что представляет собой промышленный робот подберите наиболее точное выражение
Промышленный робот
Промышленный робот — автономное устройство, состоящее из механического манипулятора и системы управления (позволяющей перепрограммировать в широких пределах движения исполнительных органов манипулятора, их количество и траекторию; а также задать другие количественные и качественные параметры конфигурации робота и оснастки), которое применяется для перемещения объектов в пространстве и для выполнения различных производственных процессов.
Промышленные роботы могут выполнять основные технологические операции (сварка, окраска, сборка и др.) и вспомогательные технологические операции (загрузка-выгрузка технологического оборудования, транспортные и др.). При использовании сменной технологической оснастки выполняемые операции могут совмещаться одним роботом.
Промышленные роботы являются одним из компонентов автоматизированных производственных систем (РТК, РТЛ, РТС, РТЯ, ГАП и т.п.), которые пр неизменном уровне качества позволяют увеличить производительность труда в целом.
Экономически выгодно использование промышленных роботов совместно с другими средствами автоматизации производства (автоматические линии, участки и комплексы).
Содержание
История
Появление механических манипуляторов, а затем систем программирования в т.ч. числового программного управления (ЧПУ) привело к созданию промышленных роботов т.е. программируемых манипуляторов для разнообразных операций.
Первые промышленные роботы начали создавать в середине 50-х годов 20 века в США. В 1954 году американский инженер Дж. Девол запатентовал способ управления погрузочно-разгрузочным манипулятором с помощью сменных перфокарт, т.е. получил патент на робот промышленного назначения. Вместе с Д. Энгельбергом в 1956 г. он организовал первую в мире компанию по выпуску промышленных роботов. Ее название «Unimation» (Юнимейшн) является сокращением термина «Universal Automation» (универсальная автоматика).
В 1959 году фирма «Консолидейтед Корпорейшн» (США) опубликовала описание манипулятора с числовым программным управлением (ЧПУ), а в 1960-1961 гг. в американской печати появились первые сообщения о манипуляторах «Transferrobot» и «Eleximan» с ПУ для автоматизации сборочных и других работ. В 1962 году в США были созданы первые в мире промышленные роботы «Юнимейт» ф.»Юнимейшн Инкорпорейд» и «Версатран» ф. «АМФ Версатран». Их сходство с человеком ограничивалось наличием манипулятора, отдаленно напоминающего человеческую руку. Некоторые из них работают до сих пор, превысив 100 тысяч часов рабочего ресурса.
Промышленный робот «Юнимейт» имел 5 степеней подвижности с гидроприводом и двухпальцевое захватное устройство с пневмоприводом. Перемещение объектов массой до 12 кг осуществлялось с точностью 1,25 мм. В качестве системы управления использовался программоноситель в виде кулачкового барабана (нем.) русск. с шаговым двигателем, рассчитанный на 200 команд управления, и кодовые датчики положения. В режиме обучения оператор задавал последовательность точек, через которые должны пройти звенья манипулятора в течение рабочего цикла. Робот запоминал координаты точек и мог автоматически перемещаться от одной точки к другой в заданной последовательности, многократно повторяя рабочий цикл. На операции разгрузки машины для литья под давлением «Юнимейт» работал с производительностью 135 деталей в час при браке 2 %, тогда как производительность ручной разгрузки составляла 108 деталей в час при браке до 20 %.
Промышленный робот «Версатран», имевший три степени подвижности и управление от магнитной ленты, мог у обжиговой печи загружать и разгружать до 1200 раскаленных кирпичей в час. В то время соотношение затрат на электронику и механику в стоимости робота составляло 75 % и 25 %, поэтому многие задачи управления решались за счет механики. Сейчас это соотношение изменилось на противоположное, причем стоимость электроники продолжает снижаться. Предлагаются необычные кинематические схемы манипуляторов. Быстро развиваются технологические роботы, выполняющие такие операции как высокоскоростные резание, окраска, сварка. Появление в 70-х гг. микропроцессорных систем управления и замена специализированных устройств управления на программируемые контроллеры позволили снизить стоимость роботов в три раза, сделав рентабельным их массовое внедрение в промышленности. Этому способствовали объективные предпосылки развития промышленного производства.
Функциональная схема промышленного робота
В составе робота есть механическая часть и система управления этой механической частью, которая в свою очередь получает сигналы от сенсорной части. Механическая часть робота делится на манипуляционную систему с захватным устройством или технологическим инструментом и систему перемещения.
Манипуляторы
Манипулятор — это механизм для управления пространственным положением орудий и объектов труда.
Манипуляторы включают в себя подвижные звенья двух типов:
Сочетание и взаимное расположение звеньев определяет степень подвижности, а также область действия манипуляционной системы робота.
Для обеспечения движения в звеньях могут использоваться электрические, гидравлический или пневматический привод.
Частью манипуляторов (хотя и необязательной) являются захватные устройства. Наиболее универсальные захватные устройства аналогичны руке человека — захват осуществляется с помощью механических «пальцев». Для захвата плоских предметов используются захватные устройства с пневматической присоской. Для захвата же множества однотипных деталей (что обычно и происходит при применении роботов в промышленности) применяют специализированные конструкции.
Вместо захватных устройств манипулятор может быть оснащен рабочим инструментом. Это может быть пульверизатор, сварочные клещи, отвёртка и т. д.
Система передвижения
Внутри помещений, на промышленных объектах используются передвижения вдоль монорельсов, по напольной колее и т. д.
Для перемещения по наклонным, вертикальным плоскостям используются системы аналогичные «шагающим» конструкциям, но с пневматическими присосками.
Управление
Управление бывает нескольких типов:
Принципы управления
Современные роботы функционируют на основе принципов обратной связи, подчинённого управления и иерархичности системы управления роботом.
Иерархия системы управления роботом подразумевает деление системы управления на горизонтальные слои, управляющие общим поведением робота, расчётом необходимой траектории движения манипулятора, поведением отдельных его приводов, и слои, непосредственно осуществляющие управление двигателями приводов.
Подчинённое управление
Подчинённое управление cлужит для построения системы управления приводом. Если необходимо построить систему управления приводом по положению (например, по углу поворота звена манипулятора), то cистема управления замыкается обратной связью по положению, а внутри системы управления по положению функционирует система управления по скорости со своей обратной связью по скорости, внутри которой существует контур управления по току со своей обратной связью.
Современный робот оснащён не только обратными связями по положению, скорости и ускорениям звеньев. При захвате деталей робот должен знать, удачно ли он захватил деталь. Если деталь хрупкая или её поверхность имеет высокую степень чистоты, строятся сложные системы с обратной связью по усилию, позволяющие роботу схватывать деталь, не повреждая её поверхность и не разрушая её.
Управление роботом осуществляться системой управления промышленным предприятием (ERP-системой), согласующими действия робота с готовностью заготовок и станков с числовым программным управлением к выполнению технологических операций.
Рядом стоящие шкафы современных систем управления двух промышленных роботов FANUC R-2000iB
Промышленные роботы в современном производстве
Современное производство трудно представить без автоматики и поточных линий. Промышленная робототехника позволила сделать огромный прыжок в повышении производительности и обеспечении качества продукции. Сегодня выпускается множество роботов различного назначения, в их особенностях стоит разобраться подробнее.
Что такое промышленная робототехника?
Представляет собой специфическую отрасль, связанную с разработкой и изготовлением роботизированных аппаратов и систем, используемых для автоматизации производственных процессов и замены ручного труда человека. Она заявила о себе в 30–50 годах прошлого столетия, а активное развитие получила в 70–80 гг.
Что называют промышленными роботами?
В общем случае промышленные роботы (ПР) — это автоматические устройства, способные осуществлять двигательные и управляющие действия в производственном процессе по заданной программе. Они используются для выполнения разнообразных технологических операций и перемещения предметов без участия человека или под его контролем.
В настоящее время применяются следующие основные типы ПР:
По своему назначению промышленные роботы разделяются на такие виды:
Во всех указанных категориях ПК могут подразделяться на несколько разновидностей. По грузоподъемности выделяются легкие (до 10 кг), средние (11–200 кг), тяжелые (от 200 кг до 1 тн) и сверхтяжелые (более 1 тн) роботы. По маневренности выпускаются подвижные и стационарные аппараты. По способу установки предлагаются напольные, подвесные и встроенные ПК. Выбор робота осуществляется с учетом конкретных производственных задач и условий эксплуатации.
Из чего состоит ПР: устройство
Конструкции ПР зависят от их назначения и типа и могут существенно отличаться друг от друга по форме элементов, компоновке и сложности. Однако функциональная схема у них аналогична. В состав всех роботов входят: механическая часть и система управления. В более сложных аппаратах присутствует информационно-сенсорная система со средствами очувствления.
Механическая часть включает такие элементы:
Система управления базируется на промышленных компьютерах мобильного типа (например, РС/104, MicroPC), а само управление манипулятором осуществляется с ПК и программируемого контроллера. Для программирования используются языки: Forth, Оберон, Компонентный Паскаль, Си. Управление роботами согласовывается с общей системой управления производством (ERP-системой).
Информационно-сенсорная система позволяет адаптировать роботов к изменяющимся внешним условиям. Для обеспечения необходимой чувствительности применяются внутренние датчики перемещения, линейных и угловых скоростей, сил сочленения, а также внешние датчики для получения сведений о состоянии окружающей среды (тактильные, акустические, визуальные, локационные, температурные, химические датчики).
Функции ПР: принцип работы
Современные ПР могут использоваться для перемещения или удержания предметов, а также осуществления технологических операций. Необходимые движения обеспечиваются манипулятором. Часто принцип его работы сравнивается с человеческой рукой, а потому и форму он обычно имеет аналогичную. Движения манипулятора подразделяются на 2 этапа: захват (аналог — кисть руки) и перемещение (плечо и суставы рук) предмета или инструмента. Для этого в сочленениях обеспечивается поступательное и вращательное движение.
Алгоритм действий робота задается программой. Он включает несколько характерных этапов:
Современные ПР оснащены сенсорной системой, способной обеспечить обратную связь. При изменении внешних условий (например, изменился размер предмета или его местонахождение) датчики фиксируют расхождение с программой и сообщают фактические данные.
Важно! Интеллектуальные ПР способны сами принять решение и внести коррективу в УП. Другие роботы передают информацию оператору, который вносит нужные коррективы.
Назначение и схема
Технологические ПР находят применение при осуществлении следующих процессов: контактная и дуговая сварка, плазменная резка, литье, штамповка, фрезерование и сверление, шлифовка и полировка, резание и раскрой материалов, покраска и лакирование, комбинированная обработка, сборка конструкций, упаковка, транспортировка, контроль и измерения и т. д.
Стандартная схема работы технологического ПР приведена на рис. Для осуществления технологического процесса вводится УП. Захват заготовки производится по команде. Для этого обеспечивается поступательное перемещение манипулятора и вращательное движение захватывающего устройства. Далее заготовка перемещается в рабочую зону, где подвергается обработке. При этом рабочий орган обладает возможностью возвратно-поступательного и вращательного движения. Через датчики обеспечивается обратная связь, учитывающая изменение внешних условий.
Топовые производители
При выборе ПР особое внимание следует обратить на его производителя. Только проверенные компании гарантируют необходимое качество и надежность. Можно выделить несколько топовых производителей.
Fanuc
Компания Fanuc выпускает большой ассортимент роботов различного назначения. Идеальным вариантом для промышленных предприятий, специализирующихся на выпуске небольших электронных устройств, является модель FANUC M-1iA. Она обладает гибким модулем, хорошо имитирующим человеческую руку. Для нее характерна высокая точность и повышенная производительность. При небольшой грузоподъемности она способна обеспечить различные технологические операции. Исполнительный орган имеет форму шарнирного параллелограмма, обеспечивающую высокоскоростную сборку деталей.
Hanwha
Среди продукции компании Hanwha выделяется коллаборативный промышленный робот Hanwha HCR-5 cobot. Он относится к группе легкой грузоподъемности. Может использоваться в автомобилестроении, пищевой и фармацевтической промышленности, при обработке пластика и изготовлении электронных устройств. Имеет манипулятор шарнирного типа. Робот реагирует на внешние изменения. Эффективен при складировании и упаковке, сборке и паллетировании.
Роботы в промышленности — их типы и разновидности
Что это?
Это статья об индустриальном применении робототехники. Применение роботов в промышленности началось, по историческим меркам, не так давно — чуть больше, чем полвека назад, но сейчас уже мало какое производство можно представить себе без автоматических линий, без стальных манипуляторов и зорких стеклянных зрачков роботов — эти железные ребята прочно вошли в большинство производственных процессов и уходить не собираются.
Несмотря на такое обширное, почти повсеместное распространение роботов, лишь специалисты в полной мере представляют себе весь спектр их возможностей. В этой статье мы приоткроем дверь в мир промышленной робототехники для широкого круга читателей: опишем некоторые разновидности производственных роботов и сферы их применения. Нельзя объять необъятное в одной статье, но, если читателям будет интересно, мы обязательно продолжим.
Так какие они бывают — роботы?
Есть несколько классификаций промышленных роботов: по типу управления, по степени мобильности, по области применения и специфике совершаемых операций.
По типу управления:
Управляемые роботы: требуют, чтобы каждым их движением управлял оператор. В силу узости областей применения распространены мало. Да и не совсем роботы.
Автоматы и полуавтономные роботы: действуют строго по заданной программе, зачастую не имеют сенсоров и не способны корректировать свои действия, не могут обойтись без участия рабочего.
Автономные: могут совершать запрограммированный цикл действий без участия человека, согласно заданным алгоритмам и корректируя свои действия по мере необходимости. Такие роботы способны полностью перекрыть поле деятельности на своем участке конвейера, без привлечения живой рабсилы.
По функциям и сфере применения:
Роботы разделяются по назначению и исполняемым функциям, вот лишь некоторые из них: промышленные роботы бывают универсальные, сварочные, машиностроительные, режущие, комплектовочные, сборочные, упаковочные, складские, малярные.
Это далеко не полный перечень: количество всевозможных вариантов постоянно растет и все перечислить невозможно в рамках одной статьи. Можно лишь с уверенностью сказать о том, что вряд ли найдется такая область человеческой деятельности, где роботы не смогли бы сделать труд человека более творческим, взяв всю монотонную и опасную часть работы на себя.
Другие методы классификации
У каждой энциклопедии, каждого справочника и каждого производителя своя классификация и типология роботов. Что и не удивительно — зачастую она определяется сугубо специфическими нуждами и частным подходом того, кто её составляет.
Помешает ли это нам рассмотреть некоторые образцы и понять — что же они умеют? Нет конечно. Поехали.
Рассмотрим образцы
Среди промышленных роботов выделяется продукция таких известных фирм, как Kuka, Fanuc, Universal Robots, некоторые образцы которых мы рассмотрим чуть ниже.
FANUC M-2000iA/1200 — пятиосевой грузоподъемный робот поднимающий до 1200 кг и перемещающий этот груз на расстояние до 3,7 м — идеален в качестве погрузчика, так как работает без участия человека, что практически сводит к нулю опасность травматизма. Работает при температурах 0°C — +45 °C. Стабильность повторяемости — 0,03 мм.
Крайне прочный аппарат.
UR10 — самый крупный из манипуляторов Universal Robots и это коллаборативный робот, проще говоря — он создан для работы с другим оборудованием и помощи в работе человеку.
Манипулятор модели UR10 имеет радиус действия 1,3 м и поднимает груз до 10 кг. Его можно использовать с сельскохозяйственным, фармацевтическим, технологическим и многим другим оборудованием. Компактно размещается на рабочем месте человека, чтобы стать ему “третьей рукой”, легко программируется и быстро настраивается.
UR10 умеет завинчивать, клеить, сваривать и паять, производить литьевые и сборочные работы.
Также роботы Universal Robots применены в проекте Voodoo Manufacturing: Project Skywalker компании Medium Corporation — это фабрика 3D-печати, многие операции на которой выполняют именно роботы-манипуляторы. Такие действия, как замена платформ для печати, сбор и складирование готовых изделий больше не требуют неустанного внимания персонала.
Особенно интересны универсальные роботы, так как именно они, в силу своего назначения, снабжены наиболее адаптивными системами управления.
Это такие роботы, как Baxter и Sawyer производства Rethinkrobotics.
Baxter — многофункциональный робот с двумя манипуляторами и системами обратной связи и самообучения.
Его 7-осевые манипуляторы способны почти на всё, на что способна рука человека, в том числе — имеют обратную связь и могут контролировать прилагаемые усилия. Это, плюс ещё особенности дизайна, делают Бакстера безопасным для живых рабочих — его рабочее место не нуждается в ограждении, да и вообще — места он занимает немного, что здорово экономит пространство в цеху. Пара бакстеров способна успешно работать вместе.
Бакстер интересен еще и тем, что не требует тщательного подробного программирования каждого своего действия — “учить” его можно не только через интуитивно понятное визуальное приложение, но и прямо на рабочем месте — повторяя показанные движения он запоминает их и применяет в дальнейшем.
Sawyer — “младший брат” Бакстера — удивительно компактный и легкий робот-манипулятор, он весит всего 19 килограмм и может быть установлен почти где угодно, не занимая при этом много места.
Точность действий Сойера доходит до 0,1 мм, что позволяет использовать его в сотнях видов комплектовочных, сборочных и других конвейерных работ.
Оба робота легко переобучаются для выполнения новых функций даже без применения традиционного программирования и столь же просто перемещаются с одного рабочего места на другое.
Гибридное производство
Очень интересным представляется подход компании Stratasys, которая создала промышленный аппарат нового типа — гибрид робота и 3D-принтера.
Конечно, любой 3D-принтер обладает признаками робота, но тут — это совершенно традиционной формы роботизированный манипулятор, имеющий в том числе и функцию FDM-печати. Stratasys Infinite-Build 3D Demonstrator предназначен, прежде всего, для авиационного и космического производства, в котором так важна его способность производить печать на вертикальных поверхностях неограниченной площади, в соответствии с концепцией “infinite-build” — “бесконечное построение”. С работой над проектом связаны такие монстры, как аэрокосмический гигант Boeing и автоконцерн Ford, которые предоставили Stratasys спецификации по необходимым характеристикам получаемых изделий.
Восьмиосевой механизм манипулятора, обилие специально разработанных композитных материалов для печати, традиционно высокое качество изготовления — все говорит нам о том, что у этого аппарата и его потомков большое будущее.
Figure 4 компании 3D Systems — модульная робототехническаяя система для автоматизации стереолитографической 3D-печати, ни больше, ни меньше.
Это целый автоматический комплекс, который способен производить новые изделия каждые несколько минут — в отличие от нескольких часов на обычных SLS-принтерах.
Кроме того, в цикл уже включены и такие этапы, как промывка, отделение поддержек и дозасветка, а не только первичная экспозиция. Все это Figure 4 делает сам, без вмешательства оператора в процесс работы.
Благодаря модульности, на основе Figure 4 можно создать достаточно крупные автоматические линии, используя стандартные компоненты.
Этот комплекс был представлен общественности в этом году, на выставке The International Dental Show в Кёльне, как и новый 3D-принтер ProJet CJP 260Plus — полноцветный 3D-принтер предназначенный для анатомического моделирования медицинских изделий и быстрого прототипирования любых промышленных образцов.
Принтер также роботизирован — снабжен системой автоматической загрузки, удаления и переработки печатного порошка.
Можно с уверенностью сказать, что комплексный подход к 3D-печати — часть производственной культуры будущего. Он даст радикально новое сочетание скорости, точности, удобства и снижения себестоимости изделий.
Carbon SpeedCell — технологическое решение от компании Carbon, которое включает в себя новый 3D-принтер The M2, работающий по технологии CLIP, и финишинговый аппарат для стереолитографических распечаток Smart Part Washer.
CLIP — технология бесслойной стереолитографической печати, обеспечивающая скорость от 25 до 100 раз быстрее обычной SLS и новый уровень качества поверхности.
Система CLIP (Continuous Liquid Interface Production) позволяет получить невозможные ранее формы изделий требующие минимальной постобработки. Точных характеристик аппаратного комплекса производитель пока не предоставил, но сам подход уже радует — это почти готовое решение для любой мастерской, в которой требуется стереолитографическая печать.
Аппарат сочетающий в себе несколько разных подходов к обработке деталей: это и классический фрезерный станок с программным управлением — пятиосевой и весьма точный, и лазерный режущий инструмент с теми же степенями свободы, и печатающий металлом 3D-принтер с технологией лазерного напыления. Сложно представить себе операцию, которую не смог бы произвести этот станок с металлической деталью. Гибридный подход: фрезеровка заготовки, наплавление недостающих деталей или печать с нуля и чистовая обработка — все операции могут произведены с деталью за один подход, в рамках одной заданной программы, без прерывания технологического цикла. Размер обрабатываемой и/или печатаемой детали составляет до 600 на 400 мм, а вес может быть до 600 кг.
Такое МФУ для работы по металлу уже многое изменило в культуре производства штучных и мелкосерийных изделий, а в ближайшее время подобный подход может распространиться и на серийное производство.
EOS — Additive Manufacturing
Компания EOS создала манипуляторы, которые способны производить различные операции, где требуется захват и перемещение детали. Разработки EOS в этой области основываются на наблюдениях за поведением животных, в частности — этот манипулятор создан по примеру хобота слона.
Такой робот-манипулятор может быть использован во множестве промышленных операций, как то: в транспортировке и упаковке, в перемещении деталей из одной рабочей зоны в другую, например — из 3D-принтера в камеру пост-обработки, чтобы исключить участие человека на этом этапе.
Вот так он устроен:
Также компания спонсирует и представляет проект Roboy — это мобильный гуманоидный робот, который способен выполнять любые движения свойственные человеку и служить помощником на производстве.
Известный производитель печатающих металлом 3D-принтеров, Concept Laser заключил соглашение с компанией Swisslog, их общий проект — M Line Factory, это система перемещения металлических 3D-печатных деталей между станками Concept Laser с помощью роботов Swisslog.
Компании продолжают совершенствование аппаратных комплексов для 3D-печати металлом. Роботизированные составляющие этих машин способны провести деталь через весь цикл — от загрузки проекта в память, до выхода готового изделия на склад, — без необходимости вмешательства оператора.
Единственная в своем роде установка — единая система для печати, транспортировки из рабочей камеры и хранения готовых деталей. Фактически — готовый цех металлической 3D-печати в одном корпусе.
Существуют роботы, которые способны выполнять функции сварочных и фрезерных станков c программным управлением.
А также такие, которые обслуживают традиционные фрезерные ЧПУ-станки, увеличивая их производительность.
Например, вот так это делает упомянутый выше Sawyer:
Выводы
Роботы в современной промышленности везде. Они в любом цеху и в любой области производства. И это нормально: роботы экономят деньги работодателей, а рабочих спасают от вредной и монотонно-отупляющей работы; роботы работают круглосуточно и безостановочно; роботы намного точнее живых рабочих — они не устают, у них не “замыливается глаз”, их сенсоры и системы позиционирования способны сохранять точность до сотых долей миллиметра.
Пока мы видим их еще не везде — многие производственные процессы скрыты от рядового пользователя, да и не особо интересны обычно, — но совсем скоро невозможно будет не замечать того, что подавляющая часть всех материальных благ производится умными машинами.
Хотите больше интересных новостей из мира 3D-технологий?