что представляет собой форма магнитосферы

Магнитосфера

Магнитосфе́ра — область пространства вокруг небесного тела, в которой поведение окружающей тело плазмы определяется магнитным полем этого тела.

Альтернативное определение: Магнитосфе́ра — область пространства вокруг планеты или другого намагниченного небесного тела, которая образуется, когда поток заряженных частиц, например, солнечного ветра, отклоняется от своей первоначальной траектории под воздействием внутреннего магнитного поля этого тела.

Форма и размеры магнитосферы определяются силой внутреннего магнитного поля этого небесного тела и давлением окружающей плазмы (солнечного ветра). Все планеты, имеющие собственное магнитное поле, обладают магнитосферой: Земля, Юпитер, Сатурн, Уран и Нептун. Меркурий и Марс обладают очень слабыми магнитосферами, а также Ганимед, один из спутников Юпитера (но его магнитосфера целиком находится в пределах магнитосферы Юпитера, что приводит к их сложным внутренним взаимодействиям). Ионосферы слабо намагниченных планет, как например Венера, частично отклоняют поток солнечного ветра, но они не имеют магнитосферы как таковой.

Термин магнитосфера также используется для описания регионов, где доминирует магнитное поле других небесных тел, например звёзд, пульсаров и пр.

Содержание

История открытия

Границы магнитосферы

Граница магнитосферы (магнитопауза) определяется условием равенства давлений магнитного поля и набегающей плазмы, то есть радиус магнитосферы (альфвеновский радиус что представляет собой форма магнитосферы) определяется соотношением

что представляет собой форма магнитосферы,

где что представляет собой форма магнитосферы— магнитное поле небесного тела, что представляет собой форма магнитосферыи что представляет собой форма магнитосферы— соответственно плотность и скорость потока набегающей плазмы.

Магнитосферы планет

Деформация магнитосферы планеты звездным ветром

В случае набегающего потока плазмы, например, в случае взаимодействия собственного магнитного поля планеты с солнечным ветром, магнитосфера представляет полость достаточно сложной формы, обтекаемую солнечным ветром.

Проникновение плазмы в магнитосферу Земли происходит непосредственно через промежутки между замкнутыми и «разомкнутыми» магнитными силовыми линиями в магнитопаузе, именуемые дневными полярными каспами, или вследствие гидромагнитных эффектов и неустойчивостей. Проникновение плазмы солнечного ветра может сопровождаться дневными полярными сияниями в высокоширотной ионосфере. К развитию таких неустойчивостей приводят, в частности, резкие изменения параметров межпланетной среды. Это проявляется в зависимости частоты и интенсивности полярных сияний от уровня солнечной активности.

Часть плазмы, проникшей в магнитосферу, образует радиационный пояс планеты и плазменный слой.

В Солнечной системе, помимо Земли, магнитосфера имеется у большинства планет.

Магнитосфера Земли

Общие сведения

Форму, структуру и размеры магнитосферы Земли определяют два главных фактора:

Магнитосферы звезд

Наиболее существенно влияние магнитосфер звёзд на процессы аккреции на них. Свободное падение плазмы на звезду останавливается её магнитным полем на расстоянии её альфвеновского радиуса, то есть на границе магнитосферы, аккреция при этом направляется на магнитные полюса звезды.

Источник

Магнитосфера

Магнитосфе́ра — область пространства вокруг небесного тела, в которой поведение окружающей тело плазмы определяется магнитным полем этого тела.

Альтернативное определение: Магнитосфе́ра — область пространства вокруг планеты или другого намагниченного небесного тела, которая образуется, когда поток заряженных частиц, например солнечного ветра, отклоняется от своей первоначальной траектории под воздействием внутреннего магнитного поля этого тела.

Форма и размеры магнитосферы определяются силой внутреннего магнитного поля этого небесного тела и давлением окружающей плазмы (солнечного ветра). Все планеты, имеющие собственное магнитное поле, обладают магнитосферой: Земля, Юпитер, Сатурн, Уран и Нептун. Меркурий и Марс обладают очень слабыми магнитосферами, а также Ганимед, один из спутников Юпитера (но его магнитосфера целиком находится в пределах магнитосферы Юпитера, что приводит к их сложным внутренним взаимодействиям). Ионосферы слабо намагниченных планет, как например Венера, частично отклоняют поток солнечного ветра, но они не имеют магнитосферы как таковой.

Термин магнитосфера также используется для описания регионов, где доминирует магнитное поле других небесных тел, например звёзд, пульсаров и пр.

Содержание

История открытия

что представляет собой форма магнитосферы

Границы магнитосферы

Граница магнитосферы (магнитопауза) определяется условием равенства давлений магнитного поля и набегающей плазмы, то есть радиус магнитосферы (альвеновский радиус что представляет собой форма магнитосферы) определяется соотношением

что представляет собой форма магнитосферы,

где что представляет собой форма магнитосферы— магнитное поле небесного тела, что представляет собой форма магнитосферыи что представляет собой форма магнитосферы— соответственно плотность и скорость потока набегающей плазмы.

Магнитосферы планет

что представляет собой форма магнитосферы

что представляет собой форма магнитосферы

В случае набегающего потока плазмы, например, в случае взаимодействия собственного магнитного поля планеты с солнечным ветром, магнитосфера представляет полость достаточно сложной формы, обтекаемую солнечным ветром.

Проникновение плазмы в магнитосферу Земли происходит непосредственно через промежутки между замкнутыми и «разомкнутыми» магнитными силовыми линиями в магнитопаузе, именуемые дневными полярными каспами, или вследствие гидромагнитных эффектов и неустойчивостей. Проникновение плазмы солнечного ветра может сопровождаться дневными полярными сияниями в высокоширотной ионосфере. К развитию таких неустойчивостей приводят, в частности, резкие изменения параметров межпланетной среды. Это проявляется в зависимости частоты и интенсивности полярных сияний от уровня солнечной активности.

Часть плазмы, проникшей в магнитосферу, образует радиационный пояс планеты (пояс Ван Аллена) и плазменный слой.

В Солнечной системе, помимо Земли, магнитосфера имеется у большинства планет.

Магнитосфера Земли

С наличием магнитосферы связаны многие проявления Космической погоды, такие как геомагнитная активность, геомагнитная буря и суббуря.

Общие сведения

Форму, структуру и размеры магнитосферы Земли определяют два главных фактора:

Магнитосферы звезд

Наиболее существенно влияние магнитосфер звезд на процессы аккреции на них. Свободное падение плазмы на звезду останавливается её магнитным полем на расстоянии её альвеновского радиуса, то есть на границе магнитосферы, аккреция при этом направляется на магнитные полюса звезды.

Источник

Магнитосфера Земли

что представляет собой форма магнитосферы

Геомагнитное поле (магнитосфера Земли) формируется в результате вращения жидкого внешнего ядра Земли, которое является хорошим проводником электрического тока, так как состоит в основном из железа и никеля. Ось геомагнитного поля не совпадает с географическими полюсами планеты.

Общие сведения о магнитосфере Земли

что представляет собой форма магнитосферы

Упрощенная схема геомагнитного поля

Геомагнитное поле защищает нашу планету от роя заряженных частиц солнечного происхождения (солнечного ветра). Благодаря геомагнитному полю, наша планета теряет гораздо меньше атмосферы по сравнению с другими телами Солнечной Системы, где отсутствует подобное магнитное поле (к примеру, Марс и Венера). Форму поля задаёт солнечный ветер: в направлении Солнца его радиус минимален, в то время, в тени Солнца следы поля протягиваются на миллионы километров. Заряженные элементарные частицы солнечного ветра вместе с космическими лучами после отклонения геомагнитным полем скапливаются в определенных областях, которые называются радиационными поясами Земли. В западной литературе эти пояса часто называются поясами Ван Аллена, в честь американского физика, который впервые их заподозрил в 1958 году на основе измерений спутника “Экспловер-1”. Радиационные пояса представляют собой большую опасность для электроники и электросистем космических аппаратов, в связи с этим инженеры стараются минимизировать их нахождение внутри поясов.

что представляет собой форма магнитосферы

Данные пояса делятся на две области: внешние и внутренние пояса

Первые расположены на высоте около 17 тысячах км от поверхности Земли и состоят в основном из отрицательно заряженных элементарных частиц (электронов), вторые находятся в 4 тысячах км от поверхности Земли и состоят в основном из положительно заряженных частиц (протонов). Расстояние радиационных поясов от поверхности Земли находится в сильной зависимости от географического положения. Ближе всего к поверхности Земли радиационные пояса проходят над Бразилией (Южно-Атлантическая геомагнитная аномалия или Бразильская геомагнитная аномалия).

что представляет собой форма магнитосферы

Карта плотности заряженных элементарных частиц на высоте около 0,5 тысяч км от поверхности Земли по данным спутника ROSAT

На вышеприведенной карте хорошо видно, что наибольшая плотность таких частиц наблюдается как раз над Бразилией. В этой области сила геомагнитного поля на уровне моря подобна характеристикам геомагнитного поля над другими областями на высоте около тысячи километров.

что представляет собой форма магнитосферы

Регулярные наблюдения за аномалией показывают снижение в ней интенсивности геомагнитного поля при одновременном увеличении её площади

Южная Атлантическая геомагнитная аномалия создаёт значительные помехи в работе низкоорбитальных телескопов. Так телескоп “Хаббл” не осуществляет наблюдения в этой области, а на снимках телескопа WISE в этой области наблюдается множество артефактов (следов от заряженных частиц), на которые часто обращали внимание участники волонтерского проекта по поиску гипотетической девятой планеты.

Колебания геомагнитного поля и их влияние на биосферу

Так как солнечный ветер является переменным по интенсивности и составу элементарных частиц (наиболее сильные ливни рождаются в мощных солнечных вспышках), то и геомагнитное поле испытывает постоянные колебания. Во время особо сильных вспышек на Солнце частицы солнечного ветра могут проникать в верхние слои атмосферы и вызывать сияния в виде зеленоватых всполохов (полярные сияния). Чаще всего это происходит в полярных регионах Земли, где геомагнитное поле является наиболее слабым (именно там находятся геомагнитные полюса). Хотя при особо сильных солнечных вспышках полярные сияния наблюдаются даже в тропиках (к примеру, во время геомагнитной бури 1859 года полярные сияния наблюдались в тропическом Карибском море). Возмущения геомагнитного поля Земли вызывают не только полярные сияния, но и могут приводить к сбоям электроники, авариям на линиях электропередач и даже к катастрофам (к примеру, вызвать отказ навигационных систем самолета или выключение системы аварийной защиты атомной электростанции). В дополнение на тему влияния геомагнитного поля на земную жизнь можно отметить, что многие животные на Земле используют геомагнитное поле для навигации (к примеру, перелетные птицы). Очевидно, что геомагнитные возмущения оказывают влияние и на центральную нервную систему человека (в человеческом организме присутствует небольшое количество железа, именно благодаря ему, кровь человека обладает красным цветом, а нервная система представляет собой инфраструктуру для передачи электромагнитных импульсов). Художественную иллюстрацию о том, какое сильное влияние геомагнитное поле оказывает на биосферу Земли, можно посмотреть в фильмах-катастрофах “Земное ядро” и “Знамение”.

Изменения в геомагнитном поле происходят не только по причине колебаний в интенсивности солнечного ветра. Другой причиной подобных изменений являются слабоизученные процессы, которые происходят в ядре нашей планеты.

Открытие геомагнитного поля

Впервые закономерность того, что намагниченные предметы располагаются в строгом направлении, было открыто в Китае ещё несколько тысяч лет назад. Это открытие привело к изобретению компаса, который оказал важнейшее влияние на морскую навигацию во времена Великих географических открытий (навигация по астрономическим объектам затруднена из-за частой облачности). Первоначально считалось, что северный геомагнитный полюс совпадает с направлением на Полярную звезду. Однако во время плавания Колумба к берегам Американского континента было отмечено, что эти направления различаются на 12 градусов.

В месте расположения геомагнитных полюсов стрелка компаса может принимать вертикальное положение. В северном геомагнитном полюсе стрелка компаса направлена вниз, а в южном геомагнитном полюсе наоборот вверх. В связи с асимметричностью геомагнитного поля, прямая линия, которая соединяет геомагнитные полюса не проходит через центр Земли.

Северный геомагнитный полюс был впервые обнаружен в 1831 году английским мореплавателем Джоном Россом, южный геомагнитный полюс соответственно в 1841 году его племянником (Джеймсом Россом). С тех пор исследования показали, что оба полюса испытывают ежегодные перемещения по поверхности Земли.

Северный геомагнитный полюс за последние 500 лет переместился из района Канадского архипелага в район Центральной Арктики.

что представляет собой форма магнитосферы
что представляет собой форма магнитосферы
что представляет собой форма магнитосферы
что представляет собой форма магнитосферы
что представляет собой форма магнитосферы
что представляет собой форма магнитосферы

Инверсия геомагнитного поля

Аномально высокая скорость движения северного геомагнитного полюса и уменьшение интенсивности геомагнитного поля в последние годы порождают спекуляции на тему скорой инверсии геомагнитного поля. Инверсией геомагнитного поля называют процесс перестановки местами южного и северного геомагнитного полюсов. В нормальном состоянии геомагнитного поля северный геомагнитный полюс находится вблизи северного географического полюса. В обратном состоянии же наблюдается противоположная картина: северный геомагнитный полюс находится вблизи южного географического полюса.

что представляет собой форма магнитосферы
что представляет собой форма магнитосферы
что представляет собой форма магнитосферы
что представляет собой форма магнитосферы

Во времени наступления инверсий не обнаружено никакой периодичности (в отличие от, к примеру, 22-летней периодичности в инверсиях магнитного поля Солнца, которая равна двухкратному периоду солнечной активности).

Типичное время между инверсиями составляет от 0.1 до 1 миллиона лет, сами инверсии длятся между 1 и 10 тысячами лет. Предполагается, что во время инверсий происходит очень сильное ослабление геомагнитного поля, и, следовательно, создаётся нешуточная угроза земной жизни (частицы солнечного ветра в больших количествах проникают в земную атмосферу). В тоже время не отмечено никакой корреляции между массовыми вымираниями земных видов и периодами инверсий геомагнитного поля.

Последняя достоверная инверсия геомагнитного поля случилась 780 тысяч лет назад. Её длительность составила от 1200 до 10000 лет в зависимости от географического положения изученных пород с остаточной намагниченностью. С другой стороны изучается возможность более свежей кратковременной инверсии геомагнитного поля, которая случилась всего 41 тысячу лет назад. Событие получило название Laschamp, так как впервые было обнаружено в 60х годах 20 века в остаточной намагниченности лавового потока с таким названием во Франции. Позже следы этой инверсии были обнаружены и в других местах Земли. Длительность инверсии составила 250-440 лет, во время неё геомагнитное поле было ослаблено на 75%.

что представляет собой форма магнитосферы

Схема движения геомагнитных полюсов во время этой инверсии

В тоже время в спокойные периоды геомагнитные полюсы испытывают лишь хаотичный дрейф вблизи географических полюсов.

что представляет собой форма магнитосферы

Пример вероятного движения северного геомагнитного полюса после 200 года нашей эры

Кроме того можно отметить, что текущее ослабление геомагнитного поля за последние 180 лет на 10% не является уникальным. Изучение остаточной намагниченности пород в Ливане показывает, что 2500 лет назад геомагнитное поле было в 2.5 раза сильнее, чем сейчас, после чего оно ослабло сразу почти на 30% всего за 180 лет.

что представляет собой форма магнитосферы
что представляет собой форма магнитосферы

Магнитные поля у других тел Солнечной Системы

Кроме Земли мощное магнитное поле в Солнечной Системе наблюдается у Солнца,

что представляет собой форма магнитосферы

Сравнительная таблица характеристик магнитных полей у Солнца, планет или лун Солнечной Системы

1 Гс – это системная единица измерения силы магнитного поля (названа в честь великого математика Карла Фридриха Гаусса). 1 Гс в 10 тысяч раз меньше, чем одна Тесла. Одна Тесла соответствует мощности такого магнитного поля, в котором на 1 метр длины проводника электрического поля, которое перпендикулярно направлению магнитной индукции, с током силой 1 ампер действует сила в 1 ньютон.

что представляет собой форма магнитосферы

Сравнение магнитных полей у Земли, Юпитера, Сатурна, Урана и Нептуна

Отсутствие магнитного поля на Венере (планете, которая очень близка к Земле по массе и размеру) объясняется небольшой угловой скоростью вращения планеты (около 243 земных суток). Другим объяснением этого феномена является отсутствие на Венере тектонической активности плит, что приводит к слабым конвективным потокам в ядре. Отсутствие тектонической активности на Венере объясняется дефицитом воды (которая может играть роль смазки) или высокими температурами на поверхности (невозможностью нормального затвердевания коры или повышенной активностью местных вулканов).

Магнитные поля ледяных гигантов (Урана и Нептуна), в отличие от других планет, обладают сразу четырьмя магнитными полюсами (по два северных и южных магнитных полюса). Теоретики предполагают, что магнитные поля ледяных гигантов образуются на небольших глубинах, к примеру, в океане жидкого аммиака.

Магнитное поле ближайшей к нам звезды было открыто в начале 20 века через регистрацию зеемановского расщепления спектральных линий в солнечных пятнах. В вышеприведенной таблице указано, что индукция магнитного поля на Солнце составляет около 4 тысяч гаусс. С другой стороны в 2014 году японские астрофизики зарегистрировали у одной из светлых областей солнечной поверхности диаметром около 1000 км рекордную величину индукции в рекордные 6250 Гаусс.

Магнитные поля белых карликов и нейтронных звезд

Ещё более сильные магнитные поля наблюдаются у звездных остатков (белых карликов и нейтронных звезд), которые отличаются крайне высокой угловой скоростью вращения. Оценки индукции их магнитных полей достигают 10 12 Гаус. Измерение магнитных полей у подобных объектов стало возможным через регистрацию поляризации. Одновременно проводятся попытки измерения магнитных полей аккреционных дисков черных дыр также через регистрацию приходящего излучения. В настоящее время в этом направлении получены противоречивые результаты. Измерения, опубликованные в конце прошлого года и выполненные с рекордно высокой точностью показали, что величина индукции магнитного поля у аккреционного диска черной дыры лишь в несколько сотен раз больше, чем аналогичный показатель у Солнца (461 ± 12 гауссов). Прошлые оценки предполагали, что этот показатель у черных дыр должен быть в 400 раз выше. Новая оценка стала возможной благодаря сильной вспышке у V404 Лебедя, которая случилась 15 июня 2015 года и наблюдалась практически во всем диапазоне электромагнитного спектра (от рентгеновских лучей до радиоизлучения). Новая оценка ставит перед теоретиками серьезную проблему: наблюдаемая индукция не может полностью объяснить формирование мощных полярных джетов аккреционного диска черной дыры – следовательно, в их образовании участвует какой-то ещё механизм.

Похожие статьи

Понравилась запись? Расскажи о ней друзьям!

Источник

Что такое магнитное поле Земли, как оно создается и в чем его значение?

С древних времен известно, что магнитная стрелка, свободно вращающаяся вокруг своей вертикальной оси, всегда позиционируется в определенном направлении в данном месте Земли (если поблизости нет магнитов, проводников электричества или железных предметов). Этот факт объясняется тем, что вокруг Земли существует магнитное поле, и магнитная стрелка устанавливается вдоль его магнитных линий. На этом основан компас, который представляет собой магнитную стрелку, свободно вращающуюся на оси.

Узнайте, что такое магнитное поле Земли, как оно создается и многое другое в этой статье.

Магнитное поле Земли: простое объяснение

Наша планета Земля окружена магнитным полем, которое также называют магнитным полем Земли. Если смотреть со стороны, то магнитное поле Земли по форме напоминает стержневой магнит. Это означает, что вы можете представить себе огромный стержневой магнит под поверхностью Земли, наклоненный к оси вращения Земли. Южный полюс этого магнита направлен в сторону географического северного полюса Земли.

Магнитное поле Земли имеет интенсивность от 30 микротесла (мкТл) до 60 мкТл. Основная часть магнитного поля Земли возникает в жидком внешнем ядре Земли в результате конвекции расплавленного железа.

Помимо обеспечения ориентации по компасу, магнитное поле Земли выполняет еще одну жизненно важную задачу: экранирует солнечный ветер, то есть защищает нас от опасного излучения из космоса. В состав космического излучения, кроме электронов, протонов, входят и другие частицы, движущиеся в пространстве с огромными скоростями.

Как создается магнитное поле Земли?

Основная часть магнитного поля возникает внутри Земли. Поэтому в этом разделе мы сначала покажем вам, как устроено ядро Земли, а затем кратко остановимся на так называемой «теории динамо».

Структура ядра Земли

Вы можете представить себе Землю, разделенную на четыре сферические оболочки и одну сферу (смотрите рисунок 1 ниже). Каждая сферическая оболочка изготовлена из разных материалов и имеет разную толщину. Сфера находится в центре, а четыре сферические оболочки окружают сферу одна за другой. В следующем списке показана структура Земли, начиная с поверхности Земли и заканчивая ее центром.

Теория динамо

Внешнее ядро состоит в основном из жидкого, электропроводящего железа. Внешний слой внешнего ядра Земли холоднее внутреннего ядра Земли. Эта разница температур приводит к возникновению конвекционных течений. Это означает, что жидкое железо во внешнем ядре сильно перемещается вперед и назад. К этому движению добавляется ещё и вращение земли.

Следующее наблюдение стало решающим для магнитного поля Земли, а именно, магнитное поле «задерживается» в проводнике. Если проводник движется, магнитное поле должно следовать за ним. Именно это и происходит во внешнем ядре Земли. Внешнее магнитное поле попадает в земное ядро и задерживается жидким железом. Затем это внешнее магнитное поле следует за движениями жидкого железа.

Во внешнем ядре Земли существует градиент вращения: чем ближе вы находитесь к внутреннему ядру, тем быстрее вы вращаетесь вокруг оси вращения Земли. Этот градиент вращения заставляет жидкое железо испытывать силу Кориолиса и, таким образом, отклоняться в спиралевидные траектории. Внешнее магнитное поле следует за этим спиральным движением, образуя искаженные кольца. Такое «магнитное кольцо» соответствует электрическому току. Этот электрический ток, в свою очередь, создает магнитное поле, которое усиливает внешнее магнитное поле. Как итог, создается магнитное поле Земли.

Таким образом, составляющие магнитного поля Земли следующие: конвекционные токи, вращение Земли и электропроводящая жидкость в ядре Земли.

Примечание! Основная идея магнитного поля Земли: уже существующее магнитное поле в ядре Земли приводит к электрическому току. Этот электрический ток, в свою очередь, создает магнитное поле, которое усиливает исходное магнитное поле.

Теперь вам может быть интересно, откуда берется внешнее магнитное поле. На самом деле, малейшего теплового движения во внешнем ядре Земли достаточно для возникновения случайного электрического тока. Затем этот электрический ток создает внешнее магнитное поле, которое усиливается динамо-эффектом и формирует магнитное поле Земли.

Индукция и форма магнитного поля Земли

Индукция магнитного поля Земли составляет от 30 до 60 мкТл. Для сравнения: типичный подковообразный магнит имеет индукция магнитного поля 0,1 тесла; а индукция магнитного поля магнитно-резонансного томографа для использования человеком составляет от 0,35 до 3 тесла.

Форма магнитного поля Земли напоминает форму стержневого магнита (см. рисунок 2). Если смотреть со стороны, то кажется, что внутри Земли находится гигантский стержневой магнит. Он наклонен примерно на 11° относительно оси вращения, а его южный полюс направлен в сторону географического северного полюса Земли.

что представляет собой форма магнитосферыРис. 2. Стержневой магнит внутри Земли

Наблюдения показывают, что по мере приближения Земли к географическому северному полюсу магнитные линии магнитного поля Земли все больше наклоняются к горизонту и становятся вертикальными, входя в Землю примерно на 75° северной широты и 99° западной долготы. Южный магнитный полюс Земли сейчас находится в этой точке, примерно в 2100 км от географического северного полюса.

Перышкин А.В. Физика 8. – М.: Дрофа, 2010.

Северный магнитный полюс Земли расположен вблизи географического южного полюса, то есть на 66,5° южной широты и 140° восточной долготы. Здесь магнитные линии магнитного поля Земли покидают Землю.

Поэтому магнитные полюса Земли не совпадают с географическими полюсами Земли. По этой причине направление магнитной стрелки не совпадает с направлением географического меридиана. Магнит
Стрелка компаса лишь приблизительно указывает на север.

Есть области земного шара, где направление магнитной стрелки постоянно отклоняется от направления магнитной линии Земли. Эти области называются магнитными аномалиями.

Смена полярности магнитного поля Земли

В этом разделе мы кратко объясним, что имеется в виду под изменением полярности магнитного поля Земли и что это означает для жизни на Земле.

Феномен и значение

Термин «изменение полярности» означает, что положения магнитных полюсов меняются местами. Возьмите стержневой магнит так, чтобы южный полюс был направлен вверх. Теперь поверните стержневой магнит на 180° так, чтобы южный полюс был направлен вниз. Теперь вы успешно изменили полярность магнита.

что представляет собой форма магнитосферыРис. 3. Магнитное поле Земли

Исследования горных пород показали, что за последние 84 миллиона лет произошло 183 таких переполюсовки. Последняя смена полюсов произошла 780 000 лет назад. Возможно, сейчас вы спрашиваете себя, не настало ли время для того, чтобы снова произошел разворот полюсов. На самом деле, смена полярности является случайным событием. Это означает, что невозможно точно утверждать, когда это произойдет.

Но предположим, что полярность поменялась. Имеет ли это какое-либо значение для жизни на Земле? В любом случае навигация по компасу вначале работать не будет. У таких животных, как птицы, морские черепахи и киты, вначале также будут проблемы с ориентацией. Но это будет лишь вопросом времени, когда навигация по компасу и ориентация животных снова «выровняются».

Худшие последствия, такие как отказ всех технологий, в настоящее время являются лишь гипотезой. Факт состоит в том, что магнитное поле Земли постепенно ослабевает, а это значит, что всё больше опасной радиации достигает Земли. Однако, точные последствия этого все еще исследуются.

Значение

В этом последнем разделе мы кратко обсудим важные задачи, выполняемые магнитным полем Земли.

Экранирование.

Одной из важнейших задач магнитного поля Земли является защита от солнечного ветра — магнитное поле Земли создает так называемую магнитосферу, которая окружает Землю. Солнечный ветер состоит из высокоэнергетических частиц. Отсутствие экранирования может, например, привести к уменьшению озонового слоя. Этот слой защищает Землю и, соответственно, людей от опасного ультрафиолетового излучения. Поэтому без магнитного поля Земли большее количество такого излучения будет попадать на людей и повышать риск возникновения рака, в том числе.

Ориентация.

Магнитное поле Земли служит не только для защиты, но и для ориентации. Например, с помощью компаса люди могут спланировать свой маршрут через лес. Такие животные, как киты, голуби и медоносные пчелы, используют магнитное поле Земли для ориентации.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *