Что лучше симистор или тиристор
Чем симистор отличается от тиристора
Тиристором называется управляемый полупроводниковый переключатель, обладающий односторонней проводимостью. В открытом состоянии он ведет себя подобно диоду, а принцип управления тиристором отличается от транзистора, хотя и тот и другой имеют по три вывода и обладают способностью усиливать ток.
Выводы тиристора — это анод, катод и управляющий электрод.
Анод и катод — это электроды электронной лампы или полупроводникового диода. Их лучше запомнить по изображению диода на принципиальных электрических схемах. Представьте, что электроны выходят из катода расходящимся пучком в виде треугольника и приходят на анод, тогда вывод от вершины треугольника — катод с отрицательным зарядом, а противоположный вывод — анод с положительным зарядом.
Подав на управляющий электрод определенное напряжение относительно катода, можно перевести тиристор в проводящее состояние. А для того чтобы тиристор вновь запереть, необходимо сделать его рабочий ток меньшим, чем ток удержания данного тиристора.
Тиристор, как полупроводниковый электронный компонент, состоит из четырех слоев полупроводника (кремния) p и n-типа. На рисунке верхний вывод — это анод — область p-типа, снизу — катод — область n-типа, сбоку выведен управляющий электрод — область p-типа. К катоду присоединяется минусовая клемма источника питания, а в цепь анода включается нагрузка, питанием которой следует управлять.
Воздействуя на управляющий электрод сигналом определенной длительности, можно очень легко управлять нагрузкой в цепи переменного тока, отпирая тиристор на определенной фазе периода сетевой синусоиды, тогда закрытие тиристора будет происходить автоматически при переходе синусоидального тока через ноль. Это несложный и весьма популярный способ регулирования мощности активной нагрузки.
В соответствии с внутренним устройством тиристора, в запертом состоянии его можно представить цепочкой из трех диодов, соединенных последовательно, как показано на рисунке. Видно, что в запертом состоянии данная схема не пропустит ток ни в одном, ни в другом направлении. Теперь представим тиристор схемой замещения на транзисторах.
Видно, что достаточный базовый ток нижнего n-p-n-транзистора приведет к возрастанию его коллекторного тока, который тут же явится базовым током верхнего p-n-p-транзистора.
Верхний p-n-p-транзистор теперь отпирается, и его коллекторный ток складывается с базовым током нижнего транзистора, и тот поддерживается в открытом состоянии благодаря наличию в данной схеме положительной обратной связи. И если сейчас перестать подавать напряжение на управляющий электрод, открытое состояние все равно останется таковым.
Чтобы запереть эту цепочку, придется как-то прервать общий коллекторный ток данных транзисторов. Разные способы отключения (механические и электронные) показаны на рисунке.
Симистор, в отличие от тиристора, имеет шесть слоев кремния, и в проводящем состоянии он проводит ток не в одном, а в обоих направлениях, словно замкнутый выключатель. По схеме замещения его можно представить как два тиристора, включенных встречно-параллельно, только управляющий электрод остается один общий на двоих. А после открытия симистора, чтобы ему закрыться, полярность напряжения на рабочих выводах должна измениться на противоположную или рабочий ток должен стать меньше чем ток удержания симистора.
Если симистор установлен для управления питанием нагрузки в цепи переменного или постоянного тока, то в зависимости от текущей полярности и направления тока управляющего электрода, более предпочтительными окажутся определенные способы управления для каждой ситуации. Все возможные сочетания полярностей (на управляющем электроде и в рабочей цепи) можно представить в виде четырех квадрантов.
Стоит отметить, что квадранты 1 и 3 соответствуют обычным схемам управления мощностью активной нагрузки в цепях переменного тока, когда полярности на управляющем электроде и на электроде А2 в каждом полупериоде совпадают, в таких ситуациях управляющий электрод симистора достаточно чувствителен.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Тиристорные и симисторные стабилизаторы напряжения
Принципиальная разница между тиристорами и симисторами заключается в том, что тиристоры пропускают ток только в одну сторону, а симистор в обе. Поэтому для коммутации переменного напряжением требуется либо два тиристора (включенные встречно-параллельно) либо один симистор. Их применение в стабилизаторах в качестве силовых переключающих ключей даёт в основном только одни преимущества в сравнении с релейными или электромеханическими устройствами.
Однако тиристорные и симисторные стабилизаторы напряжения имеют один небольшой недостаток — это ступенчатая стабилизация. Правда, этот недостаток больше относится к принципу работы самого стабилизатора, нежели именно к тиристорам или симисторам. Например, при точности стабилизации 5% шаг напряжения на выходе составляет всего 11 вольт, что лишь немного заметно только на лампочках накаливания. При точности 3% и выше шаг напряжения уже совсем незначителен и составляет всего 6 вольт и менее.
Тиристорный стабилизатор напряжения
Характеризуется отличным быстродействием и высоким КПД, выдерживает большие токи и имеет достаточный запас по кратковременным перегрузкам. Наработка на отказ собственно самих тиристоров значительно превышает срок службы всего стабилизатора напряжения в целом.
Благодаря микропроцессорному управления и отработанным алгоритмам, тиристорный стабилизатор напряжения совершенно не искажает выходное напряжение, т.к. все переключения происходят только при прохождении синусоиды через «ноль». Он отличается низким уровнем собственного энергопотребления вследствие того, что нет никаких дополнительных внутренних потребителей в виде обмоток реле или серводвигателя.
Поэтому тиристорные стабилизаторы напряжения являются самым совершенным классом устройств стабилизации практически без каких либо недостатков и повсеместно применяются и в быту и на производстве.
Симисторный стабилизатор напряжения
Симистор — это одна из разновидностей тиристора, и с точки зрения обычного пользователя симисторный стабилизатор напряжения полностью аналогичен тиристорному. Однако главным недостатком симистора является его низкая устойчивость к выбросам напряжения, например, при работе с индуктивной нагрузкой, и поэтому приходится предпринимать ряд дополнительных мер для обеспечения надёжности их работы.
Кроме вышесказанного в симисторных схемах управления при максимальных нагрузках необходимо тщательно контролировать и не допускать превышения тока и напряжение управляющего электрода, обеспечивать эффективное охлаждение корпуса прибора и учитывать рассеивание мощности.
Вследствие этих недостатков симисторные стабилизаторы напряжения ограничены в практическом применении, так как тиристорные более надёжны в работе и компактны в габаритах, например, один симистор занимает площадь 4-6 тиристоров.
Справедливости ради надо отметить, что для управления симистором требуется менее сложная электронная схема, чем для тиристора, но это преимущество блекнет в сравнении с основным недостатком.
Заключение
В последннее время (начиная с 2015 года) тиристорные стабилизаторы наряжения уступают свои лидирующие позции инверторным моделям, которые работают по принципу двойного преобразования сетевого напряжения, поэтому не содержат массивных автотрасформаторов, более компактны и легки. Их широкий входной диапазон напряжения 90
310 вольт и точность его стабилизации на выходе в 2% заведомо лучше, чем у большинства тиристорых устройств.
Кроме этого, тиристорные стабилизаторы не улучшают форму напряжения, они только стабилизируют его амплитуду до 220 В ± погрешность. У инверторных моделей сетевое напряжение сначала выпрямляется, а затем инвертором преобразуется обратно в переменное, тем самым обеспечивается его идеальная синусоидальная форма. Это очень благоприятно сказывается на работе подключенных электроприборов. А мгновенная реакция на изменения сетевого напряжения (т.е. время быстродействия равно 0 мс) вообще кладёт на обе лопатки любые тиристорные модели.
Практические рекомендации
Посмотрите каталоги тиристорных стабиилизаторов напряжения россйских производителей.
Симисторные и тиристорные стабилизаторы напряжения: что выбрать?
Основу современных стабилизаторов напряжения составляет автоматический трансформатор. Управление нагрузкой, подаваемой на его обмотки с целью нормализации выходных параметров тока, осуществляется релейным, сервоприводным или электронным методом. Последний обеспечивает бесшумность, малую инерционность и наиболее высокую точность стабилизации.
При этом устройство почти не нуждается в обслуживании и способно служить на протяжении более 15 лет. В результате спрос на электронные устройства растёт не по дням, а по часам, несмотря на по-прежнему высокую стоимость.
Работает стабилизатор напряжения электронного типа по принципу, схожему с принципом действия электромеханических и релейных устройств.
Помимо автоматического трансформатора схема такого оборудования включает:
Тип электронных ключей, которые осуществляют переподключение витков обмоток трансформатора в процессе нормализации параметров выходного тока, определяет категорию устройства стабилизации напряжения и, соответственно, его конструктивные и функциональные особенности.
Главные отличия и потребительские качества
Симисторы и тиристоры – полупроводниковые приборы, характеристики которых определяются наличием в пластине полупроводника слоёв с различными показателями проводимости. Принципиальное различие между этими двумя видами электронных ключей состоит в том, что тиристоры пропускают ток в одном направлении, а симисторы делают это в обе стороны.
Таким образом, 1 симистор заменяет тиристорную пару с подключением элементов по встречно-параллельному принципу. Это значит, что схема симисторного стабилизатора напряжения в плане проектирования менее затратная.
Кроме того, этот тип электронных ключей обеспечивает наиболее высокие показатели быстродействия системы нормализации сетевых параметров тока. А это имеет ключевое значение при защите от аномалий входного и выходного тока мощных и высокочувствительных потребителей.
Равно как и симисторное оборудование, тиристорный стабилизатор напряжения работает под управлением микропроцессора. Последний обеспечивает высокую точность и скорость сравнения и обработки входных и выходных параметров тока. При этом все переподключения электронных ключей осуществляются только при условии прохождения синусоиды входного напряжения через нулевую отметку, что полностью исключает искажения сетевых параметров на выходе.
Если сравнивать тиристорный и симисторный стабилизатор напряжения, ключи последнего имеют существенный минус. Заключается он в малой устойчивости к резким всплескам или проседаниям входного тока, к примеру, прииндуктивном характере нагрузки. Поэтому надёжность симисторных стабилизаторов обеспечивает с помощью дополнительных мер защиты.
Большое количество тиристорных стабилизаторов представлено в ассортименте официального дилера компании Энергия.
Принцип работы, сильные и слабые стороны тиристорных стабилизаторов
Тиристорный стабилизатор напряжения функционирует следующим образом:
Однофазный тиристорный стабилизатор напряжения регулирует выходное напряжение с помощью переподключения витков на обмотках дополнительного трансформатора. Таким же образом работает и трёхфазное оборудование, оснащённое системой синхронизации фазовых блоков.
К достоинствам тиристорных нормализаторов относят:
Недостатки такого оборудования заключаются в:
Тиристорные устройства стабилизации обеспечивают выравнивание выходного тока в рамках 214-226 В, что является весьма высоким показателем. В то же время, они требуют надёжной защиты от перегрева и токовых перегрузок, что приводит к усложнению конструкции оборудования.
Симисторные стабилизаторы: основные плюсы и минусы
Симисторный стабилизатор напряжения работает по схожему принципу с тиристорным, но имеет ряд особенностей, которые нужно обязательно учитывать при выборе.
Во-первых, один симистор занимает площадь, достаточную для размещения 4-6 тиристоров. Как следствие растут габариты и вес всего устройства стабилизации.
Во-вторых, симисторы нагреваются куда сильнее тиристорных ключей, в частности, при возникновении пусковых токов, в несколько раз превышающих рабочие. Это повышает риск выхода из строя электронных ключей при дефиците запаса выходной мощности стабилизатора, который должен составлять как минимум 25% от номинальной потребляемой.
В-третьих, и трёхфазный, и однофазный симисторный стабилизатор напряжения в процессе работы образует кратковременные всплески и провалы нагрузки аналогично с релейными стабилизаторами. Поэтому чувствительные к помехам и аномалиям тока потребители, подключённые к такому нормализатору, должны дополнительно оснащаться элементами, позволяющими компенсировать отклонения параметров напряжения, К примеру, варисторами.
В-четвёртых, симисторные устройства стабилизации весьма сложны в управлении, которое реализуется посредством определённой программной прошивки контроллера. Последний при внештатных режимах работы, например, снижении качества охлаждения или длительных избыточных импульсов на входе может выйти из строя, равно как и прошивка может в любой момент «слететь». Замена схемы – занятие не из дешёвых, однако главную сложность представляет восстановление программы, поскольку производители редко распространяют её содержание.
К прочим недостаткам симисторного оборудования можно отнести:
Наконец, именно симисторные стабилизирующие аппараты обладают наилучшим соотношением надёжности в работе и стоимости, что и определяет их стремительно растущую популярность на рынке.
Дополнительные рекомендации по выбору
При выборе электронного стабилизатора напряжения крайне важно учитывать условия, в которых он будет эксплуатироваться. Например, тиристорное оборудование не может работать в помещениях с влажностью воздуха выше 80%, а симисторное часто нуждается в дополнительном охлаждении и защите от токовых аномалий.
В любом случае облегчить поиск модели, удовлетворяющей требования по защите конкретной электросети, позволит лишь внимательное изучение и сравнение характеристик представителей обеих категорий электронных стабилизаторов.
Симистор: что такое, из чего состоит и как проверить
Доброго времени суток, уважаемые читатели нашего сайта! В данной статье мы решили рассказать вам о таком важном маленьком приборчике, без которого современную электронику представить себе очень сложно. Для того, чтобы понять, что такое симистор, давайте сначала поговорим немного о полупроводниках.
Что такое полупроводник?
Полупроводники — это нечто среднее между проводниками и диэлектриками (про них у нас есть отдельная статья, рекомендуем ознакомиться). Да, они проводят электрический ток, но проводят они их не так хорошо, как проводники. Физики любят говорить, что у них есть “определенный коэффицент” проводимости. Нам же больше нравится называть их такими веществами, которые достаточно плохо проводят ток. Так вот, из полупроводников изготавливают тиристоры. Что это такое?
Перейдем к тиристорам
Тиристоры — это штуки, которые очень напоминают электронные ключи, однако у них нет закрытого состояния? Как? А вот так! У них немного другое предназначение. По сути, это 2 транзистора, которые управляют мощностью нагрузки с помощью очень слабого сигнала. Обычные тиристоры состоят из 3 деталей — катода, управляющего электрода и анода.
Тиристор
Виды тиристоров
Давайте теперь узнаем, какие тиристоры существуют в природе и какие из них будут интересны нам в первую очередь:
Симистор? Впервые слышу
Симистор — это один из подвидов тиристоров, который обычно состоит из множества тиристоров. По-другому его также называют симметричный симистор.
Из чего состоит этот симистор?
Симистор очень часто физики представляют в виде пятислойного полупроводника. Также бывают и изображения в виде 2 тиристоров. При этом, управление сильно отличается от того, как управляется включенные триодные тиристоры потому их и выделили в отдельную группу. Давайте теперь узнаем, как работает управление.
Управление симистором
Дело в том, что у обыкновенного тиристора есть как катод, так и анод, причем каждый из них выполняет строго определенную функцию, а вот у симистора все немного иначе. Представим, что у нас есть и катод и анод, но когда симистор подключен и работает, то катод становится анодом, а анод — катодом. Вот такое чудесное превращение. Именно поэтому мы не можем сказать, что они здесь присутствуют в явном виде и будет просто называть их выходами (электродами). Для того, чтобы точно не ошибиться, давайте будет называть выходы симистора условными катодом и анодом. Еще немного теории.
У симистора управление работает следующим образом: на входе полярность может быть либо отрицательной — это первый вариант. Второй вариант — это тот, когда она совпадает с полярностью на аноде, что встречается реже. Далее все просто — задаем нужную силу тока и ее хватает для отпирания симистора. Обратите внимание, что для тока специально сделан управляющий электрод, именно им мы и пользуемся для этой цели.
Вуаля! Главная сложность для нас здесь — это подобрать идеальный ток, вот и все!
Симистор схема
Теперь, когда мы уже знаем достаточно много о структуре симисторов и том, каким образом они обычно управляются, пришло время посмотреть, как они выглядят на схемах и что здесь есть интересного. Взгляните, например, на эту схему:
Здесь нам стоит сразу отметить, какие есть условные обозначения, чтобы дальше без проблем разбираться во всех схемах. Симисторы обычно имеют 3 электрода, один из которых — это затвор. Его обозначают через английскую букву G. Что, уже гораздо больше понимания, верно? Отлично! Теперь давайте разберемся со схемой немного другого симистора. Замечаете отличия? Да, ведь здесь симистор составлен из целых 2 тиристоров!
Ага, а почему же тогда это симистор? Почему нельзя было сюда поставить схему обычного эквивалентного тиристора? А все дело в том, что управляется такая схема несколько иначе.
Регулятор на симисторе
Теперь пришло время нам обсудить, каким образом симистор регулирует напряжение. Это на самом деле очень интересно. Смотрите. Как только симистор начинает работать, на один из его электронов сразу же подается напряжение, которое всегда является переменным. Далее на управляющий электрод дается отрицательный ток, который и будет управлять процессом. Как будет преодолен порог включения (он всегда известен заранее, в этом и удобство), симистор откроется и ток начнет проходить через него. Отметим, что симистор перестанет работать в тот момент, когда ток поменяет полярность (другими словами он закроется). Далее все идет цикл за циклом и повторяется.
Ага, вроде понятно. А что влияет на скорость открытия и закрытия симистора? Что влияет на силу на выходе? Здесь все опять же очень просто. При нарастании входного напряжения импульс на выходе также увеличивается. Соответственно, если на входе маленькое напряжение — то и на выходе импульс будет короткий. Приведем в пример обыкновенную лампочку с симистором. Чем больше подаем напряжения — тем ярче лампочка. Здорово, не так ли?
Режимы работы симистора
Симистор может работать как под воздействием отрицательного тока, так и под воздействием положительного. Всего выделяют четыре основных режима работы: все зависит от полярности и входного напряжения.
В чем главные достоинства симистора
Давайте рассмотрим симистор как реле. В такой роли у него много существенных преимуществ :
Но есть у него и минусы
Конечно, идеальных приборов пока не придумали, поэтому здесь мы тоже не в праве их скрывать :
Как проверить симистор?
Поговорив о положительных и отрицательных моментах симистора, мы плавно подвели наше с вами изучение симисторов к очень важному аспекту, а именно — к проверке. Вы можете сказать? Что это еще за проверка. Наверняка это что-то бесполезное. А мы вам ответим, что проверять симисторы — это очень важно, ведь на нем по сути держится весь электроприбор, и выявив брак или неисправность хотя бы в одном симисторе из партии, у вас есть шанс спасти целые электроприборы от серьезных поломок. Но и здесь новички задают вопрос.
А на фабриках, где изготавливают эти симисторы разве их не проверяют. Вопрос этот очень интересен, но ответ тоже довольно прост. На заводах нет времени на проверку каждого отдельного симистора, поэтому от силы проверке может подвергаться один прибор из партии. Поэтому давайте теперь уже поговорим о том, как же все-таки можно проверить на исправность этот замечательный прибор.
Существует сразу несколько эффективных способов проверки симистора. Давайте подробно разберемся с каждым из них. Для начала сразу скажем, что проверять симистор внутри схемы — это совершенно неверное действие. Вам сначала обязательно нужно извлечь его из платы, а потом уже работать с ним. Почему?
Тут все очень просто. Если вы будете проверять свой симистор и при этом он будет внутри схемы, то вы можете проверить его и он будет неисправен, но на самом деле будет неисправен соседний элемент, подключенный к нему параллельно. Поэтому нужно исключить все факторы, отключив симистор от схемы, выпаяв его. Отметим, что проверять нужно будет каждый отдельный элемент, иначе вы не сможете найти причину поломки. Сначала, как правило, проверяют силовые цепи, потом уже переходят к ключам, сделанным из полупроводниковых материалов. Как же можно проверить полупроводниковые ключи:
Мощность симистора
Теперь, когда мы уже достаточно много знаем о симисторах, пришло время перейти к технической части. Как? Уже? Ага, вы уже к этому готовы. Итак, самый главный аспект, который волнует всех покупателей этого замечательного прибора — это мощность. Конечно, под этим понимается обычно целая совокупность технических характеристик симистора. О них и пойдет речь. Отметим, что мы разберем характеристики на примере довольно популярной модели — BT139-800.
Сначала давайте узнаем. Что вообще из себя представляют технические характеристики. Больше всего нас будут волновать:
Ага, вроде бы мы обо всем этом уже говорили, поэтому не так уж и сложно. Хорошо. Теперь о каждой характеристике немного подробнее.
Время отклика (срабатывания)
Скорость срабатывания симистора — это тоже очень важный параметр. Почему? Когда в цепи много таких симисторов и если каждый будет долго срабатывать, то большой аппарат будет очень долго реагировать на каждую команду или даже вообще не сможет работать.
У тока тоже есть своя скорость, а если на его задержку еще будет накладываться куча других, то прибор может стать ну очень медленным, поэтому на это тоже нужно обращать внимание. Наш симистор срабатывает в среднем за 2 микросекунды и это очень хороший результат. Формально, это то время, которое пройдет с момента, когда симистор начинает открываться и уже открыт.
Температура тоже важна
Симисторы, конечно же, работают при достаточно обычных для нас температурах. Однако при помещении его в критические условия будет лучше, если этот диапазон будет очень широким. Наш симистор работает при температуре от МИНУС 40, до ПЛЮС 125 градус по Цельсию. В обычной жизни этот диапазон оптимален, поэтому тут добавить нечего.
Самое большее возможное напряжение
В симисторе BT139-800 это 800 вольт и других моделей этот параметр может отличаться. Не стоит считать, что это напряжение, при котором симистор отлично работает. Нет, напротив — это теоретическое напряжение, от которого симистор еще не выйдет из строя. То есть при идеальных условиях для конкретной модели этот симистор еще вытянет такое напряжение в цепи, однако при превышении его шансов на дальнейшую работоспособностью почти нет. Идем дальше.
Минимальный ток управления
Начнем с того, что этот ток принято измерять в миллиамперах. Разумеется, все зависит от того, как определена полярность симистора в данное время, а также от полярности входного напряжения. Наш симистор имеет мин ток управления от 5 до 22 миллиампер. Однако при проектировании схемы, в которой будет работать симистор, правильнее всего будет ориентироваться на максимальные значения тока. Для нашего симистора это значения, которые находятся между 35 и 70 миллиамперами.