротивление берется нелинейным, причем, чем больше ток – тем меньше сопротивление. Зависимость между током и напряжением для данного случая можно выразить формулой:
Где А – постоянная, характеризующая напряжение на резисторе при токе в 1А; α- показатель нелинейности. При α = 0 будет идеальный случай, когда падение напряжения не зависит от величины протекаемого тока.
Данный тип разрядников получил название вентильные, потому что при импульсных скачках тока их сопротивление падает, что дает возможность пропускать большие токи при относительно небольших падениях напряжения на рабочих резисторах.
В качестве нелинейного материала широкое распространение получил вилит. В области больших токов его степень нелинейности α достигает 0,13 – 0,20. Вольт-амперная характеристика разрядника с вилитовым резистором показана на рисунке ниже:
Вилит очень гигроскопичен. Цилиндрические поверхности покрываются изолирующей смазкой для защиты от влаги.
Торцевые поверхности металлизируются. Они являются контактами диска.
Обычно в разрядника устанавливается несколько дисков соединенных последовательно (на рисунке выше а) изображено 10 дисков).
Остающееся напряжение при наличии дисков будет увеличено:
Число дисков n должно быть меньше для уменьшения остающегося напряжения.
В дисках выделяется тепло при прохождении электрического тока, из-за чего повышается их температура. В случае превышения допустимой температуры диски потеряют вентильные свойства и разрядники выйдут из строя. Не смотря на большой импульсной ток нагрев резисторов мал, так как длительность его протекания составляет всего несколько десятков микросекунд. Резистор успевает остыть после одиночного импульса. При протекании тока промышленной частоты длительность воздействия возрастает (1 полупериод 10 000 мкс). Именно поэтому при длительном протекании даже небольшого тока происходит разрушение разрядника.
При длительности протекания 40 мкс предельный ток диска диаметром 100 мм равен 10 кА. В случае импульса тока прямоугольной формы длительностью 2000 мкс, допустимый ток падает до 150 А. Такие токи без повреждения диск может пропустить 20 – 30 раз.
После прохождения импульсного тока через разрядник снова начинает протекать ток короткого замыкания промышленной частоты. Сопротивление вилита резко увеличивается по мере приближения тока к нулевому значению, что приводит к искажению формы кривой тока. Это значительно облегчает процесс гашения дуги, так как подводимая в момент близости тока к нулю мощность уменьшится. Активное сопротивление разрядника приближает коэффициент мощности к единице и ограничивает ток, что ведет к уменьшению восстанавливающего напряжения промышленной частоты. Это позволяет гасить электрическую дугу без применения специальных дугогасительных устройств.
Устройство единичного искрового промежутка вентильного разрядника показано на рисунке выше б).
Для облегчения ионизации принимаются надлежащие меры, ввиду ее возникновения из-за затруднения появления заряда в закрытом пространстве при малом времени импульса. Миканитовую прокладку помещают между электродами. Поскольку диэлектрическая проницаемость слюды значительно выше, чем воздуха, то на границе со слюдой, в воздухе, прилегающем к электродам, возникают высокие градиенты, которые и вызывают начальную ионизацию воздуха. К быстрому формированию разряда в центре основного воздушного промежутка приводят образующиеся электроны.
Промежутки соединяют в блоки (рисунок выше б)). Как правило, разрядник имеет несколько таких блоков. Вольт-секундная характеристика последовательно соединенных единичных промежутков позволяет получить пологую защитную характеристику.
После прохода электрического тока через нуль около каждого катода электрическая прочность восстанавливается практически мгновенно. Если электрическая прочность больше восстанавливающегося напряжения – электрическая дуга гаснет. Особенно хорошо данный эффект проявляется при небольших токах (до 100 А), когда термоэлектронной эмиссией с электродов можно пренебречь. Экспериментальным путем было установлено, что единичный промежуток способен отключить сопровождающий ток с амплитудой в 80 – 100 А при действующем значении восстанавливающего напряжения порядка 1 – 1,5 кВ. Количество единичных промежутков выбирается исходя данного напряжения.
Количество дисков рабочего резистора выбирается исходя из значения максимального тока, которое не должно превышать 80 – 100 А. Гашение дуги при этом обеспечивается за один полупериод.
Для обеспечения равномерной нагрузки единичных промежутков при промышленной частоте напряжения, их снабжают специальными нелинейными шунтирующими резисторами (рисунок выше 6). Сопротивление данного резистора берется как можно больше, чтобы сохранить неравномерное распределение при высокой частоте (импульсах). Термическая стойкость дисков рассчитывается на пропускание сопровождающего тока в течении одного – двух полупериодов.
Внутренние перенапряжения могут длиться до 1 с и имеют низкочастотный характер. Из-за небольшой термической стойкости вилит не может использоваться для ограничения внутренних перенапряжений. Для ограничения внутренних перенапряжений может использоваться тервит, который обладает хорошей термической стойкостью. Тервит имеет коэффициент нелинейности α больше, чем у вилита, что приводит к значительному увеличению остающегося напряжения и делает данный материал непригодным для защиты от атмосферных перенапряжений. Поэтому для защиты от внешних и внутренних перенапряжений разрядник выполняется комбинированным. Защита от внутренних перенапряжений осуществляют тервитовыми дисками, а от внешних – вилитовыми.
Для предотвращения срабатывания вентильных разрядников от внутренних перенапряжений нижний предел напряжения срабатывания должен быть не менее чем в 2,7 раза меньше фазного напряжения промышленной частоты.
Работа вентильного разрядника протекает бесшумно. Для фиксации количества срабатываний между заземлением и нижним выводом разрядника устанавливается регистратор. Электромагнитный регистратор является наиболее надежным. Якорь электромагнитного регистратора при прохождении импульсного тока втягивается и воздействует на храповой механизм счетного устройства.
В другом виде регистратора при прохождении импульсного тока сгорает плавкая вставка, что и приводит к поворачиванию счетного механизма на одно деление.
Чтобы повысить защитные характеристики разрядников необходимо уменьшить остающееся напряжение, то есть число дисков. Но при этом произойдет увеличение сопровождающего тока.
Простые промежутки (рисунок б)) не способны отключать токи в 200 – 250 А. В таких случаях применяют камеры магнитного дутья. Магнитное поле создается постоянным магнитом. Возникающая в искровом промежутке дуга подвергается действию магнитного поля, которое «загоняет» ее в узкую щель, стенки которой выполняются из керамики. По такому принципу работают разрядники на напряжение до 500 кВ. Поднять термическую стойкость позволяет увеличение диаметров дисков до 150 мм. В большинстве случаев магнито-вентильные разрядники используются для ограничения внутренних перенапряжений.
Разрядник- принцип работы, устройство и его виды || Трубчатый разрядник принцип действия
Устройство разрядника
Разрядник состоит из двух основных частей: электродов и дугогасительного устройства.
Устройство разрядника в зависимости от его вида бывает разным.
Разрядник имеет прочный герметичный корпус, который предохраняет его от внешних механических повреждений. Промежуток между электродами называется искровым промежутком. Один из электродов присоединяется к защищаемому элементу электрической цепи, а другой обязательно заземляется. Без заземления разрядник бесполезен.
Важно то, что дугогасительное устройство несёт большее значение в работе разрядника, в ином случае разрядник не сможет предотвратить от фазного пробоя. Фазный пробой повлечет за собой короткое замыкание (КЗ).
На рисунке 2 показано устройство трубчатого разрядника. Он имеет прочный корпус 1, который способен выдержать большую температуру. Фланец 3, к нему присоединяется защищаемый участок электрической цепи, сам фланец является электродом разрядника. Электрод 2 подключается к заземлению. Он бывает двух видов: с регулировкой и без неё. Первый может менять размер искрового промежутка, тем самым изменяет величину пробивного напряжения.
Рис 2. Устройство трубчатого разрядника
Пробивное напряжение – это одна из главных характеристик разрядника, которая показывает напряжение, при котором в разряднике, между его электродами возникает искры, то есть разрядник пробивается. Полярность подключение к электродам 2 и 3 не имеет существенной разницы, если это разрядник переменной сети.
Дугогасительное устройство в данном случае представляет из себя корпус, который выделяет газ. Современные методы производства позволяют создавать разрядники различных характеристик.
Выбор разрядников
Прежде всего, нужно определиться с классом прибора:
Выбор по параметрам
Выбирать конкретное защитное устройство, работающее на разрядниках или варисторах, нужно по следующим параметрам:
Остальные значения, указанные в техническом паспорте нужны для проведения испытаний и наладки систем защиты на промышленных предприятиях. Поскольку создание системы защиты от перенапряжения дело ответственное, то если нет опыта лучше монтаж разрядников и заземления поручить специалистам.
Принцип работы разрядника
Принцип работы разрядника довольно прост, как и его устройство. При возникновение перенапряжения на электродах разрядника значительно возрастает напряжение. Если это напряжение станет больше напряжение пробоя, которое прописано в характеристике устройства, то возникнет пробой.
Между электродами проскочит искра. При этом снизится напряжение на его электродах, а в искровом промежутке ионизируется воздух. Разрядник станет пробиваться фазным напряжением и возникнет короткое замыкание.
Предлагаем ознакомиться Глубина посадки луковичных цветов таблица
Чтобы этого не произошло, в разряднике присутствует дугогасительное устройство. В зависимости от вида разрядника имеются различные виды дугогасительных устройств. Все разрядники подразделяются на несколько видов.
Ниже представлены основные виды разрядников.
Особенности монтажа и эксплуатации разрядников РВО
Перед установкой рекомендуется провести высоковольтные испытания изделия. Это необходимо для того, чтобы убедиться в соответствии нормам рабочих характеристик разрядника. Перед началом монтажа проверьте целостность фарфорового корпуса: на поверхности не должно быть нарушающих герметичность трещин и сколов, способных повредить защитную эмаль.
Разрядники РВО предназначены для установки на металлоконструкциях высоковольтных опор (закрепляются хомутами с прокладками). Для правильной работы важно установить изделие строго вертикально с максимальным отклонением не более 10 градусов.
Перед началом грозового сезона (ежегодно) разрядники РВО необходимо проверять посредством профилактических испытаний, в ходе которых фиксируется ток утечки и напряжение пробоя. По результатам контроля принимается решение о дальнейшей эксплуатации изделия или о его замене. Утилизация продукции, отработавшей свой срок, происходит в обычном порядке.
Трубчатый разрядник
Трубчатый разрядник представляет собой трубку из прочного материала. Сам материал – это различные полимеры. Самый распространённый из них – это полихлорвинил. Полихлорвинил способен вынести температуру, пригодную для данного типа разрядников.
В трубку помещены два электрода (рис 1.). Один присоединяется к защищаемому элементу, а другой заземляется. Принцип работы трубчатого разрядника довольно прост.
При напряжении пробоя образуется искра, которая ионизирует воздух. Воздух сильно нагревается, при этом идет массовое выделение газов.
Интенсивная газовая генерация гасит дугу фазного напряжения. Такое дугогасительное устройство называется продольным дутьём. Для выхода газов наружу, в разряднике имеется отверстие.
Газовый разрядник отличается от воздушного только тем, что его корпус наполняют инертным газом (аргоном или неоном). В отличие от воздушного разрядника, в газовом разряднике дугу, образованную фазным напряжением, гасят инертные газы.
В современной электронике трубчатые разрядники распространены повсеместно. Они просты по устройству и надежны. Пробивное напряжение воздушных разрядников невысокое, поэтому такие разрядники не применяются в более высоковольтной аппаратуре.
Более высокое пробивное напряжение у газовых разрядников. Они гораздо эффективнее, так как газы не вступают в реакции, тем самым продлевают жизнь электродам.
Рис 3. Трубчатый разрядник
Разрядник РВО-6 У1
Марка разрядника : РВО-6 У1
Напряжение: 6 кВ
Разрядники РВО-6 У1 вентильные облегченные предназначены для защиты от атмосферных перенапряжений изоляции электрооборудования переменного тока частотой 50 и 60 Гц. Изготавливаются для сетей с любой системой заземления нейтрали. Разрядники РВО-6 У1 вентильные облегченные соответствуют ТУ16-521.232-77 и группе IV по ГОСТ 16357-83. Условное обозначение разрядника РВО-6 У1 Р — разрядник В — вентильный О — облегченный 6 — класс напряжения в кВ У — климатическое исполнение 1 — категория размещения
Технические характеристики разрядника РВО-6 У1
Наименование параметра | РВО-6 У1 |
Класс напряжения сети, кВ действующее | 6 |
Номинальное напряжение, кВ действующее | 7,5 |
Пробивное напряжение при частоте 50 Гц в сухом состоянии и под дождем, кВ действующее: — не менее — не более | 16 19 |
Импульсное пробивное напряжение при предразрядном времени от 2 до 20 мкс, кВ — не более | 32 |
Остающееся напряжение при волне импульсного тока 8/20 мкс, кВ, не более — с амплитудой тока 3000А — с амплитудой тока 5000А | 25 27 |
Выпрямленное испытательное напряжение при измерении тока утечки, кВ | 6 |
Ток утечки, мкА | 6 |
Токовая пропускная способность: — 20 импульсов тока волной 16/40 мкс, кА — 20 импульсов тока прямоугольной волной длительностью 2000 мкс, А | 5,0 75 |
Длина пути утечки внешней изоляции, см, — не менее | 18 |
Допустимое тяжение проводов, Н, — не менее | 300 |
Высота, (Н), мм, — не более | 294 |
Масса, кг — не более | 3,2 |
Гарантийный срок эксплуатации разрядника РВО-6 У1 составляет: 3 года со дня ввода в эксплуатацию.
Вентильные разрядники.
Вентильный разрядник состоит из набора многократно повторяющихся искровых промежутков и нелинейных сопротивлений.
Принцип работы вентильного разрядника немного другой, чем у трубчатых разрядников. Во время работы электроды искрового промежутка снимают перенапряжения, а нелинейные сопротивления(резисторы) гасят дугу фазного напряжения.
Резисторы состоят из набора вилитовых дисков. Вилит – это запеченная смесь карбида кальция с жидким стеклом. По сравнению с трубчатыми и газовыми разрядниками, вентильные разрядники имеют более высокое напряжение пробоя.
Предлагаем ознакомиться Правда или миф: разбираем популярные способы укрепить иммунитет
Рис 4. Вентильный разрядник.
В отличие от устройства вентильного разрядника, в устройство магнитовентильного разрядника входит набор кольцевых магнитов.
Принцип работы магнитовентильного разрядника немного другой. При пробое фазным напряжением образуются дуга. Под воздействием магнитного поля магнитов дуга начинает вращаться, тем самым дуга гасится.
Рис 5. Магнитовентильный разрядник (РВМГ).
Назначение и технические данные разрядника РВО-10 У1
Трехлетний срок гарантии на вентильные разрядники РВО-10 У1 подтверждает качество исполнения и длительную работоспособность устройства, рассчитанного на применение в электросетях с классом напряжения в 10 киловольт и частотой 50 и 60 Гц. Компактные габариты и небольшая масса облегченного разрядника намного облегчают транспортировку и монтаж оборудования.
Компания ПВС-Энерго осуществляет реализацию вентильных разрядников РВО-10 У1 с оптимальными техническими характеристиками для эффективной защиты электрооборудования в сетях с переменными значениями тока от перенапряжений различного вида. Устройства совмещают умеренную стоимость с высоким качеством, позволяющим эксплуатировать разрядник намного дольше гарантийного срока.
Воздушные линии электропередачи
Разрядник длинно-искровой (РДИ) является устройством защиты воздушных линий электропередачи 6 — 10 кВ от грозовых перенапряжений.
Принцип действия
При ударе молнии в линию или вблизи нее на проводах линии возникает грозовое перенапряжение, под воздействием которого изоляция линии может перекрыться. После грозового перекрытия изоляции вероятность установления силовой дуги главным образом зависит от средней напряженности электрического поля, создаваемой рабочим напряжением линии на канале перекрытия.
Физические закономерности, связанные с переходом импульсного перекрытия в силовую дугу, исследовались в разных лабораториях мира. На основе обобщения результатов этих исследований и опыта эксплуатации действующих ВЛ в России принято нормативное соотношение, позволяющее оценивать вероятность возникновения силовой дуги при грозовых перекрытиях изоляции:
Ρ(д)=(1,59UхJхI-6) х 10-²= (1,59E-6)х10-²
где Е=U(ф)/l — средняя напряженность электрического поля вдоль пути перекрытия, кВ/м;
U(ф) — фазное напряжение линии, кВ/м;
l — длина пути перекрытия, м.
Как видно из формулы, при заданном номинальном напряжении вероятность возникновения дуги приблизительно обратно пропорциональна длине пути перекрытия. Поэтому за счет увеличения l можно снизить вероятность установления силовой дуги и, следовательно, сократить число отключений линий. Данный способ грозозащиты реализует этот принцип за счет использования специальных разрядников.
Принцип работы разрядника основан на использовании эффекта скользящего разряда, который обеспечивает большую длину импульсного перекрытия по поверхности разрядника, и предотвращении за счет этого перехода импульсного перекрытия в силовую дугу тока промышленной частоты. Разрядный элемент РДИ, вдоль которого развивается скользящий разряд, имеет длину, в несколько раз превышающую длину защищаемого изолятора линии. Конструкция разрядника обеспечивает его более низкую импульсную электрическую прочность по сравнению с защищаемой изоляцией. Главной особенностью длинно-искрового разрядника является то, что вследствие большой длины импульсного грозового перекрытии вероятность установления дуги короткого замыкания сводится к нулю.
Разрядник длинно-искровой петлевого типа РДИП-10
Данные разрядники, имеющие в соответствии с утвержденными в 2002 году Техническими Условиями официальное сокращенное название РДИП-10-IV-УХЛ1, прошли все необходимые испытания и сертификацию, приняты МВК к серийному производству и массовой эксплуатации в энергосистемах. В настоящее время РДИП-10-IV-УХЛ1 находят все более широкое применение в различных регионах страны при строительстве новых, реконструкции и техническом перевооружении существующих ВЛ 6,10 кВ, в соответствии с проектными решениями, базирующимися на необходимой нормативно-технической документации, разработанной институтом «ОАО РОСЭП». Число разрядников, успешно эксплуатируемых во многих регионах России, превышает 200 000.
Рис. 1. Конструктивный эскиз
Конструктивный эскиз, показывающий общий вид и основные составные части разрядника приведен на рис.1
Разрядник состоит из согнутого в виде петли металлического стержня, покрытого слоем изоляции из полиэтилена высокого давления. Концы изолированной петли закреплены в зажиме крепления, с помощью которого разрядник присоединяется к штырю изолятора на опоре ВЛ. В средней части петли поверх изоляции расположена металлическая трубка. На проводе ВЛ, напротив металлической трубки разрядника, закрепляется универсальный зажим для создания необходимого воздушного искрового промежутка S. Закрепление изолированной петли разрядника на ВЛ производится с помощью зажима крепления. Зажим крепления изготовлен из стали, покрытой защитным слоем цинка, и имеет конструкцию, обеспечивающую надежное крепление разрядника к элементам арматуры ВЛ. Конструкция зажима крепления разрядника может быть изменена и иметь форму, адаптированную под конкретные условия крепления разрядника на опоре ВЛ.
Универсальный зажим для провода изготовлен из стали, покрытой защитным слоем цинка. Конструкция зажима позволяет устанавливать его как на неизолированные, так и на защищённые провода, зажим для которых имеет прокусывающие шипы. Принцип работы разрядника основан на использовании эффекта скользящего разряда, который обеспечивает большую длину импульсного перекрытия по поверхности разрядника, и предотвращении за счет этого перехода импульсного перекрытия в силовую дугу тока промышленной частоты. При возникновении на проводе ВЛ индуктированного грозового импульса искровой воздушный промежуток S между проводом ВЛ и металлической трубкой разрядника пробивается, и напряжение прикладывается к изоляции между металлической трубкой и металлическим стержнем петли, имеющим потенциал опоры. Под воздействием приложенного импульсного напряжения вдоль поверхности изоляции петли от металлической трубки к зажиму крепления разрядника (по одному, или по обоим плечам петли) развивается скользящий разряд. Вследствие эффекта скользящего разряда вольт-секундная характеристика разрядника расположена ниже, чем вольт-секундная характеристика изолятора, то есть при воздействии грозового перенапряжения разрядник перекрывается, а изолятор нет. После прохождения импульсного тока молнии разряд гаснет, не переходя в силовую дугу, что предотвращает возникновение короткого замыкания, повреждение провода и отключение ВЛ. На рис.2 представлен момент срабатывания разрядника при воздействии грозового импульса перенапряжения во время лабораторных испытаний на полномасштабной модели траверсы ВЛ 10 кВ.
Рис.2. Фотография испытаний на макете.
Основные технические характеристики РДИП-10-4-УХЛ1
Конструкция узла крепления РДИП-10-4-УХЛ1 позволяет устанавливать его на штырь или крюк изолятора ВЛ и на другие элементы арматуры с защищенными и неизолированными проводами. Длинно-искровые разрядники:
Разрядный элемент РДИ, вдоль которого развивается скользящий разряд, имеет длину, в несколько раз превышающую длину импульсного перекрытия защищаемого изолятора линии. Конструктивные особенности разрядника обеспечивают более низкое разрядное напряжение при грозовом импульсе по сравнению с разрядным напряжением защищаемой изоляции. Главной особенностью РДИ является то, что вследствие большой длины грозового перекрытия вероятность установления дуги короткого замыкания практически сводится к нулю.
Размер внешнего искрового промежутка, см | 78 |
Размер внешнего искрового промежутка, см | 2 — 4 |
50% импульсное пробивное напряжение, кВ, не более | 110 |
Напряжение координации с изолятором ШФ10-Г, кВ | 400 |
Выдерживаемое напряжение коммутационного импульса, кВ | 90 |
Выдерживаемое напряжение промышленной частоты, кВ: | |
в сухом состоянии | 60 |
под дождем | 50 |
Ток гашения дуги при номинальном напряжении, А | 200 |
Выдерживаемый импульсный ток 8-20 мкс, кА | 40 |
Схема установки
Разрядник предназначен для защиты ВЛ 6, 10 кВ от индуктированных грозовых перенапряжений, которые, как уже отмечалось, составляют подавляющую долю от общего числа грозовых перенапряжений, способных приводить к перекрытиям изоляции.
Известно, что величина индуктированных перенапряжений не превосходит значения 300 кВ, и это позволяет при правильной организации грозозащиты исключить возможность одновременного перекрытия двух или трех фаз на одной опоре и, соответственно, междуфазных коротких замыканий. Для этого необходимо устанавливать по одному разряднику на опору с чередованием фаз, например, на первой опоре разрядник устанавливается на фазу А, на второй — на фазу В, на третьей — на фазу С и т. д. (см. рис.3).
Рис.3.
При такой системе установки индуктированное на линии грозовое перенапряжение приводит к перекрытию разрядников на разных фазах соседних опор и образованию контура междуфазного замыкания сопровождающего тока напряжения промышленной частоты, в который включены сработавшие разрядники и сопротивления заземления опор Rз (см. рис.3), ограничивающие этот ток на уровне нескольких сотен ампер, способствуя его гашению и предотвращению отключения ВЛ.
Разрядные характеристики РДИП-10 обеспечивают то, что ни один из изоляторов всех трех фаз в данной схеме не перекрывается, поскольку каждый из них защищен разрядником, установленным электрически параллельно ему и расположенным либо непосредственно рядом с изолятором, либо на соседней опоре. При уровнях индуктированных перенапряжений, близких к импульсному напряжению срабатывания разрядника, возможно перекрытие разрядника лишь на одной опоре, приводящее к однофазному замыканию на землю. Ток замыкания при этом не превышает 10-20 А, и петлевой разрядник с общей длиной перекрытия 80 см гарантированно исключает возникновение силовой дуги.
Достоинства и преимущества:
Усовершенствованный разрядник длинно-искоровой петлевой РДИП1
РДИП1-10 по характеристикам, принципу действия и назначению не отличается от разрядника РДИП-10-IV-УХЛ1, являясь лишь его конструктивной модификацией. Конструктивное отличие РДИП1 от РДИП сводится к измененным форме изгиба петли, деталям узла крепления и способу обеспечения воздушного зазора между разрядником и проводом. Общий вид разрядника приведен на рис.4. Воздушный разрядный промежуток между электродом РДИП1 и проводом сохраняет установленные параметры независимо от геометрии провода в пролете и даже при проскальзывании провода в обвязке на изоляторе.
Рис.4.Фотография испытаний на макете.
Рис. 6 Общий вид петлевого разрядника РДИП1
1 — изолятор; 2 — траверса; 3 — провод; 4 — электрод разрядника; 5 — разрядник; 6 — воздушный зазор
Разрядник длинно-искровой модульный РДИМ-10
Длинно-искровой разрядник шлейфовый РДИШ-10
Чтение схем: разрядники и предохранители
Разрядники, как и предохранители, защищают электрооборудования от повреждений, которые могут возникнуть в результате короткого замыкания. Разрядники защищают изоляционное покрытие электроустановок от разрушения перенапряжениями, в одних случаях внешними, например, грозовыми, а в другом – внутренними, возникающими внутри самой установки (коммутационные перенапряжения). Основная же задача предохранителей заключается в отключении места, в котором возникло КЗ (короткое замыкание).
Обычно, быстродействующие предохранители используются в выпрямительных установках для защиты полупроводниковых выпрямителей. В устройствах связи, по причине того, что линии длинные, а сечения проводников очень мало, значение тока КЗ очень ограничено. По этой причине в таких установках не применяются обычные предохранители, их заменяют термическими предохранительными катушками – № 7. Термические катушки используются также в устройствах сигнализации.
В современных установках, предохранители совмещают либо с выключателями, либо с разъемами.
Разрядники. Общее обозначение двухэлектродного искрового промежутка проиллюстрировано на рисунке под №8. Общее обозначение разрядников (не учитывая его тип) приведен под номером 11. Для указания типа применяются обозначения: № 9 – шаровой разрядник; № 10 – роговой; № 12 – трубчатый разрядник; № 13 – вентильный разрядник (данный указатель отменен, но его можно встретить на некоторых старых схемах); № 14 – вентильный разрядник; № 16 вакуумный разрядник, № 17 двухэлектродный ионный разрядник с газовым наполнителем. Газовое наполнение на схемах обозначается жирной точкой внутри изображения баллона.
Для предотвращения массового пробоя изоляции и поражения человека электричеством при нарушении изоляционного покрытия между обмотками высшего и низшего напряжения трансформатора, применяются пробивные предохранители № 15. Этот тип предохранителей подключают между нейтралью обмоток низшего напряжения и землей – если обмотка соединена в звезду. Если треугольник – то между одним из фазных проводов и землей.