что представляет собой электрический ток в газах
Электрический ток в газах
Всего получено оценок: 920.
Всего получено оценок: 920.
Электрическим током называют поток, который обусловлен упорядоченным движением электрически заряженных частиц. Движение зарядов принято за направление электрического тока. Электрический ток может быть кратковременным и долговременным.
Понятие электрического тока
При грозовом разряде может возникнуть электрический ток, который называют кратковременным. А для поддержания тока в течение длительного времени необходимо наличие электрического поля и свободных носителей электрического заряда.
Электрическое поле создают тела, заряженные разноименно. Силой тока называют отношение заряда, переносимое через поперечное сечение проводника за интервал времени, к этому интервалу времени. Измеряется она в Амперах.
Электрический ток в газах
Молекулы газа в обычных условиях не проводят электрический ток. Они являются изоляторами (диэлектриками). Однако, если изменить условия окружающей среды, то газы могут стать проводниками электричества. В результате ионизации (при нагреве или под действием радиоактивного излучения) возникает электрический ток в газах, который часто заменяют термином «электрический разряд».
Самостоятельные и несамостоятельные газовые разряды
Разряды в газе могут быть самостоятельными и несамостоятельными. Ток начинает существовать, когда появляются свободные заряды. Несамостоятельные разряды существуют пока на него действует сила извне, то есть внешний ионизатор. То есть, если внешний ионизатор перестал действовать, то и ток прекращается.
Самостоятельный разряд электрического тока в газах существует даже после прекращения действия внешнего ионизатора. Самостоятельные разряды в физике подразделяются на тихий, тлеющий, дуговой, искровой, коронный.
Что мы узнали?
Сами по себе атомы и молекулы газа нейтральны. Они заряжаются при воздействии извне. Если говорить кратко об электрическом токе в газах, то он представляет собой направленное движение частиц (положительных ионов к катоду и отрицательных ионов к аноду). Также важным является, что при ионизации газа, его проводящие свойства улучшаются.
Электрический ток в газах
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: носители свободных электрических зарядов в газах.
При обычных условиях газы состоят из электрически нейтральных атомов или молекул; свободных зарядов в газах почти нет. Поэтому газы являются диэлектриками — электрический ток через них не проходит.
Мы сказали «почти нет», потому что на самом деле газах и, в частности, в воздухе всегда присутствует некоторое количество свободных заряженных частиц. Они появляются в результате ионизирующего воздействия излучений радиоактивных веществ, входящих в состав земной коры, ультрафиолетового и рентгеновского излучений Солнца, а также космических лучей — потоков частиц высокой энергии, проникающих в атмосферу Земли из космического пространства. Впоследствии мы вернёмся к этому факту и обсудим его важность, а сейчас заметим лишь, что в обычных условиях проводимость газов, вызванная «естественным» количеством свободных зарядов, пренебрежимо мала, и её можно не принимать во внимание.
На изолирующих свойствах воздушного промежутка основано действие переключателей в электрических цепях (рис. 1 ). Например, небольшого воздушного зазора в выключателе света оказывается достаточно, чтобы разомкнуть электрическую цепь в вашей комнате.
Можно, однако, создать такие условия, при которых электрический ток в газовом промежутке появится. Давайте рассмотрим следующий опыт.
Рис. 2. Возникновение тока в воздухе
Свободные заряды в газе
Возникновение электрического тока между пластинами кондесатора означает, что в воздухе под воздействием пламени появились свободные заряды. Какие именно?
Опыт показывает, что электрический ток в газах является упорядоченным движением заряженных частиц трёх видов. Это электроны, положительные ионы и отрицательные ионы.
Давайте разберёмся, каким образом эти заряды могут появляться в газе.
При увеличении температуры газа тепловые колебания его частиц — молекул или атомов — становятся всё интенсивнее. Удары частиц друг о друга достигают такой силы, что начинается ионизация — распад нейтральных частиц на электроны и положительные ионы (рис. 3 ).
Помимо высокой температуры имеются и другие факторы, вызывающие ионизацию газа.
Мы их уже вскользь упоминали: это радиоактивные излучения, ультрафиолетовые, рентгеновские и гамма-лучи, космические частицы. Всякий такой фактор, являющийся причиной ионизации газа, называется ионизатором.
Таким образом, ионизация происходит не сама по себе, а под воздействием ионизатора.
Одновременно идёт и обратный процесс — рекомбинация, то есть воссоединение электрона и положительного иона в нейтральную частицу (рис. 4 ).
Рис. 4. Рекомбинация
Причина рекомбинации проста: это кулоновское притяжение противоположно заряженных электронов и ионов. Устремляясь навстречу друг другу под действием электрических сил, они встречаются и получают возможность образовать нейтральный атом (или молекулу — в зависимости от сорта газа).
При неизменной интенсивности действия ионизатора устанавливается динамическое равновесие: среднее количество частиц, распадающихся в единицу времени, равно среднему количеству рекомбинирующих частиц (иными словами, скорость ионизации равна скорости рекомбинации).Если действие ионизатора усилить (например, повысить температуру), то динамическое равновесие сместится в сторону ионизации, и концентрация заряженных частиц в газе возрастёт. Наоборот, если выключить ионизатор, то рекомбинация начнёт преобладать, и свободные заряды постепенно исчезнут полностью.
Рис. 5. Появление отрицательного иона
Образованные таким образом отрицательные ионы будут участвовать в создании тока наряду с положительными ионами и электронами.
Несамостоятельный разряд
Если внешнего электрического поля нет, то свободные заряды совершают хаотическое тепловое движение наряду с нейтральными частицами газа. Но при наложении электрического поля начинается упорядоченное движение заряженных частиц — электрический ток в газе.
Рис. 6. Несамостоятельный разряд
На рис. 6 мы видим три сорта заряженных частиц, возникающих в газовом промежутке под действием ионизатора: положительные ионы, отрицательные ионы и электроны. Электрический ток в газе образуется в результате встречного движения заряженных частиц: положительных ионов — к отрицательному электроду (катоду), электронов и отрицательных ионов — к положительному электроду (аноду).
Электроны, попадая на положительный анод, направляются по цепи к «плюсу» источника тока. Отрицательные ионы отдают аноду лишний электрон и, став нейтральными частицами, возвращаются в обратно газ; отданный же аноду электрон также устремляется к «плюсу» источника. Положительные ионы, приходя на катод, забирают оттуда электроны; возникший дефицит электронов на катоде немедленно компенсируется их доставкой туда с «минуса» источника. В результате этих процессов возникает упорядоченное движение электронов во внешней цепи. Это и есть электрический ток, регистрируемый гальванометром.
Вольт-амперная характеристика газового разряда
Рис. 7. Вольт-амперная характеристика газового разряда
При нулевом напряжении сила тока, естественно, равна нулю: заряженные частицы совершают лишь тепловое движение, упорядоченного их движения между электродами нет.
При небольшом напряжении сила тока также мала. Дело в том, что не всем заряженным частицам суждено добраться до электродов: часть положительных ионов и электронов в процессе своего движения находят друг друга и рекомбинируют.
С повышением напряжения свободные заряды развивают всё большую скорость, и тем меньше шансов у положительного иона и электрона встретиться и рекомбинировать. Поэтому всё большая часть заряженных частиц достигает электродов, и сила тока возрастает (участок ).
Самостоятельный разряд
После прохождения точки сила тока при увеличении напряжения резко возрастает — начинается самостоятельный разряд. Сейчас мы разберёмся, что это такое.
Заряженные частицы газа движутся от столкновения к столкновению; в промежутках между столкновениями они разгоняются электрическим полем, увеличивая свою кинетическую энергию. И вот, когда напряжение становится достаточно большим (та самая точка ), электроны за время свободного пробега достигают таких энергий, что при соударении с нейтральными атомами ионизируют их! (С помощью законов сохранения импульса и энергии можно показать, что именно электроны (а не ионы), ускоряемые электрическим полем, обладают максимальной способностью ионизировать атомы.)
Начинается так называемая ионизация электронным ударом. Электроны, выбитые из ионизированных атомов, также разгоняются электрическим полем и налетают на новые атомы, ионизируя теперь уже их и порождая новые электроны. В результате возникающей электронной лавины число ионизированных атомов стремительно возрастает, вследствие чего быстро возрастает и сила тока.
Количество свободных зарядов становится таким большим, что необходимость во внешнем ионизаторе отпадает. Его можно попросту убрать. Свободные заряженные частицы теперь порождаются в результате внутренних процессов, происходящих в газе — вот почему разряд называется самостоятельным.
Если газовый промежуток находится под высоким напряжением, то для самостоятельного разряда не нужен никакой ионизатор. Достаточно в газе оказаться лишь одному свободному электрону, и начнётся описанная выше электронная лавина. А хотя бы один свободный электрон всегда найдётся!
Вспомним ещё раз, что в газе даже при обычных условиях имеется некоторое «естественное» количество свободных зарядов, обусловленное ионизирующим радиоактивным излучением земной коры, высокочастотным излучением Солнца, космическими лучами. Мы видели, что при малых напряжениях проводимость газа, вызванная этими свободными зарядами, ничтожно мала, но теперь — при высоком напряжении — они-то и породят лавину новых частиц, дав начало самостоятельному разряду. Произойдёт, как говорят, пробой газового промежутка.
Напряжённость поля, необходимая для пробоя сухого воздуха, равна примерно кВ/см. Иными словами, чтобы между электродами, разделёнными сантиметром воздуха, проскочила искра, на них нужно подать напряжение киловольт. Вообразите же, какое напряжение необходимо для пробоя нескольких километров воздуха! А ведь именно такие пробои происходят во время грозы — это прекрасно известные вам молнии.
Электрический ток в газах – кратко о самостоятельном разряде в физике
Электрическим током называют поток, который обусловлен упорядоченным движением электрически заряженных частиц. Движение зарядов принято за направление электрического тока. Электрический ток может быть кратковременным и долговременным.
Понятие электрического тока
При грозовом разряде может возникнуть электрический ток, который называют кратковременным. А для поддержания тока в течение длительного времени необходимо наличие электрического поля и свободных носителей электрического заряда.
Электрическое поле создают тела, заряженные разноименно. Силой тока называют отношение заряда, переносимое через поперечное сечение проводника за интервал времени, к этому интервалу времени. Измеряется она в Амперах.
Рис. 1. Формула силы тока
Электрический ток в газах
Молекулы газа в обычных условиях не проводят электрический ток. Они являются изоляторами (диэлектриками). Однако, если изменить условия окружающей среды, то газы могут стать проводниками электричества. В результате ионизации (при нагреве или под действием радиоактивного излучения) возникает электрический ток в газах, который часто заменяют термином «электрический разряд».
Самостоятельные и несамостоятельные газовые разряды
Разряды в газе могут быть самостоятельными и несамостоятельными. Ток начинает существовать, когда появляются свободные заряды. Несамостоятельные разряды существуют пока на него действует сила извне, то есть внешний ионизатор. То есть, если внешний ионизатор перестал действовать, то и ток прекращается.
Самостоятельный разряд электрического тока в газах существует даже после прекращения действия внешнего ионизатора. Самостоятельные разряды в физике подразделяются на тихий, тлеющий, дуговой, искровой, коронный.
Рис. 2. Тлеющий разряд
Рис. 3. Дуговой разряд
Что мы узнали?
Сами по себе атомы и молекулы газа нейтральны. Они заряжаются при воздействии извне. Если говорить кратко об электрическом токе в газах, то он представляет собой направленное движение частиц (положительных ионов к катоду и отрицательных ионов к аноду). Также важным является, что при ионизации газа, его проводящие свойства улучшаются.
Электрический ток в газах
Электропроводность газов
Газы в обычных условиях – диэлектрики. Воздух используют в технике как изолятор:
– между обкладками конденсатора;
– в контактах выключателей.
При высокой температуре и под действием ультрафиолетового, рентгеновского и гамма-излучения (внешних ионизаторов) газы становятся проводниками.
В этом легко убедиться, если взять заряженный плоский воздушный конденсатор с подключенным к нему электрометром, и нагреть воздух между пластинами.
Природа газового разряда
При внесении пламени между пластинами воздушного конденсатора происходит ионизация газа и возникновение ионов и электронов. Под действием электрического поля они начнут упорядоченно двигаться между пластинами.
Протекание тока через газ называется газовым разрядом.
Газовый разряд, протекающий под действием ионизатора, называется несамостоятельным.
С увеличением разности потенциалов между пластинами кинетическая энергия электрона возрастает настолько, что при соударении его с нейтральной молекулой газа происходит выбивание электрона. Такой процесс называется ударной ионизацией молекул газа. Число электронов и ионов растет лавинообразно, что приводит к увеличению разрядного тока.
Газовый разряд, протекающий в отсутствии ионизатора, называется самостоятельным.
Интенсивность такого газового разряда зависит от напряженности электрического поля между пластинами и давления газа.
Вольтамперная характеристика газового разряда.
ОА – только часть заряженных частиц доходит до электродов, часть их рекомбинирует;
АВ – ток почти не увеличивается (ток насыщения);
ВС – самостоятельный разряд.
Виды газовых разрядов
Искровой разряд – это прерывистый самостоятельный лавинообразный разряд в газе, вызванный ударной ионизацией и сопровождающийся треском и ярким свечением. Искровой разряд возникает при условии, когда мощность источника недостаточна для поддержания непрерывного разряда.
Дуговой разряд впервые был получен в 1802 году российским академиком В. В. Петровым. При соприкосновении электродов в цепи возникает сильный ток короткого замыкания, что приводит к сильному нагреванию электродов. Затем электроды постепенно раздвигаются. Ток продолжает идти через межэлектродное пространство, заполненное высокотемпературной плазмой. Концы электродов раскаляются до 3000-4000 градусов и начинают испаряться.
Дуговой разряд является самостоятельным разрядом в газе и происходит за счет энергии термоэлектронной эмиссии с катода. Является источником сильного светового и ультрафиолетового излучения.
Тлеющий разряд возникает в разряженном газе при сравнительно невысоком напряжении в виде светящегося газового столба. Тлеющий разряд вызывается ударной ионизацией и выбиванием электронов из катода положительными ионами (вторичная ионизация).
Свечение при тлеющем разряде объясняется тем, что при рекомбинации молекул газа высвобождается энергия в виде светового излучения. Свечение будет иметь разные цвета в зависимости от вида газа.
Коронный разряд возникает в сильно неоднородных электрических полях. Например, вблизи острия напряженность электрического поля настолько велика, что ионизация электронным ударом возможна даже при атмосферном давлении. В этой области возникает характерное сферическое свечение в виде короны.
Применение газовых разрядов
Искровой разряд используется в технике в системе зажигания двигателей внутреннего сгорания. Катушка зажигания дает напряжение 12-15 тысяч вольт. Это достаточно, чтобы между электродами свечи возникла искра для зажигания горючей смеси.
Разновидностью искрового разряда является молния.
Дуговой разряд применяется в качестве мощных источников света (прожекторов), в электроплавильных печах, для электросварки, для ультрафиолетовых излучателей.
Тлеющий разряд используется в рекламных газоразрядных трубках, в лампах дневного света, цифровых индикаторах.
В природе свечение разряженных газов наблюдается в виде полярного сияния.
Коронный разряд используется в электрофильтрах для очистки газов от примесей твердых частиц, в работе молниеотвода. В ЛЭП приводит к утечке электроэнергии.
В природе «корона» возникает иногда под действием атмосферного электричества на ветках деревьев, верхушках молниеотводов, мачт кораблей (огни святого Эльма).
Токи в газах
Вы будете перенаправлены на Автор24
Условия существования токов в газах
Газ, в котором нет заряженных частиц, не является проводником электрического тока (он изолятор). Газ будет проводником только в том случае, если возникнут носители электрических зарядов (свободные электроны и ионы), то есть газ будет ионизирован. Положительные ионы могут быть однозарядными и многозарядными, это зависит от количества потерянных электронов. Отрицательные ионы, обычно однозарядны, образованы присоединением одного электрона к атому.
Так, необходимо существование постороннего фактора ионизации, не связанного с наличием электрического поля для того, чтобы газ являлся проводником. Это может быть, например, высокая температура, излучение, столкновения атомов газа с быстро движущимися элементарными частицами. Надо отметить, что и в нормальных условиях газы, например воздух, имеют электрическую проводимость, правда, весьма малую. Эта проводимость вызвана излучением радиоактивных веществ, которые присутствуют на поверхности Земли, и космическими лучами, которые приходят на планету из пространства. В том случае, если напряжённость поля мала, то течение тока через газ останавливается практически сразу, как перестает работать внешний фактор ионизации. Подобный ток называют несамостоятельным.
Ионизацию газа, которая появляется как результат вырывания электронов из молекул и атомов самого газа называют объемной ионизацией. Кроме объемной ионизации выделяют поверхностную ионизацию. При таком типе ионизации, ионы и электроны попадают в газ со стенок сосуда, в котором он находится. Или с поверхности тел, которые в газ помещаются.
В том случае, когда напряженность поля довольно большая, то само поле может вызывать ионизацию газа, при которой газ становится проводником. В таких условиях ток называют самостоятельным. Универсальной зависимости силы самостоятельного тока от напряжения не выявлено. Все определяют конкретные условия. Сила самостоятельного тока может и увеличиваться и уменьшаться с ростом напряжения.
Готовые работы на аналогичную тему
Процесс прохождения электрического тока через газы называют газовым разрядом. Основными типами газового разряда являются:
Несамостоятельный газовый разряд (несамостоятельный ток)
Когда присутствует внешнее электрическое поле, то часть электронов долетает до электродов и там нейтрализуется. Условием динамического равновесия в этом случае станет выражение:
Плотность тока определяется как:
В том случае, если расстояние между электродами принять равным d, то плотность тока насыщения ($j$) можно выразить как:
если считать, что все возникающие ионы попадают на электроды раньше, чем успевают рекомбинировать. С учетом выражения (5) формулу (2) запишем как:
где плотность тока насыщения ($j_n$) не зависит от внешнего поля, создается всеми ионами, которые образованы в результате работы ионизатора. Этому условию отвечает участок BC рис.1.
При промежуточных значениях напряжения внешнего поля происходит плавный переход от линейной зависимости между током и напряжением к насыщению (участок АВ).
Выражение для плотности тока, имеющее вид:
называют характеристикой несамостоятельного тока.
Самостоятельный ток
В том случае, если при плотности тока, равной току насыщения увеличивать напряженность внешнего поля, то плотность тока снова начнет расти. Это происходит от того, что электроны газа до рекомбинации с ионами успевают приобрести энергию, при которой они ионизируют молекулы газа благодаря высокой напряженности внешнего поля. Как результат, скорость ионизации зависит от напряженности внешнего поля. Появляющийся при этом ток называют самостоятельным. Начальная часть характеристики этого тока показана на рис.1 пунктиром.
К видам самостоятельных газовых разрядов относят:
Решение:
Основание для решения данной задачи служит закон сохранения энергии, который мы запишем в виде:
Из уравнения (1.1) выразим искомую скорость, получим:
Задание: Чем меньше давление газа при постоянной температуре, тем меньшее количество атомов имеется в единице объема этого газа, следовательно, больший путь проходит атом между двумя последовательными соударениями. Как будет изменяться напряжение пробоя газового промежутка при уменьшении давления газа?
Решение:
Данную ситуацию можно отнести к такой форме газового разряда, который называют искровым разрядом. При искровом разряде газ скачком утрачивает свои диэлектрические свойства и становится хорошим проводником. Напряженность поля, при которой происходит искровой разряд, различна для разных газов, зависит от их давления и температуры. Напряжение, при котором наступает искровой пробой, называют напряжением пробоя.
При уменьшении давления газа напряжение пробоя уменьшается. Это происходит из-за того, что при большем свободном пробеге ионы могут получить требуемую для ионизации кинетическую энергию при меньшей напряженности электрического поля.