Что кипит при минусовой температуре

Температура кипения воды в зависимости от давления: 4 фактора, таблица для расчёта

Многие люди думают, что температура кипения воды составляет 100°C. Однако этот показатель может меняться в зависимости от атмосферного давления.

Например, на горе Эверест на подъеме 8842 метра над уровнем моря вода закипит при +70°C. А в глубокой шахте при достижении температуры + 103°C

В данной статье мы выясним, как будет меняться температура кипения воды в зависимости от давления: в горах, шахте, вакууме. Рассмотрим особенности процесса кипячения с точки зрения физики и химии.

Как будет меняться температура кипения воды: 4 фактора

Температура, при которой кипит жидкость, называется температурой кипения.

Что кипит при минусовой температуре

Стоит отметить, что она всегда остается неизменной. Поэтому, если увеличить огонь под кипящей кастрюлей с водой, выкипать будет быстрее, но температура при этом не увеличится, так как средняя кинетическая энергия молекул остаётся неизменной.

Рассмотрим 4 фактора, которые влияют на изменение t°:

Рассмотрим более подробно каждый из факторов.

Влияние атмосферного давления

Согласно исследованиям и уравнению Клапейрона — Клаузиуса, градус кипения напрямую зависит от атмосферного давления. С его ростом температура кипения увеличивается, а с уменьшением, наоборот, становится все ниже и ниже.

Атмосферное давление — это давление атмосферы, действующее на все находящиеся на ней предметы и земную поверхность. Оно может меняться в зависимости от места и времени и измеряется барометром.

При нормальном атмосферном давлении 760 мм ртутного столба вода кипит при + 100 °C

В горной местности давление уменьшается, а под землей (в шахте) увеличивается.

Для наглядности предоставлена таблица № 1 из большого химического справочника, источник: Волков А. И, Жарский И. В.

Таблица № 1. «Температура кипения воды от давления».

Р, кПаt, °CР, кПаt, °CР, кПаt, °C
5,032,8891,597,17101,325100,00
10,045,8292,097,32101,5100,05
15,053,9892,597,47102,0100,19
20,060,0793,097,62102,5100,32
25,064,9893,597,76103,0100,46
30,069,1194,097,91103,5100,60
35,072,7094,598,06104,0100,73
40,075,8895,098,21104,5100,87
45,078,7495,598,35105,0101,00
50,081,3496,098,50105,5101,14
55,083,7396,598,64106,0101,27
60,085,9597,098,78106,5101,40
65,088,0297,598,93107,0101,54
70,089,9698,099,07107,5101,67
75,091,7898,599,21108,0101,80
80,093,5199,099,35108,5101,93
85,095, 1599,599,49109,0102,06
90,096,71100,099,63109,5102,19
90,596,87100,599,77110,0102,32
91,097, 02101,099,91115,0103,59

Единицы измерения давления в таблице: кПа.

1 кПа = 1000 Па = 0,00986923 атм = 7, 50062 мм. рт. ст

Нормальное атмосферное давление составляет 765 мм. РТ. Ст. = 101,325 Р, кПа

Температура кипения в горах

При подъеме над поверхностью Земли (в горах), температура кипения воды падает, так как снижается атмосферное давление (на каждые 10, 5 м на 1 мм РТ. С). Пузырькам легче всплывать – процесс происходит быстрее.

Что кипит при минусовой температуреПоэтому высоко в горах альпинисты не могут приготовить нормальную пищу, а используют законсервированные продукты.

Для варки мяса, как и других продуктов, нужны привычные 100 градусов. В обратном случае все компоненты бульона просто останутся сырыми.

Таблица № 2. «Как будет меняться t° кипения с высотой».

Высота над уровнем моряt° кипения
0100,0
50098,3
100096,7
150095,0
200093, 3
250091,7
300090,0
350088,3
400086,7
450085,0
500083,3
600080,0

Температура кипения воды в шахте

Если спуститься в шахту, то давление будет увеличиваться.

Применение герметической крышки

Герметичные крышки не позволяет образовавшемуся пару ускользнуть. В среднем температура закипания воды увеличивается от 5-20 градусов.

В хозяйстве для приготовления блюд часто используют кастрюли, сковородки с герметичной крышкой. Таким образом, уменьшается время приготовления пищи за счет высокой температуры, а блюда получаются более вкусными. В горных районах с низким давлением это необходимая вещь для приготовления пищи. Так же используют мультиварки и сотейники.

Кипячение воды в вакууме

Вакуум — это среда с газом, с пониженным давлением.

Температура кипения воды в вакууме зависит от того, какое давление в нём.

Разные виды вакуумов поддерживают разное давление. Например, в низком вакууме давление составляет от 760 до 25 мм. РТ. Ст. В абсолютном вакууме давление полностью отсутствует. Для точного расчета нужно знать модель вакуума и давление, которое он поддерживает.

Кипение солёной воды

Солёная вода закипает при более высокой температуре за счет своих свойств.

Соль увеличивает плотность воды, соответственно на процесс требуется больше времени.

t° повышается примерно на 1 градус при добавлении 40 грамм соли на литр воды.

Температура кипения воды в чайнике

Чистая пресная вода закипает в чайнике при t° 100 градусов °C при условиях нормального атм. давления 760 мм ртутного столба.

Удельная теплоемкость

Удельной теплоемкостью вещества называется количество теплоты, которое необходимо подвести к 1 кг этого вещества, чтобы его температура изменилась на 1 градус Цельсия.

Это количество теплоты необходимое для нагревания массы вещества на один градус.

Что кипит при минусовой температуреформула удельной теплоемкости

С — удельная теплоемкость;

— масса нагреваемого охлаждающегося вещества;

— ΔT — разность конечной и начальной температур вещества.

Процесс кипячения воды: 3 основных стадии

Кипение – это интенсивное парообразование, которое происходит при нагревании жидкости по всему объёму при определённой температуре.

Весь процесс кипения воды сопровождается выделением пара. Это одно из состояний воды. При парообразовании температура пара и воды остаются постоянными до тех пор, пока жидкость не изменит свое агрегатное состояние. Это явление объясняется тем, что при кипении вся энергия расходуется в преобразование воды в пар.

В воде растворены молекулы воздуха (газов). При нагревании газ превращается в воздушные пузырьки. При достижении достаточной температуры они лопаются, создаётся характерный шум.

Процесс можно разделить на 3 стадии:

Что такое кипячёная вода?

Это вода, ранее доведенная до температуры кипения. Сырая вода в своем составе может содержать различные бактерии, микроорганизмы. В водопроводе больших городов много хлора и различных других химических веществ. Процесс кипячения обезвреживает многие микробы. Однако не все бактерии и тяжёлые металлы убиваются в кипящей воде, поэтому питьевая вода происходит предварительную проверку пригодности.

Выводы и рекомендации

Кипячение необходимый процесс для человечества. С помощью него приготавливают пищу, стирают загрязненную одежду, проводят дезинфекцию.

Градус кипения напрямую зависит от давления, свойств воды и емкости.

Источник

Еще одно объяснение эффекта Мпембы (это про почему кипяток замерзает быстрее холодной воды)

От переводчика: всю жизнь мучился вопросом, а тут на тебе- опять объяснили.

Что кипит при минусовой температуре

Краткое содержание: из-за наличия водородных связей в молекулах воды происходит изменение конфигурации ковалентных связей О-Н, с запасанием в них дополнительной энергии, выделяющейся при охлаждении и работающей как дополнительный подогрев, мешающий замерзанию. В горячей воде водородные связи растянуты, ковалентные не напряжены, запас энергии мал- остывание и замерзание идет быстрее. Существует некоторое характерное время tau, необходимое на формирование водородных связей, если процесс охлаждения будет идти медленно- то эффект Мпембы исчезнет. Если процесс охлаждения идет относительно быстро (до десятков минут)- то эффект выражен. Вероятно, должна быть и какая-то критическая температура, начиная с которой эффект появляется, но в статье это не отражено.

На КДПВ приведено изображение из оригинальной статьи, глядя на которое читатель должен со всей ясностью увидеть, что в ковалентных связях запасается энергия, которая затем может выделяться в виде дополнительного тепла, мешая остывать холодной воде.

История вопроса

Аристотель первым отметил, что горячая вода замерзает быстрее холодной, но химики всегда отказывались объяснять этот парадокс. До сегодняшнего дня.

Вода одно из самых обычных веществ на Земле, но в тоже время одно из самых загадочных. Например, как и у большинства жидкостей, ее плотность растет при охлаждении. Однако, в отличие от остальных, ее плотность достигает максимума при температуре 4С, а затем начинает уменьшаться вплоть до температуры кристаллизации.

В твердой фазе вода имеет несколько меньшую плотность, из-за чего лед плавает на поверхности воды. Это одна из причин существования жизни на Земле — если бы лед был плотнее воды, то при замерзании он опускался бы на дно озер и океанов, что сделало бы невозможным многие типы химических процессов, которые делают жизнь возможной.

Итак, существует странный эффект Мпембы, названный в честь танзанийского студента, который обнаружил, что горячая смесь для мороженого замерзает быстрее, чем холодная в морозилке школьной кухни где-то в начале 1960-х. (На самом деле этот эффект отмечался множеством исследователей в истории, начиная с Аристотеля, Фрэнсиса Бэкона и Рене Декарта).

Эффект Мпембы заключается том, что горячая вода замерзает быстрее холодной. Этот эффект измерялся во множестве случаев с различными объяснениями, изложенными далее. Одна из идей заключается в том, что горячие сосуды имеют лучший тепловой контакт с морозильной камерой и отводят тепло более эффективно. Другая- в том, что теплая вода испаряется быстрее, а так как этот процесс- эндотермический (идет с поглощением теплоты)- то он ускоряет замерзание.

Ни одно из этих объяснений не выглядит правдоподобным, поэтому реальное объяснение до сих пор отсутствовало.

Новое объяснение эффекта (теперь-то уж точно правильное)

Сегодня Зи Чанг из Наньянгского технологического университета Сингапура и несколько его коллег предоставили таковое. Эти ребята утверждают, что эффект Мпембы является результатом уникальных свойств различных типов связи, удерживающих молекулы воды вместе.

Так что же такого в этих связях? Каждая молекула воды состоит из сравнительно большого атома кислорода, соединенного с двумя маленькими атомами водорода обычной ковалентной связью. Но если поместить рядом несколько молекулы воды, то водородные связи тоже начнут играть важную роль. Это происходит из-за того, что атомы водорода одной молекулы располагаются вблизи кислорода другой молекулы, и взаимодействуют с ним. Водородные связи намного слабее ковалентных (прим. пер.

в 10 раз), но сильнее чем Ван-дер-Ваальсовы силы, которые использует геккон для прилипания к вертикальным стенам.

Химики давно знают о важности этих связей. Например, точка кипения воды намного выше, чем у других жидкостей с похожими молекулами, из-за того, что водородные связи удерживают молекулы вместе.

Но в последние годы химики все более интересуются другими ролями, которые могут играть водородные связи. Например, молекулы воды в тонких капиллярах формируют длинные цепочки, удерживаемые водородными связями. Это очень важно для растений, у которых испарение воды через мембраны листьев эффективно протаскивает цепь молекул воды от корней вверх.

Теперь Зи с соавторами утверждают, что водородные связи так же объясняют эффект Мпембы. Их ключевая идея состоит в том, что водородные связи приводят к более плотному контакту молекул воды, и когда это происходит, естественное отталкивание между молекулами приводит к сжатию ковалентных связей и накоплению энергии в них.

Однако, когда жидкость нагревается, расстояние между молекулами увеличивается, а водородные связи растягиваются. Это также позволяет увеличить длину ковалентных связей и таким образом- отдать обратно энергию, накопленную в них. Важным элементом теории является тот факт, что процесс, при котором ковалентные связи отдают накопленную в них энергию- эквивалентен охлаждению!

В действительности- этот эффект усиливает обычный процесс охлаждения. Таким образом, горячая вода должна охлаждаться быстрее холодной, рассуждают авторы. И это именно то, что мы наблюдаем в эффекте Мпембы.

Почему новое объяснение лучше предыдущих?

Эти ребята рассчитали величину дополнительного охлаждения, и показали, что она в точности соответствует наблюдаемой разнице в экспериментах по измерению разности скоростей охлаждения горячей и холодной воды. Вуаля! Это интересный взгляд на сложные и загадочные свойства воды, которые все еще заставляют химиков не спать по ночам. Несмотря на то, что идея Зи и соавторов убедительна, она может оказаться очередной ошибкой теоретиков, которую другие физики должны будут опровергнуть. Это оттого, что теории не хватает прогностической силы (по крайней мере- в оригинальной статье).

Зи и соавторам необходимо воспользоваться своей теорией для предсказания новых свойств воды, которые не выводятся из обычных рассуждений. Например, если ковалентные связи укорачиваются- это должно приводить к возникновению каких-то новых измеряемых свойств воды, которые не должны были бы проявляться в противном случае. Открытие и измерение таких свойств было бы последней вишенкой на торте, которой не хватает теории в ее текущем виде.

Итак, несмотря на то, что парни, возможно, неплохо объяснили эффект Мпембы, им необходимо чуток поднапрячься, чтобы убедить в этом остальных.

Как бы то ни было, теория у них интересная.

P.S. в 2016 один из соавторов — Чанг Солнце (Chang Q. Sun) совместно с Йи Солнцем (Yi Sun) опубликовали более полное изложение предложенной теории, с рассмотрением поверхностных эффектов, конвекции, диффузии, излучения и других факторов- и вроде бы наблюдают хорошее согласие с экспериментом (Springer).

Литература

Ref: arxiv.org/abs/1310.6514: O:H-O Bond Anomalous Relaxation Resolving Mpemba Paradox

почему «опять объяснили»- а потому что уже было:

Источник

5 аномальных фактов о воде

Перед вами пять наиболее интересных фактов о воде.

1. Горячая вода замерзает быстрее холодной

Почему же так происходит?

В 1963 году один танзанский студент по имени Эрасто Б. Мпемба (Erasto B. Mpemba) замораживая приготовленную смесь для мороженого, заметил, что горячая смесь застывает в морозильной камере быстрее, чем холодная. Когда юноша поделился своим открытием с учителем физики, тот лишь посмеялся над ним.

К счастью, ученик оказался настойчивым и убедил учителя провести эксперимент, который и подтвердил его открытие: в определенных условиях горячая вода действительно замерзает быстрее холодной.

Теперь этот феномен горячей воды, замерзающей быстрее холодной, носит название «эффект Мпемба». Правда, за долго до него это уникальное свойство воды было отмечено Аристотелем, Фрэнсисом Бэконом и Рене Декартом.

Ученые так до конца и не понимают природу этого явления, объясняя его либо разницей в переохлаждении, испарении, образовании льда, конвекции, либо воздействием разжиженных газов на горячую и холодную воду.

2. Сверхохлаждение и «мгновенное» замерзание

Все знают, что вода всегда превращается в лед при охлаждении до 0 °C … за исключением некоторых случаев! Таким случаем, например, является сверхохлаждение, которое представляет собой свойство очень чистой воды оставаться жидкой, даже будучи охлажденной до температуры ниже точки замерзания.

Это явление становится возможным благодаря тому, что окружающая среда не содержит центров или ядер кристаллизации, которые могли бы спровоцировать образование кристаллов льда. И поэтому вода остается в жидкой форме, даже будучи охлажденной до температуры ниже нуля градусов по Цельсию.

Процесс кристаллизации может быть спровоцирован, например, пузырьками газа, примесями (загрязнениями), неровной поверхностью емкости. Без них вода будет оставаться в жидком состоянии. Когда процесс кристаллизации запускается, можно наблюдать, как сверхохлажденная вода моментально превращается в лед.

Заметьте, что «сверхнагретая» вода также остается жидкой, даже будучи нагретой до температуры выше точки закипания.

Что кипит при минусовой температуре

3. «Стеклянная» вода

Не задумываясь, назовите, сколько различных состояний есть у воды? Если вы ответили три: твердое, жидкое, газообразное, то вы ошиблись. Ученые выделяют как минимум 5 различных состояний воды в жидком виде и 14 состояний в замерзшем виде.

Что же произойдет при дальнейшем понижении температуры?

4. Квантовые свойства воды

На молекулярном уровне вода удивляет ещё больше. В 1995 году проводимый учеными эксперимент по рассеянию нейтронов дал неожиданный результат: физики обнаружили, что нейтроны, направленные на молекулы воды, «видят» на 25% меньше протонов водорода, чем ожидалось.

Что кипит при минусовой температуре

5. Есть ли у воды память?

Альтернативная официальной медицине гомеопатия утверждает, что разбавленный раствор лекарственного препарата может оказывать лечебный эффект на организм, даже если коэффициент разбавления настолько велик, что в растворе уже не осталось ничего, кроме молекул воды.

Сторонники гомеопатии объясняют этот парадокс концепцией под названием «память воды», согласно которой вода на молекулярном уровне обладает «памятью» о веществе, некогда в ней растворенном и сохраняет свойства раствора первоначальной концентрации после того, как в нём не остается ни одной молекулы ингредиента.

Что кипит при минусовой температуре

Международная группа ученых во главе с профессором Мэдлин Эннис (Madeleine Ennis) из Королевского университета в Белфасте (Queen’s University of Belfast), критиковавшая принципы гомеопатии, в 2002 году провела эксперимент, чтобы раз и навсегда опровергнуть эту концепцию.

Результат оказался обратным. После чего, ученые заявили, что им удалось доказать реальность эффекта «памяти воды». Однако опыты, проведенные под наблюдением независимых экспертов, результатов не принесли. Споры о существовании феномена «памяти воды» продолжаются.

Вода обладает множеством других необычных свойств, о которых мы не рассказали в этой статье. Например, плотность воды меняется в зависимости от температуры (плотность льда меньше плотности воды); вода обладает довольно большой величиной поверхностного натяжения; в жидком состоянии вода представляет собой сложную и динамически меняющуюся сеть из водных кластеров, и именно поведение кластеров влияет на структуру воды и т.д.

Источник

Почему зимой машина может закипеть, как в жару

Что кипит при минусовой температуре

На первый взгляд определить перегрев двигателя просто. Для этого достаточно посмотреть на индикатор температуры охлаждающей жидкости. Как только стрелка поползла вверх, к красной зоне, значит с системой охлаждения что-то не так. Но дело в том, что во многих современных машинах таких индикаторов на «приборке» просто нет. Вместо этого, на панели вспыхивает сигнальная лампа, говоря о том, что температура антифриза уже поднялась до критической отметки и надо спасать силовой агрегат.

Одной из причин перегрева мотора зимой могут быть ошибки при замене антифриза. Скажем, перед холодами вы захотели поменять охлаждающую жидкость, что правильно. При этом выбрали концентрат, который надо разбавлять дистиллированной водой. Но при смешивании компонентов ошиблись и воды залили слишком много.

В результате, вода постепенно начинает выкипать. При движении по трассе этого можно не заметить, ведь морозный воздух хорошо охлаждает радиатор. Но приехав в город и попав в пробку, вы рискуете получить перегрев. Ведь обдува мотора в заторе нет, а уровень антифриза низкий. Плюс, из-за дефицита воды антифриз может загустеть, что тоже приведет к перегреву.

Что кипит при минусовой температуре

При низком уровне жидкости, в системе может образоваться и так называемая «воздушная пробка». Воздух, который проник внутрь, собирается в один пузырь и движется до определенного места. Дойдя до самой высокой точки, он останавливается и существенно затрудняет циркуляцию антифриза. Обычно, воздушная пробка появляется в большом контуре циркуляции, включающем основной радиатор. Так что за уровнем антифриза нужно следить регулярно.

Забитый грязью радиатор еще одна частая причина перегрева мотора зимой. Дело в том, что радиаторов в автомобиле несколько. Ближе к решетке стоит радиатор кондиционера, а за ним уже — системы охлаждения. К нему затруднен доступ и не всегда удается определить на глаз состояние сот, тем более их очистить. В результате нарушаются процессы теплообмена, а риск перегрева становится все более реальным. Так что перед холодами обязательно почистите радиатор.

Многие водители, готовясь к минусовым температурам, крепят картонку на решетку радиатора. При сильном морозе она становится заслоном на пути холодного воздуха и мотор быстрее прогревается. Но у такого решения есть и обратная сторона. При температуре от −5 до −10 градусов закрывать чем-либо радиатор не рекомендуется, потому как двигатель можно перегреть. Добавим сюда плотный городской трафик и получим, что с такой картонкой мотору жарче, чем летом. Последствия не заставят себя ждать.

Наконец, проблемы можно получить и после того, как машина долго стояла на морозе. В этом случае антифриз может, так сказать, «перемерзнуть». Скажем, если жидкость рассчитана на −25 градусов, а на улице было −35, то он просто загустеет, что также спровоцирует перегрев движка.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *