Что лучше водяное охлаждение или воздушное процессора

средненькая «Водянка» или лучший «Воздух» (полная версия)

В этом материале я буду сравнивать средненькую Систему Водяного Охлаждения с лучшими воздушными кулерами, а также опишу свой первый опыт в подборе/сборке/оптимизации СВО для ПК! Особо ленивым советую перейти сразу к части 4ой (тестирование).

ЧАСТЬ 1 (Вступление)

В этом материале я буду сравнивать средненькую Систему Водяного Охлаждения с лучшими воздушными кулерами, а также опишу свой первый опыт в подборе/сборке/оптимизации СВО для ПК! Особо ленивым советую перейти сразу к части 4ой (тестирование).

ЧАСТЬ 1 (Вступление)

ЧАСТЬ 2 (Выбор комплектующих)

Подбор компонентов для СВО было моим первым испытанием, да-да именно испытанием, ведь стоит один раз ошибиться, купить шумную помпу или сэкономить на фулкавере и весь смысл моей затеи сразу теряется. Да, будет отличное охлаждение, красиво/эстетично, но шумно или не достаточно производительно для «утирания носа воздушкам» и таких примеров можно привести много!

Мой совет всем начинающим «водяньщикам», обязательно консультируйтесь со спецами в соответствующих ветках!

Осмыслив идею, к которой я стремлюсь, и сумму которой располагаю, приоритет по выбору компонентов был следующим: цена/производительность/качество/эстетика! Именно по совокупности этих качеств я и выбрал одну из популярных фирм » ЕК» и большинство моих компонентов именно этой фирмы, а также система будет состоять только из основных компонентов: помпа, резервуар, водоблок CPU, водоблок GPU, радиатор, вентиляторы, шланги, фитинги и жидкость! Никакие подсветки, датчики потоков, термодатчики и т.д. и т.п. я навешивать не буду.

1) Помпа! Один из самых ключевых элемент, именно от ее работы зависит тишина и уровень потока в системе, именно она будет отвечать за своевременную циркуляцию жидкости. Чуть ковырнув иннет и посоветовавшись с опытными людьми, я выбрал Swiftech MCP350 Laing DDC-1T Pump. Тихая, качественная, производительная, компактная, классика + цена в 2128р просто не оставила мне шансов.

6) Вентиляторы. Изначально в спешке были выбраны мной Floston Red impeller 120P, как оказалось в последствии, они являются «узким местом», гул ротора даже на низких оборотах и не возможность снижения оборотов ниже 800об/мин, даже при использовании реобаса! Не долго думая я решил обратится к уже хорошо известной мне по личному опыту фирме Arctic Cooling и выбрать Arctic Cooling ARCTIC F12 PWM, как оказалось в последствии, я не прогадал! Одни из самых дешевых вентиляторов на гидродинамическом подшипнике с возможностью подключения и мониторинга до 5шт на один 3/4pin разъём и скоростью вращения 300-1350об/мин. То, что нужно! Я подключил по два вентиля на три канала реобаса.

— для раствора применяется дистиллированная/деионизированная вода;

— содержит антикоррозийные и антибактериальные добавки;

— не агрессивна по отношению к оргстеклу, резине и других уплотнительных материалов;

— изготовлено в соответствии с ROHS.

ЧАСТЬ 3 (Особенности сборки)

Особо не буду заострять внимание на комплектации, т.к. уже и так куча «буквенных символов, не несущих особой смысловую нагрузку» и укажу лишь ключевые моменты сборки. С каждым компонентом присутствует инструкция и не смотря на то, что «могучего и великого» в неё не включили, сама сборка интуитивна и проста, по крайней мере для меня. Матплату и видеокамеру снимать придется, для удаления воздушных кулеров и скопившейся пыли то-же, да и просто для удобства/качества монтажа/сборки, что немаловажно, т.к. сами представляете последствия течи, в результате закрученного на «отчипись» фитинга!

Будьте осторожны иннет-лимитчики, трафик!

А вот с фулкавером GTX580 хлопот чуть больше, во первых, необходимо заняться «получасовым чертежным оригами», разместить и вырезать термопрокладки по инструкции из разной толщины заготовок. А во вторых, после размещения «оригами» по своим местам, необходимо положить фулкавер на лицевую сторону и разместить на тыльной/контактирующей стороне пластиковые проставки, для соблюдения необходимого зазора между фулкавером и печатной платой видео карты. Но тут не все так просто, ведь проставки не фиксируются, а просто ставятся на крепежные отверстия и накладывая видеокарту сверху, уже с размещенными в ней винтами, приходится крутится, щурится и целится, чтоб не сдвинуть свободно стоящие проставки с положенных мест.

Процесс заправки особого труда не вызывает, тут главное внимательность и рулон хорошей туалетной бумаги, обворачиваем соединения, откручиваем помпу и вынимаем на длину шлангов. Далее я проверял систему на течь просто не включая ПК, подключил СВО минуя помпу к крану, 5-10мин и все станет ясно. Затем помпу на место, откручиваем крышку, запускает ПК и тихонько льем жидкость из бутылки, когда ее станет достаточно будет ясно. Затем самое интересное, удаление воздушных пробок из системы и радика, этим лучше заняться вдвоем, один держит помпу и подливает жидкость, другой вращает, трясёт, переворачивает ПК вверх ногами, после выхода всех пузырьков, крышку и помпу на место.

фото с одним радиком:

фото с двумя радиками:

ЧАСТЬ 4 (Тестирование)

методика тестирования GPU:

— температура в комнате +22-24С;

— вентиляторы СВО в двух режимах: 800об/мин и 1300об/мин;

— корпусная вентиляция 1х140мм на задней стенке при 700об/мин;

— прогрев проводился при помощи «Ведьмак2 » с этими настройками и вот так разогнанной ВК.

— тестирование проходило как с одним, так и с двумя радиаторами;

— температура VRM не замерялась, т.к. была на 2-3С меньше температуры GPU, во весь период тестирования, доказано в этом материале!

смотрим результат 1 и 2 радиатора:

Нуууууу. вариант с 2мя радиками при 800об/мин мне нравится безусловно больше! Разница в целых и потраченные деньги на покупку второго радика, отрабатываются сполна!

И по вышеизложенному можно сделать вывод, что все уперлось в производительность водоблока, что было предсказуемо и вполне ожидаемо!

Вот это победа. И не стоит забывать, что даже в режиме AUTO, воздушные кулера отчётливо слышны и навряд ли сравнятся по уровню шума с 6х800об/мин

методика тестирования CPU:

— температура в комнате +22-24С;

— вентиляторы СВО при 800об/мин;

— вентилятор SCYTHE Mine 2 при 1600об/мин;

— профильный 2500К был разогнан до 5.0ГГц при 1.455v;

— память Kingston HyperX Intel® XMP (KHX1600C9D3X2K2/8GX) @1866 (9-11-9-24)

В случаи СВО, узким местом является водоблок, т.к. увеличение вентиляции до 1300об/мин ничего не дало, как и не дало при использовании одного радиатора!

А нечего здесь подводить! Стоимость моей СВО = 16100р. Большинство скажет, «Да-ну-на!», но только не «водяньщики», к которым я теперь и с удовольствием отношусь.

ЗЫ. хочу лишь напомнить, что это только мой первый опыт в СВО на ПК!

Увлёкшись всем выше проделанным, я решил довести конечный результат до ума!

Для этого мне понадобились, корпус, шлифовка процессора, перепайка помпы для снижения оборотов, и бэксплэйт на печ580, много расписывать не буду, голова болит после вчерашнего, всё в фото:

Помпа Swiftech MCP350 Laing DDC-1T Pump очень качественная, надёжная и мощная! Но работает постоянно на всю катушку, а это 3800об/мин, при нахождении в непосредственной близости от ПК, она хоть и не напрягает, но отчётливо слышна! Ковырнув соответствующие ветки нашего замечательного ресурса, я узнал, что данная помпа свободно перепаивается на 4pin и подключается к CPU-FAN на матплате!

Напряжение/обороты помпы можно свободно занижать, но стартовое напряжение должно быть не менее 9 вольт или 3400об/мин, это необходимо для нормального старта и не влечёт уменьшение срока эксплуатации!

Подключение к матплате, очень чревато выгоранием коннектора питания и скорее всего выхода матплаты из строя! Необходимо знать сколько ватт матплата даёт на данный коннектор и сколько требует помпа при старте!

Еще раз повторюсь, что производить подобное вмешательство в штатный режим рабрты устройств не желательно и влечёт за собой: потерю гарантии, уменьшение срока службы и возможно выход из строя!

В биосе матплаты я выставил значение «9» для оборотов CPU-FAN в моём случаи это было 3400об/мин, как раз то количество оборотов которое необходимо помпе для «нормального старта» или 9v. После чего при запуске системы, я добавил в автозагрузку штатную утилиту «ASRock eXtreme Tuner», которая и понижает обороты помпы до 3000об/мин! Для чего это нужно было? Для тихой работы ПК, для уменьшения нагрева помпы при работе и + ко всему я не потерял ни градуса, как оказалось 3000об/мин совсем не уступают 3800!

В свою очередь корпус очень порадовал, удобством сборки, качеством и отличным кабель-менеджментом! Ещё раз респект комраду timerhan, за помощь в выборе!

Собственно дальше идут фото конечного результата «моего новогоднего апгрейда» и Вам осталось только поднять большой палец вверх или наобород опустить его в низ!

PS. Господа! Уделите ещё минуточку внимания!

По просьбе комрада «Allex. » хочу ещё раз вам напомнить, что многое описанное в моей статье, является не совсем безопасным. Стоит учитывать тот факт, что СВО/СЖО достаточно опасная штука! А как убедил меня «Allex. » так и ещё абсолютно противопоказана: гражданам не умеющим трезво оценивать обстановку и отдавать отчёт своим действиям, а так-же несовершенно летним, лицам с явно выраженной инвалидностью, беременным женщинам и слабовидящим.

Гражданам употребляющим психотропные вещества, алкоголь, наркотики в момент употребления и в период действия.

А так же прошу не расценивать мою статью, как инструкцию к действиям, за последствия которых я ответственности не несу!

Источник

Почему водянки не нужны в обычных ПК, или мифы об СВО

Минутка физики: водянки и кулеры работают одинаково. Ну, почти

Не все знают, но внутри обычной медной теплотрубки залита… жидкость, обычно — вода. Из-за пониженного давления она кипит при более низкой температуре, к тому же имеет высокую теплоемкость — короче говоря, это эффективный и дешевый теплоноситель. Разогреваясь и испаряясь рядом с горячей крышкой процессора, она переносится к более холодному радиатору, где конденсируется и вновь по специальному фитилю стекает к CPU, после чего цикл повторяется.

Что лучше водяное охлаждение или воздушное процессора

В СВО, очевидно, также используется жидкость, однако работает она чуть иначе: течет она не самостоятельно, а под действием помпы, и не испаряется, а просто нагревается у процессора и охлаждается у радиатора. Так что, как видите, на деле обычное воздушное охлаждение не такое уж и воздушное, оно действительно достаточно близко к водянкам.

Краткий экскурс в физику закончен, пора переходить непосредственно к компьютерам.

Водянка в игровых ПК — красиво, но абсолютно бесполезно

Никто не спорит, водянка зачастую смотрится внутри корпуса куда красивее, чем большая башня. К тому же маркетологи специально упирают на топовость — дескать, ты купил мощный CPU и видеокарту, крутую память и материнку. Очевидно, нужен классный охлад — то есть водянка.

Однако есть одно важное но: игры, даже самые тяжелые и процессорозависимые, типа Watch Dogs 2 или Assassin’s Creed Odyssey, просто не могут нагрузить процессор также, как бенчмарки или рабочие задачи. Знаете, сколько ест в играх горячий Core i9-9900K в разгоне до 5 ГГц? Всего около 70-90 Вт. Это в два раза меньше, чем в бенчмарках. Такое количество тепла абсолютно без проблем отведет любая популярная башня за полторы тысячи рублей.

Что лучше водяное охлаждение или воздушное процессора

Но вы можете сказать — под водянкой в играх можно добиться 40-50 градусов, когда лучшие суперкулеры скорее всего смогут охладить топовые CPU лишь до 60-70. Да, тут все верно, СВО действительно снизит температуру процессора в играх. А зачем? Что это дает? Позволит повысить частоты? Да нет, вы раньше упретесь в возможности самого CPU. Увеличит срок жизни? Ну да, проживет кристалл не 30 лет, а 20 — действительно большая разница.

А что по шуму? Водянки всегда считаются более тихими, но так ли это на деле? Скорее нет, чем да. Проблема тут в том, что радиаторы СВО более плотные, чем у воздушных кулеров, поэтому чтобы продуть их нужны мощные высокооборотистые вентиляторы с большим давлением. А такие вентиляторы серьезно шумят.

Что лучше водяное охлаждение или воздушное процессора

За примерами далеко ходить не нужно — возьмем, достаточно крутую двухсекционную СВО NZXT Kraken X62 с двумя родными 140 мм вентиляторами и сравним с суперкулером Phanteks PH-TC14PE с такими же вертушками, который вдвое дешевле. Эффективность этих двух решений сравнима, а вот шум… Раскочегарив вентиляторы водянки на максимум, можно получить аж 61 дБ. С таким уровнем шума поработать получится только в наушниках. При этом у Phanteks все куда лучше — 49 дБ можно сравнить с урчанием холодильника, и такой шум сложно назвать громким или отвлекающим.

СВО не поможет в охлаждении новейших десктопных процессоров от Intel и AMD

Ладно, скажете вы — не все играют, многие на компьютерах еще и работают: обработка видео, 3D рендеринг, различные расчеты — все это сильно нагружает процессор, и даже суперкулеры тут не справятся. Увы, но в случае с Ryzen 3000 и Intel Core 8-ого и 9-ого поколения это не так. Проблема большинства десктопных процессоров от Intel, начиная с 3-его поколения, это терможвачка под крышкой. В случае с топовыми Core i5, i7 и i9 последнего поколения компания перешла на припой, но, как показывают тесты, его качество тоже оставляет желать лучшего.

Что лучше водяное охлаждение или воздушное процессора

Что же в итоге получается? Кристалл CPU, очевидно, сильно разогревается, и цель термоинтерфейса — передать это тепло на крышку, откуда его сможет отвести охлаждение. И, как вы уже догадались, терможвачка делает это из рук вон плохо: как показывает практика, снятие крышки и замена этого термоинтерфейса на жидкий металл позволяет снизить температуру CPU зачастую аж на 20 градусов. В случае с припоем разница меньше, но все еще внушительна — до 8-10 градусов.

Вот и получается забавная и грустная картина одновременно: ваш суперкулер или водянка в теории могут отвести 200-250 Вт, а на практике из-за экономии Intel ваш процессор, потребляя 150 Вт, уже перегревается. Конечно, как я уже сказал, вполне можно скапануть процессор — однако согласитесь ли вы это делать с вашим рабочим CPU, тем самым теряя гарантию и рискуя его повредить? Далеко не факт. А без этого СВО будет бесполезна с тем же Core i9-9900K.

В случае с Ryzen 3000 ситуация интереснее. С одной стороны, AMD использует качественный припой: его замена на жидкий металл в лучшем случае подарит вам пару градусов, так что игра свеч не стоит. Но вот сами кристаллы с ядрами маленькие, более того — у топовых CPU их две штуки и они рядом, ну и к тому же они расположены с краю, когда обычно лучший прижим и охлаждение что суперкулеры, что водянки обеспечивают в центре.

Что лучше водяное охлаждение или воздушное процессора

Все это и приводит к тому, что Noctua NH-U14S, способный удерживать температуру 100-ваттного Ryzen 7 2700X в жестком Prime95 на уровне 75 градусов, с трудом справляется с таким же 100-ваттным Ryzen 7 3700X, удерживая температуру последнего чуть выше 90 градусов. Так что, очевидно, попытка заменить кулер на водянку тут ничего не даст — в высоких температурах виновато не качество воздушного охлаждения, а внутренние особенности самих Ryzen 3000.

Также, возможно, кому-то придет в голову другая интересная затея: взять более слабый CPU и раскочегарить его с помощью СВО до уровня более старшего. Увы, эта затея опять же не осуществима: к примеру, чтобы 6-ядерный Core i5-9600K добрался до уровня производительности 8-ядерного Core i7-9700K, его нужно ускорить на треть, то есть повысить частоту до 6 с копейками ГГц. Очевидно, что водянки для этого мало — нужен уже жидкий азот.

Получается, водянки не нужны?

Конечно нет. Они все еще нужны там, где и раньше — в топовых рабочих станциях. Взять, например, тот же AMD Threadripper 3990X. 64 ядра, 128 потоков, теплопакет в 280 Вт — однако на деле он потребляет все 350. При этом у него 8 процессорных кристаллов, и каждый из них греется не очень сильно из-за не самых высоких частот, то есть таких проблем как у Ryzen 3000 нет.

Что лучше водяное охлаждение или воздушное процессора

Вот и получается, что нужно с достаточно большой площади снять овер 300 Вт. Даже большие суперкулеры тут справятся на пределе возможностей, а вот для трехсекционных заводских СВО или тем более самосборов это не проблема. Это же касается и топовых 28-ядерных Xeon и прочих HEDT-процессоров — у них гигантские тепловыделения, и водянки для них мастхэв.

А что насчет видеокарт?

Тут все интереснее. Во-первых, видеокарты Nvidia имеют умный драйвер, который слегка повышает частоту при снижении температуры. Правда, разница едва ли превысит полсотни мегагерц, что даст в лучшем случае пару fps, так что отдавать за это лишние 15-20 тысяч рублей за водоблок явно не стоит.

Что лучше водяное охлаждение или воздушное процессора

Во-вторых, есть видеокарты, тепловыделение которых из коробки улетает в небеса. Взять ту же AMD Radeon RX Vega 64 Liquid Cooled — ее тепловыделение в Crysis 3 достигает аж 370 Вт. При разгоне — свыше 450 Вт! Очевидно, тут даже массивная воздушная система охлаждения с тремя вентиляторами скорее всего не справится, а вот СВО — вполне.

Думаете, что у Nvidia меньше? Как бы не так. Взять например ASUS RTX 2080 Ti Matrix. Ее официальный BIOS позволяет поднять TDP до 360 Вт. Более того, для GTX 1080 Ti существуют полностью разлоченные BIOS, с которыми тепловыделение уходит за 400 Вт. Разумеется, отвести такое количество тепла сможет лишь качественная СВО.

Что лучше водяное охлаждение или воздушное процессора

Но, опять же, стоит понимать, что такие заоблачные TDP имеют лишь топовые видеокарты и то под серьезным разгоном. У большинства среднеуровневых Nvidia GTX 1600 или AMD RX 5000 тепловыделение находится на уровне 150-200 Вт, и с этим вполне справится воздушное охлаждение с парой вентиляторов. Тратить деньги на СВО в случае нетоповых видеокарт просто нет смысла — будет выгоднее купить более мощную видеокарту, чем пытаться выжать все соки из более слабой.

Перейдем к минусам — водянки требуют обслуживания

Чем хороши кулеры? Они требуют минимум обслуживания — достаточно раз в год продувать их от пыли и он верой и правдой прослужит вам много лет. Самое худшее, что может случиться — это перестанет работать вентилятор, однако с учетом того, что практически всегда они все имеют стандартные размеры, его можно легко заменить.

Вторая и куда более массовая проблема — заиливание. Как говорится, вода камень точит, а уж пластик трубок тем более. Ситуация еще усугубляется, если вода подкрашена. Как итог — кто-то через год, кто-то позже, но все же достаточное количество людей сталкиваются с тем, что в лучшем случае вырастают температуры CPU, а в худшем забитая жижей помпа просто перестает работать.

Что лучше водяное охлаждение или воздушное процессора

И приходится разбирать всю систему, чистить радиатор и помпу, после чего заливать новую воду. А ведь далеко не все СВО разборные — хватает и необслуживаемых. Их в таком случае, если кончилась гарантия, можно смело нести в мусор.

Ну и третья проблема — умирает помпа. Это бывает и из-за жижи, и просто потому что это механика. Да, у современных помп время наработки на отказ зачастую составляет десятки тысяч часов, но так везет далеко не всем. Опять же, помпа меняется не везде — обычно только в кастомных СВО.

Конечно, стоит понимать, что возможно вам повезет, и у вас водянка проработает 5 лет без проблем. Но подумайте над тем, что будет, если вам не повезет — особенно если учесть, что у воздушного охлаждения вышеуказанных проблем нет вообще.

Выводы — водянка в домашнем компьютере не нужна

Подведем итоги. Водянки не помогают в разгоне современных CPU. Водянки не тихие. Водянки дорогие. Вопрос — а зачем их брать в обычные компьютеры? Ну разве что очень хочется. Во всех других случаях лучше обойтись суперкулером и оставить СВО для тех случаев, когда они действительно нужны — а именно для топовых рабочих станций. Свое мнение пишите в комментах.

Источник

Какое охлаждение лучше выбрать?

Что лучше водяное охлаждение или воздушное процессора

Любой перегрев, будь то видеокарты или центрального процессора, влияет на продолжительность работы. Разгон стал сегодня довольно распространенным явлением, он более популярен среди видеокарт, а не процессоров. Тем не менее, водяное охлаждение процессора стало довольно популярно, так что вы задумались, стоит ли попробовать жидкостную систему.

Итак, в чем разница между воздушным и жидкостным охлаждением? Как работает любой из них? И самое главное, что выбрать? Жидкостный или воздушный процессорный кулер? Мы ответим на эти и другие вопросы в этой статье!

Как работают устройства охлаждения?

Воздушное охлаждение

Функционирование воздухоохладителя довольно просто. Он опирается на два ключевых компонента:

То, что делает вентилятор, это постоянно вращается, чтобы холодный воздух проходил через радиатор, предотвращая его перегрев.

Водяное охлаждение

Водяная система более сложная, и включает в себя больше деталей, чем воздушная:

Вода (или любая другая жидкая охлаждающая жидкость) прокачивается через шланги, которые соединяются с компонентом, который нуждается в теплоотводе, который в данном случае является процессором. Но просто его циркуляция не достаточна, и жидкость нуждается в своей форме радиатора.

Именно в этом заключается роль радиатора в установке жидкостного охлаждения. И чтобы он не перегревался, у нас есть вентилятор, который удерживает над ним холодный воздух.

Что выбрать?

Теперь мы рассмотрим важные факторы, которые необходимо учитывать, прежде чем делать выбор между воздушным и жидкостным охлаждением.

Эффективность охлаждения

В этом нет никаких сомнений, водяное охлаждение намного эффективнее и мощнее, чем воздушная система, в первую очередь потому что гораздо больший объем жидкого хладагента может циркулировать быстрее.

В то время как жидкостное охлаждение повсеместно более эффективно, преимущество воздушной системы в том, что оно гораздо доступнее. Это в основном связано с более низкими производственными затратами, а разница в ценах может измеряться сотнями долларов.

Удобство

Если у вас нет опыта работы с компьютерным оборудованием, то обнаружите, что установка и поддержание настройки жидкостного оборудования практически невозможны.

Заключение

Существует два сценария, в которых мы рекомендуем использовать водяное охлаждение:

При доведении высокопроизводительного процессора до предела, он также увеличит производительность даже самого лучшего воздушного кулера до предела и, возможно, даже за его пределами. А когда воздух больше не способен физически поддерживать процессор холодным, вода в помощь. И даже в том случае, когда вы фактически не устанавливаете этот предел, а просто не хотите иметь дело с шумом вентилятора, постоянно вращающегося при высоких оборотах, жидкостное охлаждение намного тише.

Кроме того, существует также вероятность того, что вы можете разместить игровую конфигурацию внутри корпуса Mini ITX или Micro ATX, который не обеспечивает идеального воздушного потока. Водяное охлаждение было бы здесь идеальным, поскольку для поддержания низкой температуры процессора не требуется почти столько же воздуха.

Источник

Охлаждаем процессор: водой или воздухом?

Что эффективнее и какие между системами различия

От эффективности системы охлаждения зависит не только температура процессора под нагрузкой, но и уровень шума. В продаже встречаются два типа систем: воздушное и водяное. У каждого свои ограничения по применению и конструктивные особенности.

Воздушная система охлаждения

Такие системы состоят из двух основных деталей: радиатора и одного или нескольких вентиляторов. Вся эта конструкция крепится поверх процессора. Чем больше тепловыделение процессора, тем крупнее требуется радиатор. Максимально допустимое тепловыделение процессора указывается в характеристиках.

Что еще важно знать

Нужно хорошее охлаждение в корпусе ПК. Вентиляторы воздушной системы охлаждения забирают воздух из внутренней части системного блока. А он прогревается от радиаторов материнской платы и видеокарты. Поэтому для эффективного теплоотвода необходимо создать хорошую вентиляцию внутри корпуса: минимум два вентилятора 120 мм на вдув в передней части и еще пара на выдув, сверху или сзади.

Что лучше водяное охлаждение или воздушное процессора

Подходит не для всех корпусов. Максимальная высота системы охлаждения процессора указывается в характеристиках корпуса. К примеру, Zalman CNPS16X высотой 165 мм нельзя установить в корпус Thermaltake Versa C23 TG, так как в него помещаются кулеры высотой до 155 мм — просто не получится закрыть боковую крышку.

Мешает установке оперативной памяти. Радиатор шириной больше 110 мм закрывает собой ближайший к процессору слот оперативной памяти. Базовые модули установить удастся, но высокие планки с радиаторами охлаждения не поместятся в зазор между разъемом и охлаждением процессора.

Что лучше водяное охлаждение или воздушное процессора

Водяная система охлаждения

Для охлаждения горячих процессоров и видеокарт с тепловыделением от 100 Вт используют системы водяного охлаждения (СВО). В них радиатор закреплен не на самом процессоре, а на корпусе ПК. Тепло отводит циркулирующая по трубкам и радиатору жидкость.

СВО бывают двух типов — закрытого и открытого.

Оба состоят из обязательных элементов:

Что лучше водяное охлаждение или воздушное процессора

Особенность закрытого типа — в том, что резервуаром для жидкости служит вся система, а помпа закреплена на теплообменнике. Дозаправка и контроль уровня жидкости чаще всего не предусмотрены.

Что лучше водяное охлаждение или воздушное процессора

Систему открытого типа нужно собирать самому. Сравнивать их с воздушным охлаждением некорректно, так как стоимость одной помпы может доходить до цены готового комплекта закрытого типа, а ведь еще нужны трубки, радиатор, резервуар, жидкость и так далее. Так что далее речь пойдет про закрытый тип.

Что еще нужно знать

Эффективность работы СВО зависит от расположения радиатора. Лучше всего крепить его на фронтальной стенке: тогда вентилятор будет захватывать холодный воздух снаружи, что не позволит радиатору сильно нагреваться. В среднем при такой установке температура самого радиатора держится в пределах от 22 до 40 градусов.

Главное — позаботиться о выводе воздушных масс из корпуса. Для этого установите вентиляторы в верхнюю и заднюю стенки корпуса.

Не стоит монтировать радиатор на верхней панели, так как к нему будет поступать уже предварительно разогретый другими комплектующими воздух. А при установке на системы на вдув вмешается физика, ведь теплый воздух из корпуса стремится подняться наверх.

Что лучше водяное охлаждение или воздушное процессора

Производители корпусов на своих сайтах размещают схемы установки дополнительных вентиляторов и СВО. Если в характеристиках только размеры, скачайте мануал.

Существуют радиаторы разных размеров, фактически они кратны диаметру вентиляторов охлаждения: размер один — это 120 мм, два — 240 мм, три — 360 мм и самые большие системы с четырьмя вентиляторами — 420 мм. Дополнительное место занимает выход трубок, но производители корпусов это учитывают. И помните: если поддерживается радиатор большего размера, то модель поменьше встанет без проблем.

Водяное охлаждение менее шумное. Гул у систем охлаждения вызывают работающие вентиляторы. При пиковых оборотах шум достигает 30–40 дБ.

В воздушной системе самих вентиляторов может быть от одного до трех, и работают они на средних или высоких оборотах. В водяном охлаждении используют от одного до четырех вентиляторов на одной стороне радиатора (зависит от его размеров). А всего их может быть до восьми штук (с двух сторон).

В воздушной системе температура процессора зависит только от температуры радиатора, а в СВО — еще и от скорости работы помпы. Да и сам радиатор находится в передней части корпуса, далеко от греющейся материнской платы и видеокарты. Воздух вокруг него холоднее, что позволяет снижать обороты вентиляторов до минимума, так что компьютер при работе с браузером или фоторедактором почти не слышно.

Что выбрать: воздух или воду?

Но учтите, что стоимость средней системы воздушного охлаждения на 2–3 тысячи рублей ниже, чем СВО закрытого типа.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *