что представляет собой биотический круговорот
Биотический круговорот: описание и значение процесса
Что представляет собой биотический круговорот? В качестве замкнутой системы он успешно функционирует на протяжении нескольких миллиардов лет.
Попробуем разобраться в том, что представляет собой биотический круговорот.
Особенности
Значимость
Вам будет интересно: Что такое Шипка? Значения слова
Биотический круговорот углерода в наземных экосистемах рассмотрим на примере фосфора. Достаточное количество данного элемента находится в гумусовых горизонтах ненарушенных почв, а также в лесной подстилке. Благодаря круговороту удается накапливать порядка 106-107 тонн фосфора в биосфере. В фитомассе естественных луговых степей находится порядка 30 кг/га данного элемента, чего вполне достаточно для млекопитающих.
Вам будет интересно: Что такое «рем»? Значения слова
Обмен энергии
Биотический круговорот предполагает энергетический обмен. Суть его сводится к тому, что в цепи пищевых (трофических) превращений не исчезает энергия, а наблюдается ее превращение из одного вида в другую.
Солнечная энергия трансформируется в рамках подобного процесса на каждом его уровне. Непосредственное потребление энергии Солнца характерно только для зеленых растений в рамках фотосинтеза.
Ими создается органическое соединение (глюкоза) из углекислого газа и воды, осуществляется аккумулирование энергии. Листья растений включаются в подобный химический процесс только при наличии солнечного света и хлорофилла.
Особенности процесса
В некоторые периоды существования человечества нарушался биотический круговорот веществ. Осуществлялся вывод только излишков, которые откладывались в качестве газа, каменного угля, нефти, известняков, иных минералов органического вида.
В ходе сжигания нефти или каменного угля в печах (моторах) высвобождается и применяется энергия, которая накапливалась биосферой на протяжении миллионов лет. В прошлом такие излишки не засоряли биосферу, не наблюдалось их негативного влияния на биотический круговорот. Сегодня все иначе.
Специфика
Для успешного осуществления круговорота важно разнообразие животных. Один вид не сможет расщепить в биогеоценозе до конечных продуктов органические вещества растений. Он расщепляет только часть их, а также некоторые органические соединения, находящиеся в них. Подобным образом формируются сети и цепи питания.
В биоценозе атмосфера имеет важное значение. Она способствует поддержанию биологического круговорота энергии и веществ, а также обеспечению водного баланса.
Загрязнитель может разлагаться до форм, которые могут вовлекаться в последующие этапы круговорота и усваиваться живыми организмами.
Базируется цикл на разложении и поглощении загрязнителей микроорганизмами, зависит он от активности и количественного показателя химических элементов, принимающих непосредственное участие в круговороте.
Экосистемой называют сумму неорганических и органических компонентов, внутри которой происходит биотический круговорот веществ.
Схема процесса
Растения, получая постоянный поток энергии Солнца, формируют из неорганической материи первичную продукцию. В остальных звеньях круговорота наблюдается изменение и потеря энергии. Продуценты, консументы, редуценты в экосистеме потребляют живое вещество первоначальной продукции. Животными потребляется для подобного процесса во много раз больше живого вещества низшего уровня, понижая и суммарные энергетические запасы. Обеспечивается круговорот благодаря взаимодействию трех групп.
Первую группу составляют продуценты. К ним относятся зеленые растения, которые принимают активное участие в фотосинтезе. Такими веществами являются и бактерии, которые способны к хемосинтезу. Именно они формируют первичное органическое вещество.
Вторая группа — консументы первого порядка. Они являются потребителями органического вещества. К ним причисляются хищники, а также простейшие. Животные, которых причисляют к хищникам, около 250 разных видов.
Вам будет интересно: Рокселлановы ринопитеки: описание, поведение, фото
Расходование энергии
Что еще рассматривает биология? Дыхание растений в ней занимает важное место, так как при этом процессе происходит окисление почти половины органического вещества до углекислого газа, возврат его в атмосферу.
Второй по масштабности вариант расходования органического соединения и накопленной энергии — употребление консументами первого порядка растений. Энергия, которая запасается фитофагами с пищей, расходуется на жизнедеятельность, дыхание, размножение. Она выделяется с экскрементами.
Растительноядные животные — это пища для плотоядных (консументов высшего трофического уровня). Они, в свою очередь, тратят энергию, накопленную с пищей, аналогично растительноядным животным.
Взаимосвязь элементов
Отдельное звено экосистемы в окружающую среду поставляет органические остатки. Они и служат источником энергии и пищи для животных-сапрофагов (грибов, бактерий). Завершающим этапом превращения углевода является процесс гумификации, последующее окисление гумуса до углекислого газа, минерализация зольных фрагментов. Они потом снова попадают в атмосферу и в почву, являясь пищей для растений.
Биотический круговорот является непрерывным процессом создания и разрушения органических соединений. Реализуется он посредством всех трех групп организмов. Невозможна жизнь без продуцентов, так как именно они являются основой жизни. Только у них есть способность создавать первичное органическое вещество, без которого не будет протекать последующий круговорот.
Благодаря потреблению консументов разных порядков первичной и вторичной продукции, перевода из одного вида в другой, на Земле возможно многообразие форм. Редуценты, которые разлагают органику, возвращают его к первому этапу круговорота.
Масштабные циклы миграции химических компонентов связывают наружные оболочки планеты в одно целое, они объясняют непрерывность эволюции.
В качестве движущей силы биотического круговорота выступает энергия Солнца. Основным процессом, способствующим получению органического вещества, является фотосинтез. Он возможен только при применении зелеными растениями солнечной энергии.
Листья растений (автотрофов), которые синтезируют глюкозу, «консервируют» солнечную энергию в органическое соединение. Попадая в биосферу из космоса, энергия скапливается и в растениях, и в горных породах, и в почве. Солнце обеспечивает круговорот химических элементов, позволяет образовывать поочередно неорганические или органические вещества.
Что важно знать
Скорость круговорота
Энергообмен имеет циклический характер. Обновление живого вещества биосферы осуществляется примерно через 8 лет. Гораздо быстрее процесс протекает в океане (через 33 дня). В атмосфере замена кислорода происходит за две тысячи лет, а оксида углерода — за 6 лет. Полная замена воды в гидросфере происходит за 2800 лет.
Химические соединения, которые доступны для компонентов биосферы, ограничены. Из-за их исчерпаемости тормозится развитие некоторых групп организмов в океане и на суше.
Варианты круговорота
Рассмотрим первый вариант круговорота. Магматические горные породы под действием биологических, химических, физических факторов превращаются в осадочные породы, в частности, в глину и песок. Они могут возникать также при синтезе биогенных минералов (отмерших микроорганизмов) из вод морей и океанов. Водянистые рыхлые осадки постепенно скапливаются на дне водоема, отвердевают, формируют плотные горные породы.
Затем идет их преобразование, наблюдаются процессы метаморфизма. Под действием порций эндогенной энергии слои переплавляются, формируя магму. При поднятии на поверхность Земли под действием выветривания, переноса они снова трансформируются в осадочные породы.
Большой круговорот характеризуется взаимодействием экзогенной (солнечной) энергии с эндогенной (глубинной) энергией Земли. Благодаря такому процессу перераспределяется вещество между глубокими горизонтами и биосферой планеты.
К нему относится и движение воды между литосферой, атмосферой, гидросферой, аккумулируемое солнечной энергией. Сначала вода испаряется с поверхности океана (моря, озера, реки), далее в виде осадков возвращается на землю. Компенсируют такие процессы речные стоки. Растительность играет важную роль в круговороте воды.
Малый круговорот характерен только для биосферы. Создаются круговороты в масштабах планеты из циклических многократных движений атомов, а также тех перемещений, что вызваны вулканизмом, движением морского дна, энергией ветра, подземными стоками.
Подведем итоги
В биосфере вещества циркулируют, формируя биогеохимические круговороты. Для них в больших количествах нужны следующие элементы: кислород, азот, углерод, водород. Циркуляция их возможна благодаря саморегулирующимся процессам, в которых активными участниками становятся другие компоненты экосистем.
На всех этапах развития биосферы действует закон глобального замыкания круговорота. Основой подобного процесса является солнечная энергия, а также хлорофилл зеленых растений.
Для полного разложения органического вещества, которое создается зелеными растениями, необходимо столько же кислорода, сколько и выделяется в ходе фотосинтеза. Благодаря захоронению органики в торфе, угле, осадочных породах в атмосфере поддерживаетсяобменный фонд кислорода.
В результате увеличения количества транспорта, промышленных предприятий нарушается круговорот кислорода в природе. Это негативно отражается на жизнеспособности биосистемы, приводит к мутациям и полному вымиранию некоторых видов живых растений и животных.
Биотический (биологический) круговорот
Под биотическим (биологическим) круговоротом понимается циркуляция веществ между почвой, растениями, животными и микроорганизмами. Таким образом, биотический (биологический) круговорот — это поступление химических элементов из почвы, воды и атмосферы в живые организмы, превращение в них поступающих элементов в новые сложные соединения и возвращение их обратно в процессе жизнедеятельности с ежегодным спадом части органического вещества или с полностью отмершими организмами, входящими в состав экосистемы.
Все организмы занимают определенное место в биотическом круговороте и выполняют свои функции по трансформации достающихся им ветвей потока энергии и по передаче биомассы. Всех объединяет, обезличивает их вещества и замыкает общий круг система одноклеточных редуцентов (деструкторов). В абиотическую среду биосферы они возвращают все элементы, необходимые для новых и новых оборотов.
Следует подчеркнуть наиболее важные особенности биотического круговорота.
Фотосинтез относится к мощному естественному процессу, вовлекающему ежегодно в круговорот огромные массы вещества биосферы и определяющему ее высокий кислородный потенциал. Он выступает регулятором основных геохимических процессов в биосфере и фактором, определяющим наличие свободной энергии верхних оболочек земного шара. Фотосинтез представляет собой химическую реакцию, которая протекает, как известно, за счет солнечной энергии при участии хлорофилла зеленых растений.
За счет углекислоты и воды синтезируется органическое вещество и выделяется свободный кислород. Прямыми продуктами фотосинтеза являются различные органические соединения, а в целом процесс фотосинтеза носит довольно сложный характер.
Помимо фотосинтеза с участием кислорода, следует остановиться и на хемосинтезе. К хемосинтезирующим организмам относятся нитрификаторы, карбоксидобактерии, серобактерии, тионовые железобактерии, водородные бактерии. Они называются так по субстратам окисления. Хемосинтез характерен для глубоководных гидротермальных источников.
Фотосинтез происходит за немногим исключением на всей поверхности Земли, создает огромный геохимический эффект и может быть выражен как количество всей массы углерода, вовлекаемой ежегодно в построение органического — живого вещества всей биосферы. В общий круговорот материи, связанной с построением путем фотосинтеза органического вещества, вовлекаются и такие химические элементы, как N, P, S, а также металлы — К, Са, Mg, Na, Al.
При гибели организма происходит обратный процесс — разложение органического вещества путем окисления, гниения и т. д. с образованием конечных продуктов разложения.
В биосфере Земли этот процесс приводит к тому, что количество биомассы живого вещества приобретает тенденцию к определенному постоянству.Биомасса экосферы (2∙10 12 т) на семь порядков меньше массы земной коры (2 ∙ 10 10 т). Растения Земли ежегодно продуцируют органическое вещество, равное 1,6 ∙ 10 11 т или 8% биомассы экосферы. Деструкторы, составляющие менее 1% от суммарной биомассы организмов планеты, перерабатывают массу органического вещества, в 10 раз превосходящую их собственную биомассу. В среднем период обновления биомассы равен 12,5 годам.
Мы можем утверждать, что атомы, составляющие наши тела, побывали в древних бактериях, и в динозаврах, и в мамонтах
Закон биогенной миграции атомов В. И. Вернадскогогласит: «Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же она протекает в среде, геохимические особенности которой (О2, СО2, Н2 и т. д.) обусловлены живым веществом, как тем, которое в настоящее время населяет биосферу, так и тем, которое действовало на Земле в течение всей геологической истории».
Биогенный круговорот
Совместная деятельность различных живых организмов определяет закономерный круговорот отдельных элементов и химических соединений, включающий введение их в состав живых клеток, преобразования химических веществ в процессах метаболизма, выведение в окружающую среду и деструкцию органических веществ, в результате которой высвобождаются минеральные вещества, вновь включающиеся в биологические циклы. Процессы круговорота происходят в конкретных экосистемах, но в полном виде биогеохимические циклы реализуются лишь на уровне биосферы в целом. Ниже рассматриваются наиболее значимые элементы круговорота веществ.
Круговорот углерода
Углерод существует в природе во многих формах, в том числе в составе органических соединений. Неорганическое вещество, лежащее в основе биогенного круговорота этого элемента,— диоксид углерода (или углекислый газ, CO2). В природе СО2 входит в состав атмосферы, а также находится в растворенном состоянии в гидросфере. Включение углерода в состав органических веществ происходит в процессе фотосинтеза, в результате которого на основе СО2 и H2O образуются сахара. В дальнейшем другие процессы биосинтеза преобразуют эти углеводы в более сложные (крахмал, гликоген), а также в протеиды, липиды и др. Все эти соединения не только формируют ткани фотосинтезирующих организмов, но и служат источником органических веществ для животных и незеленых растений.
В процессе дыхания все организмы окисляют сложные органические вещества; конечный продукт этого процесса, СO2, выводится во внешнюю среду, где вновь может вовлекаться в процесс фотосинтеза.
Углеродсодержащие органические соединения тканей живых организмов после их смерти подвергаются биологическому разложению организмами-редуцентами, в результате чего углерод в форме углекислоты вновь поступает в круговорот. Этот процесс составляет сущность так называемого почвенного дыхания.
При определенных условиях в почве разложение накапливающихся мертвых остатков идет замедленным темпом — через образование сапрофагами (животными и микроорганизмами) гумуса, минерализация которого воздействием грибов и бактерий может идти с различной, в том числе и с низкой, скоростью. В некоторых случаях цепь разложения органического вещества бывает неполной. В частности, деятельность сапрофагов может подавляться недостатком кислорода или повышенной кислотностью. В этом случае органические остатки накапливаются в виде торфа; углерод не высвобождается и круговорот приостанавливается. Аналогичные ситуации возникали и в прошлые геологические эпохи, о чем свидетельствуют отложения каменного угля и нефти.
В гидросфере приостановка круговорота углерода связана с включением СО2 в состав СаСО3 в виде известняков, мела, кораллов. В этом случае углерод выключается из круговорота на целые геологические эпохи. Лишь поднятие органогенных пород над уровнем моря приводит к возобновлению круговорота через выщелачивание известняков атмосферными осадками, а также биогенным путем —действием лишайников, корней растений.
Круговорот азота. Главный источник азота органических соединений — молекулярный азот в составе атмосферы. Переход его в доступные живым организмам соединения может осуществляться разными путями. Так, электрические разряды при грозах синтезируют из азота и кислорода воздуха оксиды азота, которые с дождевыми водами попадают в почву в форме селитры или азотной кислоты. Имеет место и фотохимическая фиксация азота.
Более важной формой усвоения азота является деятельность азот-фиксирующих микроорганизмов, синтезирующих сложные протеиды. Отмирая, они обогащают почву органическим азотом, который быстро минерализуется. Таким путем в почву ежегодно поступает около 25 кг азота на 1 га (для сравнения — путем фиксации азота разрядами молний — 4-10 кг/га).
Наиболее эффективная фиксация азота осуществляется бактериями, формирующими симбиотические связи с бобовыми растениями. Образуемый ими органический азот диффундирует в ризосферу, а также включается в наземные органы растения-хозяина. Таким путем в наземных и подземных органах растений (например, клевера или люцерны) на 1 га накапливается за год 150-400 кг азота.
Существуют азотфиксирующие микроорганизмы, образующие симбиоз и с другими растениями. В водной среде и на очень влажной почве непосредственную фиксацию атмосферного азота осуществляют цианобактерии (способные также к фотосинтезу). Во всех этих случаях азот попадает в растения в форме нитратов. Эти соединения через корни и проводящие пути доставляются в листья, где используются для синтеза протеинов; последние служат основой азотного питания животных.
Экскреты и мертвые организмы составляют базу цепей питания организмов-сапрофагов, разлагающих органические соединения с постепенным превращением органических азотсодержащих веществ в неорганические. Конечным звеном этой редукционной цепи оказываются аммонифицирующие организмы, образующие аммиак NH3, который затем может войти в цикл нитрификации: Nitrosomonas окисляют его в нитриты, a Nitrobacter окисляют нитриты в нитраты. Таким образом, цикл азота может быть продолжен.
В то же время происходит постоянное возвращение азота в атмосферу действием бактерий-денитрификаторов, которые разлагают нитраты до N2. Эти бактерии активны в почвах, богатых азотом и углеродом. Благодаря их деятельности ежегодно с 1 га почвы улетучивается до 50-60 кг азота.
Азот может выключаться из круговорота путем аккумуляции в глубоководных осадках океана. В известной мере это компенсируется выделением молекулярного N2 в составе вулканических газов.
Круговорот воды
Вода — необходимое вещество в составе любых живых организмов. Основная масса воды на планете сосредоточена в гидросфере. Испарение с поверхности водоемов представляет источник атмосферной влаги; конденсация ее вызывает осадки, с которыми в конце концов вода возвращается в океан. Этот процесс составляет большой круговорот воды на поверхности Земного шара.
В пределах отдельных экосистем осуществляются процессы, усложняющие большой круговорот и обеспечивающие его биологически важную часть. В процессе перехвата растительность способствует испарению в атмосферу части осадков раньше, чем они достигнут поверхности земли. Вода осадков, достигшая почвы, просачивается в нее и либо образует одну из форм почвенной влаги, либо присоединяется к поверхностному стоку; частично почвенная влага может по капиллярам подняться на поверхность и испариться. Из более глубоких слоев почвы влага всасывается корнями растений; часть ее достигает листьев и транспирируется в атмосферу.
Эвапотранспирация— это суммарная отдача воды из экосистемы в атмосферу. Она включает как физически испаряемую воду, так и влагу, транспирируемую растениями. Уровень транспирации различен для разных видов и в разных ландшафтно-климатических зонах.
Если количество воды, просочившейся в почву, превышает ее влагоемкость, она достигает уровня грунтовых вод и входит в их состав. Подземный сток связывает почвенную влагу с гидросферой.
Таким образом, для круговорота воды в пределах экосистем наиболее важны процессы перехвата, эвапотранспирации, инфильтрации и стока.
В целом круговорот воды характеризуется тем, что в отличие от углерода, азота и других элементов вода не накапливается и не связывается в живых организмах, а проходит через экосистемы почти без потерь; на формирование биомассы экосистемы используется лишь около 1% воды, выпадающей с осадками.
Круговорот фосфора
В природефосфорв больших количествах содержится в ряде горных пород. В процессе разрушения этих пород он попадает в наземные экосистемы или выщелачивается осадками и в конце концов оказывается в гидросфере. В обоих случаях этот элемент вступает в пищевые цепи. В большинстве случаев организмы-редуценты минерализуют органические вещества, содержащие фосфор, в неорганические фосфаты, которые вновь могут быть использованы растениями и таким образом снова вовлекаются в круговорот.
В океане часть фосфатов с отмершими органическими остатками попадает в глубинные осадки и накапливается там, выключаясь из круговорота. Процесс естественного круговорота фосфора в современных условиях интенсифицируется применением в сельском хозяйстве фосфорных удобрений, источником которых служат залежи минеральных фосфатов. Это может быть поводом для тревоги, поскольку соли фосфора при таком использовании быстро выщелачиваются, а масштабы эксплуатации минеральных ресурсов все время растут, составляя в настоящее время около 2 млн. т/год.
Фотосинтез. 6СО2 + 6Н20 (свет, хлорофилл)= С6Н1206 + 602.
Дыхание. С6Н1206 + 602 = 6СО2 + 6Н20 + энергия.
Круговорот серы
Серапопадает в почву в результате естественного разложения некоторых горных пород (серный колчедан FeS2, медный колчедан CuFeS2), а также как продукт разложения органических веществ (главным образом растительного происхождения). Через корневые системы сера поступает в растения, в организме которых синтезируются содержащие этот элемент аминокислоты цистин, цистеин, метионин. В организме животных сера содержится в очень малых количествах и попадает в них с кормом.
Сера из органических соединений попадает в почву благодаря разложению мертвых органических остатков микроорганизмами. В этом процессе органическая сера может быть восстановлена в H2S и минеральную серу или же окислена в сульфаты, которые поглощаются корнями растений, т. е. вновь вступают в круговорот. В наше время в круговорот вовлекается и сера промышленного происхождения (дымы), переносимая с дождевой водой.
С появлением человека возник антропогенный круговорот или обмен веществ. Антропогенный круговорот (обмен) — круговорот (обмен) веществ, движущей силой которого является деятельность человека. В нем можно выделить две составляющие: биологическую связанную с функционированием человека как живого организма, и техническую, связанную с хозяйственной деятельностью людей (техногенный круговорот (обмен)).
Практическая работа №2
Расчёт уровня шума
В процессе разработки проектов генеральных планов городов и детальной планировки их районов предусматривают градостроительные меры по снижению транспортного шума в жилой застройке. При этом учитывают расположение транспортных магистралей, жилых и нежилых зданий, возможное наличие зелёных насаждений. Учёт этих факторов помогает в одних случаях обойтись без специальных строительно-акустических мероприятий по защите от шума, а в других – снизить затраты на их осуществление.
2.Методика расчета
Задача данного практического занятия – определить уровень звука в расчётной точке (площадка для отдыха в жилой застройке, см. рис. 1) от источника шума – автотранспорта, движущегося по уличной магистрали.
Уровень звука в расчётной точке, дБА,
где L и.ш. – уровень звука от источника шума (автотранспорта); DLрас – снижение уровня звука из-за его рассеивания в пространстве; дБА; DLвоз – снижение уровня звука из-за его затухания в воздухе, дБА, DLзел – снижение уровня звука зелёными насаждениями, дБА; DLэ – снижение уровня звука экраном (зданием), дБА;
В формуле влияние травяного покрытия и ветра на снижение уровня звука не учитывается.
Рис. 1 Расположение площадки для отдыха в жилой застройке.
Снижение уровня звука от его рассеивания в пространстве
DLрас = 10 lg (r n / r o), | (2.2.) |
где rn – кратчайшее расстояние от источника шума до расчётной точки, м; ro– кратчайшее расстояние между точкой, в которой определяется звуковая характеристика источника шума, и источники шума; ro=7,5 м.
Снижение уровня звука из-за его затухания в воздухе
DLвоз = (aвоз rn)/100, | (2.3.) |
где aвоз – коэффициент затухания звука в воздухе; aвоз = 0,5 дБА/м.
Снижение уровня звука зелёными насаждениями
где aзел – постоянная затухания шума; aзел = 0,1 дБА; В – ширина полосы зелёных насаждений;
Снижение уровня звука экраном (зданием) DLэкр зависит от разности длин путей звукового луча d, м.
Таблица 2.1. Зависимость снижение уровня звука экраном (зданием) от разности звукового луча.
d | ||||||||
DLэкр | 16,2 | 18,4 | 21,2 | 22,4 | 22,5 | 23,1 | 23,7 | 24,2 |
Расстоянием от источника шума и от расчётной точки до поверхности земли можно пренебречь.
Снижение шума за экраном (зданием) происходит в результате образования звуковой тени в расчётной точке и огибания экрана звуковым лучом.
Снижение шума зданием (преградой) обусловлено отражением звуковой энергии от верхней части здания:
где К – коэффициент, дБА/м; К = 0,8…0,9; W – толщина (ширина) здания, м.
Допустимый уровень звука на площадке для отдыха – не более 45 дБА.
3. Порядок выполнения задания
3.1. Выбрать вариант (см. табл. 2.3.).
3.2. Ознакомиться с методикой расчёта.
3.3.В соответствии с данными варианта определить снижение уровня звука в расчётной точке и, зная уровень звука от автотранспорта (источник шума), по формуле (2.1.) найти уровень звука в жилой застройке.
3.4. Определив уровень звука в жилой застройке, сделать вывод о соответствии расчётных данных допустимым нормам.
3.5. Подписать отчёт и сдать преподавателю.
4. Таблица 2.3. Варианты заданий
5. Пример выполнения работы «расчёт уровня шума в жилой застройке»
1.Исходные данные:
2.Цель работы: определить уровень звука в расчётной точке (площадка для отдыха в жилой застройке) от источника шума – автотранспорта, движущегося по уличной магистрали и сравнить с допустимым.
3.Ход работы:
Рассчитаем уровень звука в расчетной точке по формуле (2.1.):
где L и.ш. – уровень звука от источника шума (автотранспорта); DLрас– снижение уровня звука из-за его рассеивания в пространстве; дБА; DLвоз– снижение уровня звука из-за его затухания в воздухе, дБА, DLзел– снижение уровня звука зелёными насаждениями, дБА; DLэ– снижение уровня звука экраном (зданием), дБА.
Для этого нам необходимо рассчитать:
1.Снижение уровня звука из-за рассеивания в пространстве:
DLрас = 10 · lg(75/7,5) = 10 · lg10 = 10,
где Rn – кратчайшее расстояние от источника шума до расчетной точки, м; ro – кратчайшее расстояние между точкой, в которой определяется звуковая характеристика источника шума, и источником шума ro=7,5м.
2.Снижение уровня звука из-за его затухания в воздухе:
DLвоз= (0,5×75)/100 = 0,375
3.Снижение уровня шума зелёными насаждениями:
где Lзел – постоянная затухания шума, Lзел= 0,1дбА/м; В – ширина полосы зелёных насаждений, В = 10м
4.Снижение уровня шума экраном DLвоз зависит от разности длин путей звукового луча d, м. Находим из таблицы 2.1. по данным варианта (табл. 2.3.):
d | ||||||||
DLэкр | 16,2 | 18,4 | 21,2 | 22,4 | 22,5 | 23,1 | 23,7 | 24,2 |
5.Снижение шума зданием (преградой) обусловлено отражением звуковой энергии от верхней части здания:
DLзд = K·W
где К – коэффициент, К = 0,8…0,9дБА/м
6.По формуле (2.1.) находим уровень звука в расчётной точке, подставив все вычисленные данные:
Lрт = 80 – 10 – 0,375 – 1 – 23,7 – 10,2 = 34,725 дБА.
Вывод: Рассчитанный уровень звука на площадке отдыха в жилой застройке равен 34,725 дБА, что меньше допустимого, равного 45 дБА. Следовательно, уровень звука соответствует нормам.
1.Охрана окружающей среды /С.В. Белов, Ф.А. Барбинов, А.Ф. Козьяков и др.; Под ред. С.В. Белова. – 2-е изд., испр. И доп. – М.: Высшая школа, 1991. – 319 с.
2.Руководство по расчету и проектированию средств защиты застройки от транспортного шума/Г.Л. Осипов, В.Е. Коробков и др. – М.: Стройиздат, 1982. – 31с.
Практическая работа № 3
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).