Что менделеев считал главной характеристикой атома при построении периодической системы
Помогите ответить, пожалуйста!
Почему Д. И. Менделеев назвал открытый им закон периодическим? Ответ подтвердите анализом свойств химических элементов.
Такие вопросы очпростые нужно просто учебник прочитать
Менделеев назвал свой закон периодическим, т. к. в пределах рядов элементов свойства изменяются последовательно. Эти ряды были названы им периодами. А изменение свойств химических элементов по мере возрастания их атомной массы не совершается непрерывно в одном и том же направлении, а имеет периодический характер.
Рассмотрим ряды элементов от Li до Ne и от Na до Аr. Если расположить эти два ряда один под другим, то в вертикальные столбцы попадают элементы сходные по своим свойствам
и обладающие одинаковой валентностью. Так, например, Li и Na — типичные металлы, a Ne и Аr — инертные газы. В рядах же слева направо наблюдается ослабление металлических свойств и усиление неметаллических свойств элементов. Так, например, в ряду от Li до Ne Li — одновалентный металл, энергично разлагающий воду с образованием щелочи. У Be металлические свойства выражены слабее, оксид и гидроксид бериллия амфотерны. В — элемент со слабо выраженными неметаллическими свойствами, проявляющий некоторые свойства металла. От С до F неметаллические свойства усиливаются, F — самый активный из неметаллов. За F следует Ne — инертный газ, не проявляющих ни металлических, ни неметаллических свойств.
Также следует отметить, что по мере увеличения атомной массы валентность элементов по отношению к кислороду, начиная с Li, увеличивается на единицу для каждого следующего элемента (исключением является F, что связано с особенностями строения его атома). В следующем периоде закономерность прослеживается
снова.
Химия
А Вы уже инвестируете?
Слышали про акцию в подарок?
Зарегистрируйся по этой ссылке
и получи акцию до 100.000 руб
План урока:
Строение атома
Атомы – частицы, из которых состоят молекулы. Понятие «атом» ввел Демокрит. Он считал эти частицы первоначалом мироздания. С греческого языка атом переводится как неделимый.
Представление Демокрита о месте атомов в мире.
После Демокрита учение об атомах было забыто на несколько веков. Возродил атомистическую теорию Джон Дальтон.Он установил, что атомы одного элемента одинаковы. Джон Дальтон определил атом, как «неделимый, вечный и неразрушимый».
В начале XX в. было установлено, что атом делим. Этот вывод был сделан исходя из ряда научных открытий.
Экспериментальные данные показывают, что атом – сложная частица. На протяжении многих лет ученые спорили о строении и свойствах атома.
Модели атомов
Атом – сфера положительного электричества с плавающими электронами. Если проводить аналогию с кондитерским пудингом, то сфера – тесто, а электроны – изюм.
В центре атома располагается небольшое ядро, которое имеет положительный заряд. Вокруг ядра электроны, заряженные отрицательно, движутся как планеты. Т.е. ядро – Солнце нашей галактики, а планеты – это электроны.
Положения теории Бора.
Ядро атома включает протоны и нейтроны. Количество электронов равно сумме протонов. Точное расположение электрона определить невозможно, можно только найти его наиболее вероятную область нахождения. При переходе с орбитали на орбиталь испускается или поглощается электромагнитная энергия.
Характеристика атома
Строение электронной оболочки атома
Атомная орбиталь описывает состояние электрона. Она обозначается в виде пустой клетки. У каждой орбитали есть свое электронное облако – это наиболее вероятная область нахождения электрона.
Формы электронных облаков.
Правила заполнения орбиталей
В многоэлектронном атоме стабильной является та конфигурация, для которой достигается минимум полной энергии. В первую очередь электроны идут на орбитали с меньшей энергией в соответствии с рядом Клечковского:
На орбитали могут находиться только один-два электрона.
В пределах одного подуровня электроны по одному переходят на свободные орбитали. Только после того, как на каждой орбитали находится по одному электрону, могут формироваться пары.Стоит отметить, что правило Гунда характеризует основное состояние атома.
Периодический закон Дмитрия Ивановича Менделеева
С точки зрения строения атомов периодический закон элементов Менделеева формулируется:
«Свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера)».
Но такая формулировка существовала не всегда. Сам Дмитрий Иванович считал, что периодическая зависимость определяется атомными весами. В современной науке нет понятия атомных весов, но есть определение атомной массы.
На момент создания периодической таблицы было известно 63 химических элементов. Менделеев расположил не только известные ему элементы, но и оставил пустые ячейки. Таким образом, он предсказал открытие новых атомов. На данный момент науке известно 118 элементов. Многие открытые атомы (радиоактивные элементы) не встречаются в естественных условиях, т.к. их создал человек искусственным способом.
В таблице элементы обозначаются разными цветами. Это сделано не для красоты, а для удобства работы с таблицей. В периодической системе элементы можно распределить на несколько групп.
Свойства групп элементов схожи. Он закономерно изменяются в пределах групп и периодов.
Положение водорода в периодической системе
Водород – двойной агент, который может быть как окислителем, так и восстановителем. Он может входить как в I, так и в VII группу. Это связано с тем, что он имеет черты сходства и со щелочными металлами, и с галогенами.
Двойственность водорода связана с тем, что у него только один электрон. На s-уровне может находиться только два электрона. Поэтому водород с легкостью отдает свой единственный электрон или отнимает электрон у другого элемента.
Значение периодической системы Д.И. Менделеева
Создание ученым Дмитрием Ивановичем Менделеевым определило развитие химии и других естественнонаучных дисциплин. Открытие периодического закона показало, что все атомы построены по одному принципу, а их химическое строение должно отображать периодичность свойств элементов.Периодическая система оказала влияние на разработку теории строения атома.
Таблица Д.И. Менделеева – основа неорганической химии. Без нее человек бы не узнал о существовании хлорида натрия NaCl – веществе, которое придает супу соленый вкус.Без периодической системы люди бы не узнали, почему натрий так бурно вступает в реакцию с водой или почему органические вещества горят с копотью. Периодический закон объясняет то, почему некоторые элементы похожи друг на друга. Таблица Дмитрия Ивановича раскрывает тайны человечества и открывает новые границы химической науки.
Периодический закон Д. И. Менделеева и периодическая система химических элементов
Периодический Закон Д.И. Менделеева
Периодический закон Д.И. Менделеева и периодическая система химических элементов имеет большое значение в развитии химии. Окунемся в 1871 год, когда профессор химии Д.И. Менделеев, методом многочисленных проб и ошибок, пришел к выводу, что
«… свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».
Периодичность изменения свойств элементов возникает вследствие периодического повторения электронной конфигурации внешнего электронного слоя с увеличением заряда ядра.
Современная формулировка периодического закона
звучит следующим образом
«свойства химических элементов (т.е. свойства и форма образуемых ими соединений) находятся в периодической зависимости от заряда ядра атомов химических элементов».
Преподавая химию, Менделеев понимал, что запоминание индивидуальных свойств каждого элемента, вызывает у студентов трудности. Он стал искать пути создания системного метода, чтобы облегчить запоминание свойств элементов. В результате появилась естественная таблица, позже она стала называться периодической.
Наша современная таблица очень похожа на менделеевскую. Рассмотрим ее подробнее.
Таблица Менделеева
Периодическая таблица Менделеева состоит из 8 групп и 7 периодов. Рассмотрим подробнее что такое период и что такое группа в периодической таблице Менделеева.
Группы в таблице Менделеева
Вертикальные столбцы таблицы называют группами.
Элементы, внутри каждой группы, обладают сходными химическими и физическими свойствами. Это объясняется тем, что элементы одной группы имеют сходные электронные конфигурации внешнего слоя, число электронов на котором равно номеру группы. При этом группа разделяется на главные и побочные подгруппы.
В Главные подгруппы входят элементы, у которых валентные электроны располагаются на внешних ns- и np- подуровнях.
В Побочные подгруппы входят элементы, у которых валентные электроны располагаются на внешнем ns- подуровне и внутреннем (n — 1) d- подуровне (или (n — 2) f- подуровне).
Все элементы в периодической таблице, в зависимости от того, на каком подуровне (s-, p-, d- или f-) находятся валентные электроны классифицируются на:
Высшая и низшая степени окисления элементов
Высшая валентность элемента и высшая степень окисления (за исключением O, F, элементов подгруппы меди и восьмой группы) равна номеру группы, в которой он находится.
Низшая степень окисления элемента равна
Номер группы — 8
Для элементов главных и побочных подгрупп одинаковыми являются формулы высших оксидов (и их гидратов).
В главных подгруппах состав водородных соединений являются одинаковыми, для элементов, находящихся в этой группе.
Твердые гидриды образуют элементы главных подгрупп I — III групп, а IV — VII групп образуют а газообразные водородные соединения. Водородные соединения типа ЭН4 – нейтральнее соединения, ЭН3 – основания, Н2Э и НЭ — кислоты.
Периоды в таблице Менделеева
Горизонтальные ряды таблицы называют периодами. Элементы в периодах отличаются между собой. Общим является то, что последние электроны находятся на одном энергетическом уровне (главное квантовое число n — одинаково).
Как определить металл или неметалл?
Если посмотреть на периодическую таблицу Менделеева и провести воображаемую черту, начинающуюся у бора и заканчивающуюся между полонием и астатом, то все металлы будут находиться слева от черты, а неметаллы главных подгрупп – справа.
Элементы, непосредственно прилегающие к этой линии будут обладать свойствами как металлов, так и неметаллов. Их называют металлоидами или полуметаллами. Это бор, кремний, германий, мышьяк, сурьма, теллур и полоний.
Как изменяются свойства элементов в Периодической таблице?
Правило октета
Правило октета утверждает, что все элементы стремятся приобрести или потерять электрон, чтобы иметь восьмиэлектронную конфигурацию ближайшего благородного газа. Т.к. внешние s- и p-орбитали благородных газов полностью заполнены, то они являются самыми стабильными элементами.
Согласно правилу октета, при движении по периодической таблице слева направо для отрыва электрона требуется больше энергии. Поэтому элементы с левой стороны таблицы стремятся потерять электрон, а с правой стороны – его приобрести.
Изменение энергии ионизации
Энергия ионизации – это количество энергии, необходимое для отрыва электрона от атома.
Изменение сродства к электрону
Сродство к электрону – изменение энергии при приобретении дополнительного электрона атомом вещества в газообразном состоянии.
Изменение электроотрицательности
Электроотрицательность — мера того, насколько сильно атом стремится притягивать к себе электроны связанного с ним другого атома.
Электроотрицательность увеличивается при движении в периодической таблице слева направо и снизу вверх. При этом надо помнить, что благородные газы не имеют электроотрицательности. Таким образом, самый электроотрицательный элемент – фтор.
Итак, в периодической зависимости находятся такие свойства атома, которые связанны с его электронной конфигурацией: атомный радиус, энергия ионизации, электроотрицательность.
Изменение металлических и неметаллических свойств атомов
Неметалличность атома увеличивается при движении в периодической таблице слева направо и снизу вверх.
Изменение основных и кислотных свойств оксидов и гидроксидов
О сновные свойства оксидов уменьшаются, а кислотные свойства увеличиваются при движении слева направо и снизу вверх. При этом кислотные свойства оксидов тем сильнее, чем больше степень окисления образующего его элемента
По периоду слева направо основные свойства гидроксидов ослабевают.
По главным подгруппам сверху вниз сила оснований увеличивается. При этом, если металл может образовать несколько гидроксидов, то с увеличением степени окисления металла, основные свойства гидроксидов ослабевают.
По периоду слева направо увеличивается сила кислородосодержащих кислот. При движении сверху вниз в пределах одной группы сила кислородосодержащих кислот уменьшается. При этом сила кислоты увеличивается с увеличением степени окисления образующего кислоту элемента.
По периоду слева направо увеличивается сила бескислородных кислот. При движении сверху вниз в пределах одной группы сила бескислородных кислот увеличивается.
На рисунке ниже схематично показано изменение свойств атомов химических элементов в периодах и группах периодической таблицы Менделеева
Задания и примеры по строению таблицы Менделеева, положению атомов химического элемента в ней и закономерностям изменения свойств атомов элементов в периодах и группах периодической таблицы Менделеева представлены с разделе Задачи к разделу Периодический закон Д.И. Менделеева и периодическая система химических элементов
Периодический закон Д.И. Менделеева и периодичность свойств атомов. Конспект
Оглавление
1. Современная формулировка периодического закона и структура периодической системы Д.И.Менделеева
В 1869 г. Д.И. Менделееву удалось сформулировать периодический закон – важнейший закон природы:
свойства химических элементов, а, следовательно, и свойства образуемых ими простых и сложных веществ состоят в периодической зависимости от их атомного веса.
Согласно этой формулировке наблюдалось несоответствие положения некоторых элементов в периодической системе Менделеева:
В начале 20 века закон Менделеева и его система были обоснованы на квантово-механическом уровне. Существо этого закона было полностью сохранено, а в качестве фундаментальной константы атома стал использоваться
заряд ядра атома
(соответствующий порядковому номеру элемента),
что позволило устранить наблюдавшиеся несоответствия.
Исходя из структуры электронной оболочки атомов число элементов
в III периоде – должно было бы быть 18;
в IV периоде – должно было бы быть 32;
в V периоде – должно было бы быть 50.
Это обусловлено тем, что заполнение d-состояний электронами запаздывает на один период, а заполнение f-состояний – на два периода.
Отличие реальной системы от теоретически возможной заключается в том, что в первой не учитывалось электрон-электронное взаимодействие. Теоретический учет этого взаимодействия – чрезвычайно сложная задача. На качественном уровне приходится учитывать три эффекта –
эффект экранирования электронами ядра атома,
эффект проникновения электронов к ядру,
взаимное отталкивание электронов, принадлежащих одному и тому же энергетическому слою
Эффект экранирования ядра связан с тем, что внутренние электроны атома частично заслоняют ядро, в результате чего уменьшается его воздействие на внешний электрон. Эффект экранирования учитывается некоторой постоянной Sэкр, называемой константой экранирования. Заряд ядра с учетом экранирования называется эффективным зарядом и определяется соотношением Zэфф. = Z – Sэкр. Экранирование внешнего электрона возрастает с увеличением общего числа электронов в атоме.
Эффект проникновения электронов к ядру обусловлен тем, что электрон, согласно положениям квантовой механики, может находиться в любой точке атома. Это означает, что внешний электрон часть времени находится вблизи ядра, проникая через слои внутренних электронов, и не испытывает при этом их экранирующего действия.
Распределение электронной плотности относительно ядра изображают кривой распределения вероятности нахождения электрона в шаровом слое радиуса r толщиной dr, объем которого dV = 4pr 2 dr.
Для одного и того же энергетического слоя наибольшую проникающую способность проявляют s-электроны, меньшую – p-электроны, еще меньшую – d-электроны (рис.1). Число максимумов на кривой определяется числом n. Для 3s-электрона Nmax = n, для р-электрона Nmax = (n – 1), для d-электрона Nmax = (n – 2). Эффект проникновения увеличивает прочность связи электрона с ядром.
Взаимное отталкивание электронов, принадлежащих одному и тому же энергетическому слою, оказывает большое влияние на прочность связи электрона с ядром. Это отталкивание особенно сильно проявляется между двумя электронами с противоположными спинами, находящимися на одной орбитали.
Эти эффекты приводят к изменению эффективного заряда ядра атома, что позволяет объяснить реальную структуру электронной оболочки атома.
В настоящее время система Д.И. Менделеева представляет собой предельно краткую и четкую физико-химическую энциклопедию. В современной формулировке периодический закон Д.И.Менделеева звучит следующим образом: свойства элементов, а также свойства и формы образуемых ими соединений находятся в периодической зависимости от заряда ядра атомов элементов.
На основе периодического закона разработаны графические системы Д.И. Менделеева. В настоящее время их насчитывается более 3 тысяч.
Наиболее распространены два варианта таблицы – короткопериодный и длиннопериодный.
Периоды – горизонтальные ряды, объединяющие элементы с одинаковым значением главного квантового числа n. Номер периода соответствует числу заполненных электронами энергетических уровней атома каждого конкретного элемента.
Группы – вертикальные ряды, объединяющие элементы с одинаковым числом валентных электронов.
Современная периодическая таблица состоит из 7 периодов: первый содержит всего два элемента, второй и третий – по 8 элементов (малые периоды), четвертый и пятый – по 18 элементов, шестой – 32 элемента, седьмой период не завершен, но должен содержать также 32 элемента (большие периоды).
Каждый период начинается с двух s-элементов, в атомах которых впервые появляется электрон со значением n, соответствующим номеру заполняемого периода, и заканчивается шестью p-элементами. В больших периодах между s- и р-элементами размещается по десять d- элементов. Все f-элементы условно помещаются в ячейки лантана (лантаноиды) и актиния (актиноиды), а их символы обычно выносятся за пределы периодической таблицы в виде рядов.
2. Радиус атома и энергия ионизации
Периодичностью называется повторяемость химических и физических свойств атомов химических элементов, их простых веществ и сложных соединений при изменении порядкового номера элемента в периодической таблице Д.И.Менделеева. Основная причина периодичности свойств элементов связана с электронным строением их атомов.
Рассмотрим 2 вида периодичности (горизонтальную и вертикальную) на примере таких свойств атомов как орбитальный радиус и его энергия ионизации.
Горизонтальная периодичность проявляется в появлении максимальных и минимальных значений для различных свойств элементов и их соединений в пределах каждого периода. Связана горизонтальная периодичность с изменением числа электронов на внешних энергетических уровнях атома с ростом заряда атомного ядра при движении от начала периода к его концу.
Вертикальная периодичность – вид периодичности, по которому элементы объединяют в группы: элементы одной группы имеют одинаковые конфигурации валентных электронов. Вертикальная периодичность заключается в повторяемости свойств атомов и их соединений и закономерном их изменении при увеличении заряда ядра в пределах каждой группы элементов.
Размеры атомов обычно оценивают по величине их радиуса. Однако вследствие волнового характера движения электрона радиус атома невозможно точно определить. Поэтому за радиус принимают различные условно выбранные величины. Различают орбитальный, атомный (ковалентный, металлический), ван-дер-ваальсов, ионный радиусы.
За орбитальный радиус (rорб) свободного атома принимают расстояние от центра атома до максимума, соответствующего внешнему электронному облаку, на теоретически рассчитанной кривой распределения вероятности нахождения электрона в атоме от расстояния r (см. рис. 1, табл. 1).
Рис.1. График зависимости величины 4πr 2 R 2 (r) от расстояния r для 1s-орбитали
На практике химиков больше интересуют радиусы атомов, связанных между собой. При рассмотрении простых веществ и органических соединений обычно пользуются понятием об атомном радиусе. Атомные радиусы (табл. 1) подразделяют на радиусы атомов металлов (металлический радиус), радиусы атомов неметаллов (ковалентные радиусы) и радиусы атомов благородных газов.
Под металлическим радиусом (rме) понимают половину расстояния между ближайшими соседними атомами металла в кристаллической решетке.
Радиусы атомов благородных газов (rблаг.г) рассчитаны из межатомных расстояний в кристаллах этих веществ, которые существуют при низких температурах.
Рис. 2. Ковалентные и ван-дер-ваальсовы радиусы молекулы Cl2 в кристалле
Часто для оценки размеров групп атомов или выяснения того, как могут взаимодействовать отдельные части молекулы, бывает интересно знать размер атома в том направлении, в котором он не образует химической связи. Половина расстояния между несвязанными атомами называется ван-дер-ваальсовым радиусом (rВ). Другими словами, ковалентный радиус – это радиус атома в направлении химической связи, а ван-дер-ваальсов радиус – радиус атома в любом другом направлении. Из рис. 2 видно, что ван-дер-ваальсов радиус находят по расстоянию между двумя ядрами хлора в соседних молекулах, и величина его всегда больше, чем ковалентный радиус атома (табл. 1).
В неорганической химии чаще всего оперируют понятием ионного радиуса. Ионный радиус (rион) характеризует размер иона. Ионные радиусы оценивают различными способами из экспериментальных данных. Для положительно заряженного иона (катиона) ионный радиус всегда меньше, чем ковалентный, для отрицательно заряженного иона (аниона) – больше, чем ковалентный радиус (табл. 1). Ионные радиусы одного и того же элемента изменяются в зависимости от координационного числа (к.ч.) иона и степени его окисления.
Таблица 1. Значения радиусов (в пм) для атомов и ионов I – III периодов
(1пм = 10 -9 см =10 3 нм).
Способность атомов отдавать электроны характеризует величина, называемая энергией ионизации. Энергия ионизации Eи (energy of ionization) – это количество энергии, необходимое для отрыва электрона от невозбужденного атома в газообразном состоянии.
Элемент
Для d-элементов радиус увеличивается при переходе от IV к V периоду и уменьшается при переходе от V к VI периоду. Аналогичные тенденции наблюдаются и в изменении ван-дер-ваальсовых, атомных и ионных (при одинаковом заряде) радиусов. Уменьшение радиусов d-элементов при переходе от V к VI периоду обусловлено тем, что увеличение числа электронных слоев в них компенсируется f-сжатием, связанным с заполнением электронами 4f-подслоя у f-элементов VI периода. Отмеченным закономерностям не подчиняются d-элементы 3-й и 11-й групп. Для них типичны закономерности, наблюдаемые для s- и р-элементов.
Для d-элементов значения Eи1 в группе в общем увеличиваются. Это можно объяснить эффектом проникновения электронов к ядру.
3. Сродство атома к электрону
Сродство атомов к электрону определено для многих элементов. Положительное значение Есрод1 означает поглощение энергии при присоединении электрона (эндотермический процесс) – невыгодно, отрицательное значение Есрод1 – экзотермический процесс – выделение энергии при присоединении электрона (выгодно).
4. Электроотрицательность
Электроотрицательность (ЭО) характеризует способность атома притягивать к себе электроны при образовании химической связи. Электроотрицательность не является физическим свойством, которое можно измерить. Величину электроотрицательности вычисляют, используя различные свойства веществ (энергию ионизации, сродство атома к электрону, межъядерные расстояния, энергии связи электрона с ядром и др.).
Шкала электроотрицательности по Малликену. Р.Малликеном (США) был предложен способ вычисления ЭО как среднего арифметического первой энергии ионизации атома Eи и его сродства к электрону Eсрод.:
.
Из уравнения следует, что атомы с большими значениями Eи и Eсрод. сильнее притягивают к себе электроны, обобществляемые при образовании связи. Так, атомы металлов имеют низкие значения электроотрицательности, так как для них характерны небольшие значения энергии ионизации и сродства к электрону. Атомы неметаллов, наоборот, характеризуются высокой электроотрицательностью вследствие того, что имеют существенно большие значения Eи и Eсрод.. Недостаток этого подхода связан с тем, что сродство к электрону установлено не для всех элементов, поэтому электроотрицательность по Малликену определена также не для всех элементов.
Шкала электроотрицательности по Полингу. Допустим, что связь в молекуле АВ – ковалентная, тогда энергию связи ЕАВ в молекуле АВ можно представить как среднее между энергиями связи в молекулах А2 и В2, обозначенных соответственно ЕА-А и ЕВ-В. Однако найденная из опыта энергия связи ЕАВ обычно оказывается больше, то есть:
> 0
Причина этого заключается в некоторой поляризации связи А-В, т.е. по значению величины Δ можно судить о степени полярности ковалентной связи и, следовательно, о способности атомов притягивать к себе электроны. Л. Полинг предположил, что величина Δ зависит от разности электроотрицательностей элементов следующим образом:
.
В группах р-элементов устойчивость высшей степени окисления уменьшается, но уменьшается немонотонно. Это связано с тем, что энергетическое различие между валентными s- и р-орбиталями в группах также изменяется немонотонно, то есть наблюдается четко выраженная вторичная периодичность. ΔЕsp для элементов 3-го и 5-го периодов ниже, чем для элементов 4-го периода (Ge, As, Se, Br). Поэтому устойчивость соединений в высшей степени окисления у элементов 3-го и 5-го периодов обычно выше, чем для аналогичных соединений 4р-элементов. Например, устойчивость галогенидов элементов 4-го периода мышьяка (AsСl5) и cелена (SeF6) в их высшей степени окисления меньше, чем устойчивость подобных галогенидов элементов 3-го (PCl5, SF6) и 5-го (SbCl5, TeF6) периодов. Для атомов р-элементов 6-го периода, имеющих большие различия между валентными s- и р-орбиталями, высшая степень окисления неустойчива.