что представляет собой электрическая сеть
Как устроена электрическая сеть
Электрическая сеть — совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории. Возможно другое определение: совокупность подстанций и распределительных устройств и соединяющих их электрических линий, размещенных на территории района, населенного пункта, потребителя электроэнергии.
Потребители электроэнергии рассчитаны на более низкие напряжения, чем напряжение в энергосистеме. Понижение напряжения производится в два этапа. Сначала на понижающей подстанции, являющейся частью энергосистемы, напряжение понижается до 6-10 кВ (киловольт). Дальнейшее понижение напряжение производится на трансформаторных подстанциях. Их знакомые всем стандартные «трансформаторные будки» во множестве разбросаны по предприятиям и жилым массивам. После трансформаторной подстанции напряжение понижается до 220-380 В.
Напряжение между линейными проводами трехфазной системы переменного тока называется линейным. Номинальное действующее значение линейного напряжения в России равно 380 В (вольт). Напряжение между нейтралью и любым из линейных проводов называется фазным. Оно в корень из трех раз меньше линейного. Его номинальное значение в России равно 220 В.
Источником тока для энергосистемы являются трехфазные генераторы переменного тока, установленные на электростанциях. Каждая из обмоток генератора индуцирует линейное напряжение. Обмотки симметрично расположены по окружности генератора. Соответственно и линейные напряжения сдвинуты друг относительно друга по фазе. Этот фазовый сдвиг постоянен и равен 120 градусам.
После трансформаторной подстанции напряжение через распределительные щитки или (на предприятиях) распределительные пункты поступает к потребителям.
Некоторые потребители (электродвигатели, промышленное оборудование, большие ЭВМ и мощное коммуникационное оборудование) рассчитаны на непосредственное подключение к трехфазной электрической сети. К ним подводятся четыре провода (не считая защитного заземления).
Приведенные выше действующие значения напряжения не исчерпывают полностью параметры электрической сети. Переменный электрический ток характеризуется также частотой. Номинальное стандартное значение частоты в России равно 50 Гц (Герц).
Реальные значения напряжения и частоты электрической сети конечно могут отличаться от номинальных значений.
К сети постоянно подключаются новые потребители электроэнергии (ток или нагрузка в сети увеличивается) или отключаются какие-либо потребители (в результате ток или нагрузка сети уменьшается). При увеличении нагрузки напряжение в сети падает, а при уменьшении нагрузки напряжение в сети возрастает.
Для уменьшения влияния изменения нагрузки на напряжение, на понижающих подстанциях существует автоматическая система регулирования напряжения. Она предназначена для поддержания постоянного (в определенных пределах и с определенной точностью) напряжения при изменении нагрузки в сети. Регулирование осуществляется за счет перекоммутации обмоток мощных понижающих трансформаторов.
Частота переменного тока задается частотой вращения генераторов на электростанциях. При увеличении нагрузки частота стремится слегка уменьшиться, система регулирования электростанции увеличивает расход рабочего тела через турбину, и частота вращения генератора восстанавливается.
Разумеется ни одна система регулирования (напряжения или частоты) не может работать идеально, и в любом случае пользователю электрической сети нужно смириться с некоторыми отклонениями характеристик сети от номинальных значений.
В России требования к качеству электрической энергии стандартизованы. ГОСТ 23875-88 дает определения показателям качества электроэнергии, а ГОСТ 13109-87 устанавливает значения этих показателей. Этим стандартом установлены значения показателей в точках подключения потребителей электроэнергии. Для пользователя это означает, что он может требовать от энергоснабжающей организации, чтобы установленные нормы соблюдались не где-то в энергосистеме, а непосредственно в его розетке.
Согласно стандарту в течение не менее 95 % времени каждых суток фазное напряжение должно находиться в диапазоне 209-231 В (отклонение 5 %), частота в пределах 49.8-50.2 Гц, а коэффициент несинусоидальности не должен превышать 5 %.
Остальные 5 или менее процентов времени каждых суток напряжение может изменяться от 198 до 242 В (отклонение 10 %), частота от 49.6 до 50.4 Гц, а коэффициент несинусоидальности должен быть не более 10 %. Допускаются также более сильные изменения частоты: от 49.5 Гц до 51 Гц, но общая длительность таких изменений не должна превышать 90 часов за год.
Авариями электроснабжения называются ситуации, когда показатели качества электроэнергии кратковременно выходят за установленные пределы. Частота может отклоняться на 5 Гц от номинального значения. Напряжение может снижаться до нуля. В дальнейшем показатели качества должны восстанавливаться.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Классификация электрических сетей
Электрические сети классифицируют по ряду показателей, характеризующих как сеть в целом, так и отдельные линии электропередачи (ЛЭП).
По току различают сети переменного и постоянного тока.
Трехфазный переменный ток 50 Гц имеет ряд преимуществ по сравнению с постоянным:
возможность трансформации с одного напряжения на другое в широких пределах;
возможность передачи больших мощностей на большие расстояния, что достигается. Это достигается трансформацией напряжения генераторов в более высокое напряжение для передачи электроэнергии по линии и обратной трансформацией высокого напряжения в низкое на приемном пункте. При таком способе передачи электроэнергии потери в линии уменьшаются, так как они зависят от тока в линии, а ток при одной и той же мощности тем меньше, чем выше напряжение;
при трехфазном переменном токе конструкция асинхронных электродвигателей проста и надежна (нет коллектора). Конструкция синхронного генератора переменного тока также проще генератора постоянного тока (отсутствует коллектор и др.);
Недостатками переменного тока являются:
необходимость выработки реактивной мощности, которая нужна в основном для создания магнитных полей трансформаторов и электродвигателей. На выработку реактивной энергии топливо (на ТЭС) и вода (на ГЭС) не затрачиваются, однако реактивный ток (ток намагничивания), протекая по линиям и обмоткам трансформаторов, бесполезно (в смысле использования линий для передачи активной энергии) перегружает их, вызывает потери активной мощности в них и лимитирует передаваемую активную мощность. Отношение реактивной мощности к активной характеризует коэффициент мощности установки (чем меньше коэффициент мощности, тем хуже используются электрические сети);
для повышения коэффициента мощности часто используют конденсаторные батареи или синхронные компенсаторы, что удорожает установки переменного тока;
передача очень больших мощностей на большие расстояния лимитируется устойчивостью параллельной работы энергосистем, между которыми осуществляется передача мощности.
К преимуществам постоянного тока следует отнести:
отсутствие реактивной составляющей тока (возможно полное использование линий);
удобное и плавное регулирование в больших пределах числа оборотов электродвигателей постоянного тока;
большой начальный вращаемый момент у сериесных двигателей, нашедших широкое применение в электротяге и кранах;
возможность электролиза и др.
Основными недостатками постоянного тока являются:
невозможность трансформации простыми средствами постоянного тока одного напряжения в другое;
невозможность создания генераторов постоянного тока высокого напряжения (ВН) для передачи мощности на сравнительно большие расстояния;
сложность получения постоянного тока ВН: для этой цели необходимо переменный ток ВН выпрямлять, а затем на месте приема инвертировать в трехфазный переменный. Основное применение получили сети трехфазного переменного тока. При большом количестве электроприемников однофазного тока от трехфазной сети делаются однофазные ответвления. Преимуществами трехфазной системы переменного тока являются:
применение трехфазной системы для создания вращающегося магнитного поля дает возможность выполнения простых электродвигателей;
в трехфазной системе потери мощности меньше, чем в одно- фазной. Доказательство этого положения приводится в табл.1.
Таблица 1. Сравнение трехфазной системы (трехпроводной) с однофазной (двухпроводной)
Как видно из таблицы (строки 5 и 6), dР1=2dР3 и dQ1=2dQ3, т.е. потери мощности в однофазной системе при тех же мощности S и напряжении U больше в два раза. Однако в однофазной системе два провода, а в трехфазной три.
Чтобы расход металла был тем же, нужно уменьшить сечение проводов трехфазной линии по сравнению с однофазной в 1,5 раза. Во столько же раз будет больше сопротивление, т.е. R3=1,5R1. Подставляя это значение в выражение для dР3, получим dР3 = (1,5S2/U2)R1, т.е. потери активной мощности в однофазной линии в 2/1,5=1,33 раза больше, чем в трехфазной.
Использование постянного тока
Сети постоянного тока сооружаются для питания промышленных предприятий (электролизных цехов, электрических печей и т. д.), городского электротранспорта (трамвая, троллейбуса, метрополитена). Подробнее об этом смотрите здесь: Где и как используется постоянный ток
Электрификация железнодорожного транспорта осуществляется как на постоянном, так и переменном токе.
Постоянный ток используют также для передачи энергии на большие расстояния, поскольку применение переменного тока для этой цели связано с трудностью обеспечения устойчивой параллельной работы генераторов электростанций. Однако па постоянном токе при этом работает лишь ЛЭП, на питающем конце которой переменный ток преобразуется в постоянный, а на приемном конце происходит инвертирование постоянного тока в переменный.
Постоянный ток может быть использован в электропередачах переменного тока для организации связи двух электрических систем в виде вставки постоянного тока – электропередачи постоянного тока нулевой длины, когда две электрические системы соединяются между собой через выпрямительно-преобразовательную установку. При этом отклонения частоты в каждой из электрических систем практически не отражаются на передаваемой мощности.
В настоящее время проводятся исследования и разработки электропередачи пульсирующего тока, в которой по общей ЛЭП энергия одновременно передается переменным и постоянным током. При этом предусматривается наложение на все три фазы ЛЭП переменного тока некоторого постоянного относительно земли напряжения, создаваемого с помощью преобразовательных установок на концах ЛЭП.
Такой способ передачи электроэнергии позволяет лучше использовать изоляцию ЛЭП и увеличивает ее пропускную способность по сравнению с передачей переменного тока, а также облегчает отбор мощности от ЛЭП по сравнению с передачей постоянного тока.
По напряжению электрические сети делятся на сети напряжением до 1 кВ и выше 1 кВ.
Каждая электрическая сеть характеризуется номинальным напряжением, при котором обеспечивается нормальная и наиболее экономичная работа оборудования.
Различают номинальные напряжения генераторов, трансформаторов, сетей и электроприемников. Номинальное напряжение сети совпадает с номинальным напряжением электроприемников, а номинальное напряжение генератора по условиям компенсации потерь напряжения в сети принимается на 5 % выше номинального напряжения сети.
Номинальное напряжение трансформатора устанавливается для первичной и вторичной его обмоток при холостом ходе. В связи с тем, что первичная обмотка трансформатора является приемником электроэнергии, для повышающего трансформатора ее номинальное напряжение принимается равным номинальному напряжению генератора, а для понижающего – номинальному напряжению сети.
Напряжение вторичной обмотки трансформатора, питающей сеть, при нагрузке должно быть на 5 % выше номинального напряжения сети. Так как при нагрузке происходит потеря напряжения в самом трансформаторе, то номинальное напряжение (т. е. напряжение холостого хода) вторичной обмотки трансформатора принимается на 10 % выше номинального напряжения сети.
В табл. 2 приведены номинальные междуфазные напряжения электрических сетей трехфазного тока частотой 50 Гц. Электрические сети по напряжению условно делятся на сети низких (220–660 В), средних (6–35 кВ), высоких (110–220 кВ), сверхвысоких (330–750 кВ) и ультравысоких (1000 кВ и выше) напряжений.
Таблица 2. Стандартные напряжения, кВ, по ГОСТ 29322–92
На транспорте и в промышленности используются следующие напряжения постоянного тока: для контактной сети, питающей трамваи и троллейбусы – 600 В, вагоны метрополитена – 825 В, для электрифицированных железных дорог – 3300 и 1650 В, открытые горные разработки обслуживаются троллейвозами и электровозами, питающимися от контактной сети 600, 825, 1650 и 3300 В, подземный промышленный транспорт использует напряжение 275 В. Сети дуговых печей имеют напряжение 75 В, электролизных установок 220–850 В.
По конструктивному исполнению и расположению
По конструктивному исполнению различают воздушные и кабельные сети, проводки и токопроводы.
По расположению сети делятся на наружные и внутренние.
Наружные сети выполняют голыми (неизолированными) проводами и кабелями (подземными, подводными), внутренние – кабелями, изолированными и голыми проводами, шинами.
По характеру потребления
По характеру потребления различают сети городские, промышленные, сельские, электрифицированных железных дорог, магистральных нефте- и газопроводов, электрических систем.
Разнообразие и сложность электрических сетей обусловили отсутствие единой классификации и использование различных терминов при классификации сетей по назначению, роли и выполняемым функциям в схеме электроснабжения.
Э лектрические сети делятся на системообразующие и распределительные.
Системообразующей называется электрическая сеть, объединяющая электростанции и обеспечивающая их функционирование как единого объекта управления, одновременно осуществляя выдачу мощности электростанций. Распределительной называется электрическая сеть. обеспечивающая распределение электроэнергии от источника питания.
В ГОСТ 24291–90 электрические сети также делятся на системообразующие и распределительные. Кроме того, выделяются городские, промышленные и сельские сети.
Назначением распределительных сетей является дальнейшее распределение электроэнергии от подстанция системообразующей сети (частично также от шин распределительного напряжения электростанций) до центральных пунктов городских, промышленных и сельских сетей.
Первой ступенью распределительных сетей общего пользования являются сети 330 (220) кВ, второй – 110 кВ, затем электроэнергия распределяется по сети электроснабжения отдельных потребителей.
По выполняемым функциям различаются системообразующие, питающие и распределительные сети.
Системообразующие сети 330 кВ и выше осуществляют функции формирования объединенных энергосистем.
Питающие сети предназначены для передачи электроэнергии от подстанций системообразующей сети и частично шин 110 (220) кВ электростанций к центральным пуктам распределительных сетей – районным подстанциям. Питающие сети обычно замкнуты. Ранее напряжения этих сетей было 110 (220) кВ, в последнее время напряжение электрических сетей, как правило, равно 330 кВ.
Распределительные сети предназначены для передачи электроэнергии на небольшие расстояния от шин низшего напряжения районных подстанций к городским промышленным и сельским потребителям. Такие распределительные сети обычно разомкнутые или работают в разомкнутом режиме. Ранее такие сети выполнялись на напряжении 35 кВ и ниже, а в настоящее время – 110 (220) кВ.
Электрические сети подразделяются также на местные и районные и, кроме того, на питающие и распределительные. К местным относят сети 35 кВ и ниже, к районным – 110 кВ и выше.
Питающей называется линия, идущая от центрального пункта к распределительному пункту или непосредственно к подстанциям, без распределения электроэнергии по ее длине.
Распределительной называется линия к которой вдоль длины присоединено несколько трансформаторных подстанций или вводов к электроустановкам потребителей.
По назначению в схеме электроснабжения сети также делятся на местные и районные.
К местным относятся сети с малой плотностью нагрузки и напряжением до 35 кВ включительно. Это городские, промышленные и сельские сети. К местным сетям причисляют также глубокие вводы 110 кВ небольшой протяженности.
Районные электрические сети охватывают большие территории и имеют напряжение 110 кВ и выше. По районным сетям электроэнергия передается от электростанций в места потребления, а также распределяется между районными и крупными промышленными и транспортными подстанциями, питающими местные сети.
К районным сетям относятся основные сети электрических систем, магистральные ЛЭП внутри- и межсистемной связи.
Основные сети обеспечивают связь электростанций между собой и с районными центрами потребления (районными подстанциями). Выполняются они по сложнозамкнутым многоконтурным схемам.
Магистральные ЛЭП внутрисистемной связи обеспечивают связь отдельно расположенных электростанций с основной сетью электрической системы, а также связь удаленных крупных потребителей с центральными пунктами. Обычно это ВЛ 110–330 кВ и выше большой протяженности.
По роли в схеме электроснабжения различаются сети питающие, распределительные и основные сети энергосистем.
Питающими называют сети, по которым энергия подводится к ПС и РП, распределительными – сети, к которым непосредственно присоединяются ЭП или ТП (обычно это сети до 10 кВ, однако часто к распределительным относят и разветвленные сети более высоких напряжений, если к ним присоединяется большое количество приемных ПС). К основным сетям относят сети наивысшего напряжения, на котором осуществляются наиболее мощные связи в электрической системе.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Элементы устройства электрических сетей
Понятие сети электроснабжения
Сети электроснабжения – это особые инженерные системы, включающие в себя комплекс различного оборудования, предназначенного для передачи электроэнергии потребителям.
Важнейшими элементами любой системы электроснабжения считаются линии электропередач, а также набор распределительных устройств и электрические подстанции, относящие к хозяйству эксплуатирующей компании. В определенных ситуациях, и источники электрического снабжения, и потребители электрической энергии считаются элементами сетей электроснабжения. Обычно сеть разделяется на определенные участки, для которых характерны различные номиналы напряжения.
Структура и основные элементы электрических сетей
Общяя характеристика электрических сетей и систем
Широкое использование электроэнергии в промышленности, сельском хозяйстве и быту объясняется удобством применения и простотой ее преобразования в другие виды энергии: механическую, тепловую, световую. Одновременность процесса производства и потребления электроэнергии вызывает необходимость передачи ее по специальным постоянным каналам — электрическим сетям.
По технико-экономическим соображениям электрические станции при помощи линий электропередачи стали работать параллельно, образуя электроэнергетические системы. Освоение сверхвысокого напряжения 330, 500 кВ, а затем 750 и 1150 кВ позволило связать между собой различные электроэнергетические системы.
Типы электрических сетей
Все существующие сети электроснабжения можно разделить на отдельные типы по областям применения, роду тока и масштабным признакам.
По назначению электросети делятся на 4 основных типа:
По масштабным признакам и размерам электрические системы разделяются на следующие виды:
По роду тока электрические сети можно разделить на сети с переменным трехфазным, переменным однофазным и постоянным током.
Переменный трехфазный тип характерен для большей части существующих магистральных, региональных и районных систем. Однофазная проводка обычно используется в бытовых электрических системах конечных потребителей. Постоянный сок используется только в контактных системах, к примеру, в системах автономного электрического снабжения.
Внутренние электросети: кабельные вводы в здания и дом
Под кабельными вводами понимается оборудованное место в здании для ввода электрического (электрических) кабелей питания из траншеи в дом. В многоквартирных домах вводные кабели идут от подстанций или от соседних домов при определенной схеме подключения.
Схема кабельного ввода в многоквартирный дом.
Выполняется кабельный ввод на глубине от 500 до 2000 мм от поверхности земли. Проход через фундамент дома осуществляется в трубах, причем, в одну трубу заводится один кабель. Важно, соблюсти уклон трубы в сторону улицы, чтобы избавляться от конденсата, который будет образовываться при разнице температур вне и внутри дома.
Стоит отметить, что трубы используемые для защиты кабелей электропроводки не являются водопроводными. Правильное их название, электротехнические трубы. Часто их называют технические трубы ПНД (полиэтилен низкого давления) или технические трубы ПЭ (полиэтилен).
В отличие от водопроводных труб, которые по техническим и санитарным нормам предназначены для транспортировки именно питьевой воды, технические трубы ПНД, ПЭ для этого не предназначены.
Отличить полиэтиленовые водопроводные трубы от технических несложно.
Статьи по теме: Бетонирование опор линий электропередачи
Полиэтиленовая водопроводная труба производится по ГОСТ 18599-2001. В теории водопроводную трубу можно использовать для электропроводки, но это будет не рационально. В обратную сторону, электротехническую трубу для водопровода использовать категорически нельзя.
Применяем это правила к частному дому. Траншейный ввод электропитания в дом осуществляется только через стенку фундамента (если он есть). Для этого в фундамент заранее закладывается труба в месте кабельного ввода. Делается закладка на этапе строительства опалубки (для ленточного или бутового фундамента) вместе с закладкой труб вентиляции фундамента.
Закладные трубы в ленточном фундаменте.
Важно! Ввод кабеля под фундаментом запрещен, из-за возможности его повреждения при осадке дома или движения грунта.
В продолжение темы частного дома: согласно правилам разрешена прокладка кабеля до 1 кВ в подвальных помещениях и техподпольях. Поэтому, не будет нарушением правил разнести кабельный ввод в дом и установку вводного электрощита.
Распределительные внутренние электросети в многоквартирном дома.
Чертеж стандартного этажного электрощита
Работа электрических сетей
Электрическая система необходима для передачи, распределения и преобразования электрической энергии в соответствии с потребностями пользователей и возможностями электрических установок. Заниматься прокладкой сетей электроснабжения должны только опытные профессионалы.
Большинство действующих сегодня крупных источников энергии спроектированы и построены с применением мощных генераторов переменного тока. Благодаря тому, что амплитудное напряжение тока в любой момент может быть измерено с помощью трансформаторов тока, уровень напряжения в сети может понижаться и повышаться в достаточно широких пределах. Практически все крупные потребители электрической энергии также адаптированы на подключение к источникам переменного тока.
В настоящее время применение переменного трехфазного тока считается действующим мировым стандартом производства, потребления и передачи электрической энергии. На территории Российской Федерации и в других странах Европы, промышленная частота тока составляет 50 герц.
Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости выполнения электромонтажных работ.
Скрытая проводка
Замоноличенная или скрытая проводка внутренних электросетей разрешена в домах с конструкцией стен из негорючих или слабо горючих материалов: бетон, кирпич, пеноблоки, шлакоблоки и другие материалы группы Г1. Говоря о скрытой проводке, прежде всего, имеем в виду разводку электропроводки групповых цепей квартиры, дома. Стоит вспомнить, что под скрытой проводкой понимается:
Статьи по теме: Высокопрочный крепёж в электромонтажных работах
Электропроводка по полу в стяжке.
Электропроводка по потолку в гофре
Скрытая электропроводка по стенам.
Важно! Вся скрытая электропроводка должна выполняться кабелями с защитной оболочкой. Замечу, что под защитной оболочкой понимается не труба или гофра, а защитная оболочка кабеля от механических повреждений. Например, кабель ВВГнг имеет двойную изоляцию или кабель НЮМ имеет тройную изоляцию. Эти кабели можно замуровывать в стены без защиты трубами или гофрой. В отличие от стен, кабели, проложенные в полу, обязательно защищают трубами или электротехнической гофрой.
Отдельно стоит остановиться, на так называемой, перетягиваемой электропроводке. Перетягиваемой называется скрытая электропроводка, которую можно заменить (перетянуть) в случае аварийного повреждения кабеля. Перетягиваемая (сменяемая) электропроводка выполняется только в трубах, обычно пластиковых или полиэтиленовых. Перетянуть проводку в гофре практически невозможно.
Промышленные системы электроснабжения
Система электроснабжения (СЭС) объединяет источники, системы преобразования, передачи, распределения электроэнергии. Приемники электроэнергии (потребители) не включаются в СЭС. Системы электроснабжения промышленных предприятий основываются на электроустановках, которые нужны для обеспечения потребителей электрической энергией. Потребителем может быть электроприемник или другой агрегат, который преобразовывает электрическую энергию в иной вид энергии. Также этих механизмов может иметься несколько. В таком случае их объединяют в одну технологическую группу и размещают на отдельном пространстве.
Электроснабжение промышленных предприятий строится на основе питающих, распределительных, трансформаторных, преобразовательных подстанций, а также на связывающих их кабельных, воздушных сетей, токопроводов (низкого и высокого напряжения). Проектирование электроснабжения промышленных предприятий должно происходить с учетом важнейших требований, определяющих:
Соблюдать вышеперечисленные требования возможно при использовании взаимного резервирования путей предприятия и сплочения питания промышленных и коммунальных (а также сельских) потребителей. В момент сооружения на предприятии собственной электрической станции необходимо учесть близлежащие потребители энергии (внезаводские).
Классификация электрических сетей по принципу построения
По принципу построения подразделяют электрические сети на замкнутые и разомкнутые.
Разомкнутая сеть – это совокупность разомкнутых линий получающих питание от одного общего источника питания ИП с одной стороны (рисунок ниже):
Ее главным недостатком можно назвать прекращения питания всех электроприемников участка, на котором произошло отключение при обрыве линии.
В замкнутой системе все наоборот — питание поступает от двух источников ИП и при обрыве магистрали в любом месте питание электроприемников не прекратится. Ниже показана простейшая схема замкнутой сети:
Например, в случае обрыва магистрали в точке К электроприемники 1,2,3,4 будут получать питание по верхней магистрали, а 5,6,7,8 по нижней. В зависимости от требований надежности электроснабжения замкнутые системы могут иметь один и более источников питания. Ниже показан пример схемы с двухсторонним питанием: