Что легче кислород или воздух
Разница между кислородом и воздухом
Существует расхожая фраза, что человек не может жить без чего-то (подставляйте сами), как без воздуха, – и это абсолютная правда. Именно он и кислород являются необходимым условием существования преобладающего количества живых существ на Земле.
Определение
Кислород – это газ, чья молекула состоит из двух атомов кислорода.
Воздух – это смесь газов, которые образуют атмосферу Земли.
Сравнение
Кислород – это газ, не имеющий цвета, вкуса или какого-либо запаха. Молекула кислорода состоит из двух атомов. Ее химическая формула записывается как O2. Трехатомный кислород именуется озоном. Один литр кислорода равен 1,4 граммам. Он слабо растворяется в воде и спирте. Кроме газообразного, может быть в жидком состоянии, образуя вещество бледно-голубого цвета.
Открыл кислород в 1774 году англичанин Джозеф Пристли, раскладывая оксид ртути в закрытом сосуде. Сам термин «кислород» был веден в обиход Ломоносовым, а поставлен «на место №8» химиком Менделеевым. Согласно его периодической системе, кислород является неметаллом и самым легким элементом группы халькогенов.
В 1754 году шотландец Джозеф Блек доказал, что воздух является не однородным веществом, а смесью газов, водяного пара и различных примесей.
Кислород считается самым распространенным на Земле химическим элементом. Во-первых, из-за его присутствия в силикатах (кремний, кварц), которые составляют 47% земной коры, и еще 1500 минералов, входящих в «земную твердь». Во-вторых, из-за его присутствия в воде, которая укрывает 2/3 поверхности планеты. В-третьих, кислород является неизменным компонентом атмосферы, точнее, занимает 21% от ее объема и 23% от ее массы. В-четвертых, данный химический элемент входит в состав клеток всех земных живых организмов, являясь каждым четвертым атомом в любой органике.
Кислород – обязательное условие процессов дыхания, горения и гниения. Используется в металлургии, в медицине, в химической промышленности и сельском хозяйстве.
Воздух образует земную атмосферу. Он необходим для существования жизни на Земле, является обязательным условием процессов дыхания, фотосинтеза и прочих жизненных процессов всех существ-аэробов. Воздух нужен для процесса сжигания топлива; из него, путем сжижения, добывают инертные газы.
Кислород – рождающий кислоты
Содержание
Кислород при нормальных условиях (температуре и давлении) представляет собой прозрачный газ без запаха, вкуса и цвета. Не относится к горючим газам, но способен активно поддерживать горение.
По химической активности среди неметаллов он занимает второе место после фтора.
Все элементы, кроме благородных металлов (платина, золото, серебро, родий, палладий и др.) и инертных газов (гелий, аргон, ксенон, криптон и неон), вступают в реакцию окисления и образовывают оксиды. Процесс окисления элементов, как правило, носит экзотермический (с выделением теплоты) характер. Также необходимо учитывать тот факт, что при повышении температуры, давления или использовании катализаторов – скорость реакции окисления резко возрастает.
История открытия кислорода
Открытие кислорода приписывают Джозефу Пристли (Joseph Priestley). У него была лаборатория, оборудованная приборами для собирания газов. Он испытывал его физиологическое действие на себе и на мышах. Пристли установил, что после вдыхания газа некоторое время ощущается приятная легкость. Мыши в герметически закрытой банке с воздухом задыхаются быстрей, чем в банке с O2. Поскольку Пристли был приверженцем флогистонной теории он так и не узнал, что оказалось у него в руках. Он только описал этот газ, даже не догадываясь, что он описал. А вот лавры открытия кислорода принадлежат Антуан Лоран Лавуазье (Antoine Laurent de Lavoisier), который и дал ему имя.
Лавуазье, поставил свой знаменитый опыт, продолжавшийся 12 дней. Он нагревал ртуть в реторте. При кипении образовывалась ее красная окись. Когда реторту охладили, оказалось, что воздуха в ней убыло почти на 1/6 его объема, а остаток ртути весил меньше, чем перед нагревом. Но когда разложили окись ртути сильным прокаливанием, все вернулось: и недостача ртути, и «исчезнувший» кислород.
Впоследствии Лавуазье установил, что этот газ входит в состав азотной, серной, фосфорной кислот. Он ошибочно полагал, что O2 обязательно входит в состав кислот, и поэтому назвал его «оксигениум», что значит «рождающий кислоты». Теперь хорошо известны кислоты, лишенные «оксигениума» (например: соляная, сероводородная, синильная и др.).
Способы получения кислорода
В основном кислород получают тремя способами:
Из атмосферного воздуха его получают методом глубокого охлаждения, как побочный продукт при получении азота.
Также O2 добывают путем пропускания электрического тока через воду (электролиз воды) с попутным получением водорода.
Химические способ получения малопроизводителен, а, следовательно, и неэкономичен, он не нашел широкого применения и используются в лабораторной практике.
Наверно многие помнят химический опыт, когда в колбе нагревают марганцовку (перманганат калия KMnO4), а потом выделяющийся в процессе нагрева газ собирают в другую колбу?
Применение кислорода
Помимо того, что все живые существам в природе, за исключением немногих микроорганизмов, при дыхании потребляют кислород, он широко применяется во многих отраслях промышленности: металлургической, химической, машиностроении, авиации, ракетостроении и даже в медицине.
В химической промышленности его применяет:
В металлургии его используют:
В медицинских целях больным, у которых нарушена нормальная деятельность органов дыхания или кровообращения, искусственно увеличивают содержание O2 в воздухе или дают дышать непродолжительное время чистым O2. Медицинский кислород, выпускаемый ГОСТ 5583, особенно тщательно очищают от всех примесей.
Применение кислорода в сварке
Сам по себе O2 является негорючим газом, но из-за свойства активно поддерживать горение и увеличения интенсивности (интенсификации) горения газов и жидкого топлива его используют в ракетных энергетических установках и во всех процессах газопламенной обработки. В таких процессах газопламенной обработки, как газовая сварка, поверхностная закалка высокая температура пламени достигается путем сжигания горючих газов в O2, а при газовой резке благодаря ему происходит окисление и сгорание разрезаемого металла.
При полуавтоматической сварке (MIG/MAG) кислород O2 используют как компонент защитных газовых смесей с аргоном (Ar) или углекислым газом (CO2).
Кислород добавляют в аргон при полуавтоматической сварке легированных сталей для обеспечения устойчивости горения дуги и струйного переноса расплавленного металла в сварочную ванну. Дело в том, что как поверхностно активный элемент он уменьшает поверхностное натяжение жидкого металла, способствуя образованию на конце электрода более мелких капель.
При сварке низколегированных и низкоуглеродистых сталей полуавтоматом O2 добавляют в углекислый газ для обеспечения глубокого проплавления и хорошего формирования сварного шва, а также для уменьшения разбрызгивания.
Чаще всего кислород используют в газообразном виде, а в виде жидкости используют только при его хранении и транспортировке от завода-изготовителя до потребителей.
Вредность и опасность кислорода
За внешней безобидностью скрывается очень опасный газ, но об этом на нашем сайте опубликована статья про маслоопасность и взрывоопасность кислорода и мы не будем здесь дублировать информацию.
Хранение и транспортировка кислорода
Кислород газообразный технический и медицинский выпускают по ГОСТ 5583.
Хранят и транспортируют его в стальных баллонах ГОСТ 949 под давлением 15 МПа. Кислородные баллоны окрашены в синий цвет с надписью черными буквами «КИСЛОРОД».
Жидкий кислород выпускается по ГОСТ 6331. O2 находится в жидком состоянии только при получении, хранении и транспортировке. Для газовой сварки или газовой резки его необходимо снова превратить в газообразное состояние.
Характеристики кислорода
Характеристики O2 представлены в таблицах ниже:
Коэффициент перевода объема и массы O2 при Т=15°С и Р=0,1 МПа
Масса, кг | Объем | |
---|---|---|
Газ, м 3 | Жидкость, л | |
1,337 | 1 | 1,172 |
1,141 | 0,853 | 1 |
1 | 0,748 | 0,876 |
Коэффициенты перевода объема и массы O2 при Т=0°С и Р=0,1 МПа
Масса, кг | Объем | |
---|---|---|
Газ, м 3 | Жидкость, л | |
1,429 | 1 | 1,252 |
1,141 | 0,799 | 1 |
1 | 0,700 | 0,876 |
Кислород в баллоне
Наименование | Объем баллона, л | Масса газа в баллоне, кг | Объем газа (м 3 ) при Т=15°С, Р=0,1 МПа |
---|---|---|---|
O2 | 40 | 8,42 | 6,3 |
Благодаря этой таблице теперь можно легко дать ответы на вопросы, которые очень часто задают сварщики:
Что легче кислород или воздух
Воздух объединяет в себе кислород и другие примеси. Что легче? Не взвешивала. Для меня это практически одно и то же.
воздух. он состоит в меньшей степени из кислорода, в большей из азота. азот легче кислорода- значит воздух легче
Точно не помню в цифрах но помню свое удивление что молярная масса кислорода была выше чем масса воздуха
в воздухе 3/4 азота. азот на 1 позицию легче кислорода. получается кислород тяжелее воздуха
Если бы он был бы легче,то нам было бы тяжело дышать
Кислород. Воздух состоит из нескольких элементов, в том числе кислород.
легче всего знать, что ничего никому не должен )))
В нашем Мире нет Человека,который бы был ничего не должен.
есть. у нас в тайге живет старовер Агафья Лыкова. уже много лет совершенно одна. Родственники умерли, детей нет. Сеет, пашет, сажает. Кому она чего должна??
Кислород легче воздуха
Подскажите, кислород легче воздуха или нет? И почему? Какие типы полимеризации в зависимости от природы активного центра вы знаете? Какие мономеры способны вступать в реакции полимеризации? Почему?
Кислород легче воздуха быть не может, поскольку молярная масса кислорода равна 36, а воздуха – 29 г/моль. Это означает, что данный газ тяжелее воздуха.
В зависимости от природы активного центра выделяют полимеризацию:
— радикальную (активный центр – свободный радикал (радикал роста, макрорадикал));
— ионную – катионную и анионную (концевой атом растущей цепи несет полный или частичный положительный или отрицательный заряд соответственно);
— координационно-ионную (противоион, входящий в состав активного центра, принимает участие в акте роста, образуя с присоединяющейся молекулой мономера координационный комплекс или циклическое переходное состояние).
В реакции полимеризации способны участвовать мономеры, содержащие кратные связи, или циклические мономеры. В большинстве случаев состав и структура мономерного звена в макромолекуле соответствует исходному мономеру (за исключением размыкающейся кратной связи), однако в ряде случаев мономерные звенья в макромолекуле отличаются от исходного мономера по структуре или по составу за счет: образования новых связей внутри мономерного звена при полимеризации несопряженных диенов, изомеризации активного центра при полимеризации разветвленных альфа-олефинов, выделения низкомолекулярных веществ при полимеризации диазоалканов и пр.
Что легче кислород или воздух
Сертификат Качества: ISO 9001:2015
+7 917-480-22-27
gazresyrs0102@mail.ru
ул. Бирский тракт 66
Уфа, Башкортостан
Краткие сведения о кислороде, пропан-бутане и ацетилене
13 апреля, 2020
Краткие сведения о кислороде, пропан-бутане и ацетилене
Кислород – это газ без вкуса, запаха и цвета, не горючий, но активно поддерживает горение, немного тяжелее воздуха. При нормальном атмосферном давлении (760 мм ртутного столба) при температуре 0° С масса 1 м куб. кислорода равна 1.43 кг, а при нормальном атмосферном давлении и температуре 20° С, масса 1 м куб. кислорода равна 1.33 кг, масса 1 м куб воздуха равна 1.29 кг.
Кислород – это газ без вкуса, запаха и цвета, не горючий, но активно поддерживает горение, немного тяжелее воздуха. При нормальном атмосферном давлении (760 мм ртутного столба) при температуре 0° С масса 1 м куб. кислорода равна 1.43 кг, а при нормальном атмосферном давлении и температуре 20° С, масса 1 м куб. кислорода равна 1.33 кг, масса 1 м куб воздуха равна 1.29 кг.
В промышленности кислород получают из атмосферного воздуха методом глубокого охлаждения и ректификации.
Технический кислород для газопламенных работ получают в специальных установках из атмосферного воздуха в жидком состоянии. Жидкий кислород – это легко подвижная, голубоватая жидкость. Температура кипения (начало испарения) жидкого кислорода минус 183° С.
При нормальных условиях и температуре минус 183° С. легко испаряется, превращаясь в газообразное состояние. При повышении температуры интенсивность испарении увеличивается. Из 1 литра жидкого кислорода, образуется около 860 литров газообразного.
Кислород обладает большой химической активностью. Реакция соединения его с маслами, жирами, угольной пылью, ворсинками ткани и т.д., приводит их к мгновенному окислению, самовоспламенению и взрыву при обычных температурах.
Кислород в смеси с горючими газами и парами горючих жидкостей образует в широких пределах взрывчатые смеси.
«Кислород газообразный технический» согласно ГОСТ 5583- 78 выпускается для сварки и резки трех сортов: 1-й – чистотой не менее 99,7%, 2-й – не менее 99,5%, 3-й – не менее 99,2% по объёму. Чем меньше в кислороде газовых примесей, тем выше скорость реза, чище кромки и меньше расход кислорода. На предприятие поставляется в газообразном состоянии, в стальных кислородных баллонах «голубого» цвета ёмкостью 40 дм. куб. и давлением 150 кгс/см2. Сжатый кислород хранят и транспортируют в баллонах по ГОСТ 949-73.
Пропан – технический, бесцветный газ с резким запахом, состоящий из пропана С3Н8 или из пропана и пропилена С3Н6, суммарное содержание которых должно быть не менее 93%. Получают пропан при переработке нефтепродуктов. Пропанобутановая смесь – это смесь газов главным образом технического пропана и бутана. Эти газы относятся к группе тяжёлых углеводородов. Сырьём для их получения являются природные нефтяные газы, отходящие газы нефтеперерабатывающих заводов. Эти газы в чистом виде или в виде смесей при нормальной температуре и на большом повышении давления могут быть переведены из газообразного состояния в жидкое состояние.Хранится и транспортируется пропанобутановая смесь в жидком состоянии, а используется в газообразном.
Газообразная пропанобутановая смесь – это горючий газ без вкуса, запаха и цвета, тяжелее воздуха в 2 раза, поэтому при утечке газа он не рассеивается в атмосфере, а опускается вниз и заполняет углубления пола или местности.
При содержании газа пропан-бутана в воздухе или кислороде до нижнего предела взрываемости и внесении открытого огня происходит горение газа вокруг источника открытого огня.
При содержании газа пропан-бутана в воздухе или кислороде свыше нижнего предела взрываемости и внесении открытого огня или искры происходит пожар, т.е. интенсивное горение газа.
Газообразная пропанобутановая смесь при атмосферном давлении не обладает токсичным (отравляющим) воздействием на организм человека, так как мало растворяется в крови. Но, попадая в воздух, смешивается с ним, вытесняет и уменьшает содержание кислорода в воздухе. Человек, находящийся, а такой атмосфере испытывает кислородное голодание, а при значительных концентрациях газа в воздухе может погибнуть от удушья.
Предельно допустимая концентрация пропан-бутана в воздухе рабочей зоны должна быть не более 300 мг/м 3 (в пересчёте на углерод).При попадании жидкого пропан-бутана на кожные покровы тела, нормальная температура которого 36,6 град. С, происходит быстрое его испарение и интенсивный отбор тепла с поверхности тела, затем наступает обморожение.
По ГОСТ 20448-80 промышленность выпускает пропанобутановую смесь 3 марок:
На предприятия для газопламенной обработки металлов поставляется пропанобутановая смесь в стальных баллонах зимняя и летняя.
Зимняя пропанобутановая смесь содержит 15% пропана, 25% бутана и прочих компонентов.
Летняя пропанобутановая смесь содержит 60% бутана, 40% пропана и прочих компонентов.
Для сжигания I куб. м газообразной пропано-бутановой смеси требуется 25-27 куб. м воздуха или 3,58 – 3,63 кг кислорода.
Температура воспламенения с воздухом:
Температура воспламенения пропанобутановой смеси:
Температура пламени пропанобутановой смеси с кислородом зависит от её состава и равна 2200-2680 град. С. При окислительном пламени (избыток кислорода) температура повышается.
Теплотворная способность пропанобутановой смеси равна 93000 Дж/м куб. (22000 ккал/м куб.).
Скорость горения пропанобутановой смеси:
Пределы взрывоопасности пропан-бутана при нормальном давлении составляют:
Пропанобутановые смеси в жидком виде разрушают резину, поэтому необходимо тщательно следить за резиновыми изделиями, применяемыми в газопламенной аппаратуре, и в случае необходимости производить их своевременную замену.
Наибольшая опасность разрушения резины существует зимой, вследствие большей вероятности попадания жидкой фазы пропанобутановой смеси в рукава.
Ацетилен – это горючий газ, без цвета, вкуса, с резким специфическим чесночным запахом, он легче воздуха. Его плотность по отношению к воздуху 0,9.
При нормальном атмосферном давлении (760 мм ртутного столба) и температуре плюс 20 град. С 1 м куб. имеет массу 1,09 кг, воздух 1,20 кг.
При нормальном атмосферном давлении и температуре от – 82,4 градуса до – 84 градусов С ацетилен переходит из газообразного в жидкое состояние, а при температуре минус 85 град. С затвердевает.
При газопламенной обработке металлов ацетилен используют либо в газообразном состоянии, получая его в передвижных или стационарных ацетиленовых генераторах, либо растворённым в ацетиленовых баллонах. Растворенный ацетилен по ГОСТ 5457-75 представляет собой раствор газообразного ацетилена в ацетоне, распределённый в пористом наполнителе под давлением до 1,9 МПА (19 кгс/см 2 ). В качестве пористых наполнителей используются насыпные – берёзовый активированный уголь (БАЦ) и литые пористые массы.
Основным сырьём для получения ацетилена является карбид кальция. Это твёрдое вещество тёмно-серого или коричневатого цвета. Ацетилен получается в результате разложения (гидролиза) кусков, карбида кальция водой. Выход ацетилена на 1 кг карбида кальция составляет 250 дм куб. Для разложения 1 кг карбида кальция требуется от 5 до 20 дм куб. воды. Карбид кальция транспортируется в герметически закрытых барабанах. Масса карбида в одном барабане от 50 до 130 кг.
При нормальном атмосферном давлении ацетилен с воздухом и кислородом образуют взрывоопасные смеси. Пределы взрывоопасности ацетилена с воздухом:
Пределы взрывоопасности ацетилена с кислородом:
Наиболее взрывоопасные концентрации ацетилена с воздухом и кислородом составляют: