что представляет собой ядро галактики

Ядро Галактики

что представляет собой ядро галактики

Галакти́ческий це́нтр — сравнительно небольшая область в центре нашей Галактики, радиус которой составляет около 1000 парсек и свойства которой резко отличаются от свойств других её частей. Образно говоря, галактический центр — это космическая «лаборатория», в которой и сейчас происходят процессы звёздообразования и в которой расположено ядро, когда-то давшее начало конденсации нашей звёздной системы.

Галактический центр находится на расстоянии 10 кпк от Солнечной системы, в направлении созвездия Стрельца. В галактической плоскости сосредоточено большое количество межзвёздной пыли, благодаря которой свет, идущий от галактического центра, ослабляется на 30 звёздных величин, то есть в 10 12 раз. Поэтому центр невидим в оптическом диапазоне — невооружённым глазом и при помощи оптических телескопов. Галактический центр наблюдается в радиодиапазоне, а также в диапазонах инфракрасных, рентгеновских и гамма лучей.

Содержание

Состав галактического центра

От скопления отходят спиральные газовые рукава, простирающиеся на расстояние до 3 — 4,5 тыс. парсек. Рукава вращаются вокруг галактического центра и одновременно удаляются в стороны, с радиальной скоростью около 50 км/с. Кинетическая энергия движения составляет 10 55 эрг.

Внутри скопления обнаружен газовый диск радиусом около 700 парсек и массой около ста миллионов масс Солнца. Внутри диска находится центральная область звёздообразования.

что представляет собой ядро галактики

Ближе к центру находится вращающееся и расширяющееся кольцо из молекулярного водорода, масса которого составляет около ста тысяч масс Солнца, а радиус — около 150 парсек. Скорость вращения кольца составляет 50 км/с, а скорость расширения — 140 км/с. Плоскость вращения наклонена к плоскости Галактики на 10 градусов.

По всей вероятности, радиальные движения в галактическом центре объясняются взрывом, произошедшим там около 12 млрд. лет назад.

Распределение газа в кольце — неравномерное, образующее огромные газопылевые облака. Крупнейшим облаком является комплекс Стрелец B2, находящийся на расстоянии 120 пк от центра. Диаметр комплекса составляет 30 парсек, а масса — около 3 млн. масс Солнца. Комплекс является крупнейшей областью звёздообразования в Галактике. В этих облаках обнаружены все виды молекулярных соединений, встречающихся в космосе.

Ещё ближе к центру находится центральное пылевое облако, радиусом около 15 парсек. В этом облаке периодически наблюдаются вспышки излучения, природа которых неизвестна, но которые свидетельствуют о происходящих там активных процессах.

Практически в самом центре находится компактный источник нетеплового излучения Стрелец A*, радиус которого составляет 0,0001 парсек, а яркостная температура — около 10 млн. градусов. Радиоизлучение этого источника, по-видимому, имеет синхротронную природу. Временами наблюдаются быстрые изменения потока излучения. Нигде в другом месте Галактики подобных источников излучения не обнаружено, зато подобные источники имеются в ядрах других галактик.

С точки зрения моделей эволюции галактик, их ядра являются центрами их конденсации и начального звёздообразования. Там должны находиться самые старые звёзды. По всей видимости, в самом центре ядра Галактики находится сверхмассивная чёрная дыра массой около 3,7 миллионов масс Солнца, что показано исследованием орбит близлежащих звёзд (см. [1]). Излучение источника Стрелец А* вызвано аккрецией газа на чёрную дыру, радиус излучающей области (аккреционный диск, джеты) не более 45 а.е..

Источник

Ядро галактики

Ядро галактики – особая космическая территория, которая практически не подвержена земным законам физики. Или, возможно, человечеству просто-напросто не хватает знаний, чтобы описать события, которые там происходит. Это неудивительно, поскольку процессы и явления, порождающие возникновение исполинских потоков, событий, возникающих в центре этих систем, свидетельствуют об иных масштабах Вселенной, которые никому не известны.

Наша галактика именуется «Млечный путь». Её никогда не видели со стороны и скорее всего, сделать это так и не удастся. Но учёные не теряют надежды на то, что какая-нибудь высокоразвитая цивилизация отправит на нашу планету её снимок, или люди сами научатся проделывать путь в сотни тысяч парсек и даже в миллионы в рамках одной жизни. Несмотря на эти шансы, с имеющимся уровнем развития технологий говорить о каких-либо колоссальных переменах в ближайшие годы не приходится.

что представляет собой ядро галактикиАктивная гигантская эллиптическая галактика M87. Из центра галактики вырывается релятивистская струя (джет)

Особенности устройства галактики

Если посмотреть на звёздную систему, в которой мы обитаем сверху, можно обнаружить диск плоской формы. Если быть точнее, это огромная светящаяся спираль, оснащённая перемычкой в ядерной части. Её яркость снижается на пути следования от центральной к периферийной части. Солнце на этой воображаемой схеме будет располагаться между рукавами, находящимися с краю.

Точное диаметральное сечение нашей Солнечной системы неизвестно. По предположительным отметкам оно составляет 3 000 парсек или 100 000 световых лет. Если говорить о цифре в километрах, вслух её лучше не произносить, т. к. значение получится огромным. Толщина, которой обладает звёздный диск, составляет до 1 000 световых лет. Согласно последним данным эти показатели могут быть в 10 раз больше!

Галактика имеет множество уникальных особенностей. Вся звёздная группа как бы погружена в гало. В его составе преобладают старые звезды и шаровые скопления. Они обладают формой сферы, перерастая в галактическую корону. Она сильно разряжена и включает в свой состав газ и светила редкого типа. По состоянию на 2010 год массовое значение группы составляет от 4,8*10^11 солнечных масс.

Если говорить о возрасте Млечного пути, он составляет от 13 миллиардов лет. В нём протекает процесс активного звездообразования, т. к. у него своя жизнь, где каждую секунду происходят какие-то новые события. Чаще всего обычному человеческому разуму они недоступны. И если верить статистике и практике, самые интересные и грандиозные события происходят в центральной части, т. е. в ядре.

что представляет собой ядро галактикиM60

Что представляет собой галактическое ядро

Самый центр, самое сердце галактики, оно скрыто от человеческих глаз по причине мощной завесы из пыли. Поэтому получить сведения об этом объекте можно только в двух диапазонах – инфракрасном и радио. Что касается рентгеновского излучения и гамма, оно также является скрытым. Ядро галактики, по имеющимся на сегодняшний день представлениям, находится в центральной части галактической группы.

Представители учёного мира считают, что оно представляет собой внушительный экзотический объект, отличающийся высоким уровнем плотности и температуры. Внешне он напоминает огромную чёрную дыру. Современные учёные считают, что их количество равно 2. И вторая из них имеет меньшие размеры. Происходит её вращение вокруг центральной части. А наряду с этим «действует» порядка 1 000 дыр небольшого размера.

Что именно происходит с материей в этой зоне, неподготовленному человеку доподлинно неизвестно. Однако точно можно сказать одно: в тех местах всё земное теряет смысл, поскольку материя обретает экзотическое состояние, и земные законы на ней не работают. Многие специалисты свидетельствуют о том, что каждая чёрная дыра имеет свой горизонт событий. Плотность светил в этой окрестности настолько внушительна, что гипотетический наблюдатель мог бы увидеть с них небо бесконечной яркости.

Однако в сравнении с другими галактическими группами ядерную часть нашей системы можно считать относительно спокойной. Ведь есть и другие объекты, на которых наблюдается колоссальные мощности выделяемой энергии. Поэтому даже вспышки сверхновых светил по сравнению с ними выглядят не так эффектно. Источники, которые обеспечивают этот поток, в настоящее время неизвестны.

что представляет собой ядро галактикиNGC 7793

Изучив ядро галактики относительно подробно, астрофизики и физики-теоретики пришли к выводу о том, что в целях обеспечения такого внушительного энергетического выделения реакций, протекающих в ядре, недостаточно. Среди всех известных человеку источников есть смысл предположить, что вещество падает в гравитационном поле. Неясность имеет и вероятная роль тёмной, кинетической энергии, выделившейся в ходе Большого взрыва.

Если говорить об энергетической эффективности, такие процессы запросто могут превосходить любые ядерные реакции на несколько порядков. Хотя не исключено, что в тех «широтах» действуют силы, о которых человечество даже и не догадывается. Поэтому у учёных нет 100% уверенности в том, что они движутся в правильном направлении. Ясно только одно: в таких галактиках могут присутствовать необыкновенные по виду и свойствам объекты, требующие особого подхода к изучению. Это нужно не только в целях понимания строения ядерных элементов, но и для разбирательства с широким спектром философских и астрофизических проблем.

О квазарах

Наряду с этим стоит принять во внимание такие тела и объекты, как квазары. Они отличаются высоким уровнем компактности и располагаются по отношению к Земле на огромных расстояниях (миллиарды парсек). В их спектральных частях происходит внушительное красное смещение, что свидетельствует о больших скоростях и удаления от нашей планеты. Их история изучения богата и длительна. Он уходит в начало 60-х годов. В то время было убеждение в том, что они находятся в пределах Млечного пути, но это не так.

Более того некоторые учёные считают, что квазары напоминают ядра галактик, возможно все галактики проходят стадию квазаров. Но, это одна из теорий, которую учёным ещё придётся проверять и проверять.

Таким образом, ядро галактики – его основная часть, где происходят особые процессы и явления, совершено пока загадочные и непонятные.

Источник

ядра галактик

что представляет собой ядро галактики

Рис. 1. Кривые вращения нескольких спиральных галактик с развитым балджем.

Наиб. эффективным способом исследования внутр. областей галактик является анализ кривых вращения (см. Вращение галактик). Кривая вращения даёт информацию о распределении вещества по радиусу галактики и о характере его вращения. У нек-рых близких галактик с развитым балджем на кривой вращения найдены один или два локальных пика (рис. 1), свидетельствующих о том, что ядро и балдж являются, скорее всего, динамически выделенными подсистемами. Обычно кривая вращения указывает на твердотельный характер вращения этих подсистем (участки линейного роста скорости). Аналогичные кривые, построенные для самых внутренних областей, свидетельствуют о том, что керны вращаются твердотельно и незави-симo от прилегающих областей ядра. Не у всех близких галактик обнаружены ярко выраженные ядра и керны.

В ряде случаев ядро представляет собой естеств. продолжение балджа и динамически никак не выделено. Типичные параметры Я. г., для к-рых были построены кривые вращения: масса

10 9 что представляет собой ядро галактики(что представляет собой ядро галактики-масса Солнца), радиус что представляет собой ядро галактики200- 400 пк, макс. скорость вращения что представляет собой ядро галактики100-150 км/с.

Ядро ближайшей массивной спиральной галактики М31 имеет форму эллипсоида (рис. 2), большая полуось что представляет собой ядро галактики400 пк, масса

10 9 что представляет собой ядро галактики. Внутри ядра найден эллипсоидальный быстровращающийся керн, к-рый выделяется на фоне ядра градиентом яркости (рис. 3). Керн похож на шаровое скопление, но на 2-3 порядка плотнее и массивнее. Масса керна

что представляет собой ядро галактики

Рис. 2. Фотография ядра галактики М31.

что представляет собой ядро галактики

Рис. 3. Фотометрический профиль галактики М31.

10 6 что представляет собой ядро галактики. Исследование динамики центр. областей нек-рых ближайших галактик (напр., М31, М32, М87) также указывает на возможность существования в них компактного массивного тела.

Нормальные ядра эллиптич. галактик, так же, как и ядра спиральных галактик, часто проявляют признаки слабой активности. Так, многие из них являются слабыми источниками радиоизлучения; в М87 наблюдается выброс, аналогичный выбросам из радиогалактик и квазаров, но меньшей мощности.

Пекулярные Я. г. Часть галактик (примерно 10% от полного их числа) имеет пекулярные ядра. Следует отметить, что границы между пекулярными и нормальными Я. г. часто условны: подробное изучение ядер близких галактик показало, что они, как правило, обладают тем или иным видом пекулярности. Из разл. видов пекулярности Я. г. можно выделить следующие:

2) ядро характеризуется аномально голубым цветом. В спектре присутствуют яркие, сравнительно узкие эмиссионные линии. В этих ядрах, по-видимому, протекают процессы активного звездообразования, имеется много молодых горячих звёзд и газа. Из-за удалённости мн. галактик такого типа трудно судить о характерном размере излучающей области;

4) двойные и кратные ядра. Галактик с такими ядрами известно не очень много,

100. Нек-рые из них, возможно, являются результатом слияния галактик.

Часто отмечают и др. виды пекулярности, напр. выделяют в отд. класс галактики с выбросами из ядра.

Г а л а к т и к и с а к т и в н ы м и я д р а м и составляют неск. процентов от полного числа галактик. Наиб. многочисленным подклассом галактик с активными ядрами являются сейфертовские галактики (СГ). Однако даже ближайшие СГ находятся от нас так далеко, что исследование внутр. структуры ядра оказывается затруднительным. Исследование же внеш. областей показало, что СГ, в отличие от нормальных спиральных галактик того же морфологич. типа, имеют, как правило, более мощный балдж. Это позволяет предполагать, что в ядрах СГ имеются более массивные и компактные керны, чем в ядрах нормальных галактик. Внеш. области др. типов галактик с активными ядрами, напр. радиогалактик и квазаров, изучены хуже.

Во мн. моделях активных Я. г. предполагается, что подпитка ЧД осуществляется за счёт газа, теряемого звёздами ядра, балджа или всей галактики. Иногда предполагают, что газ стекает с соседней галактики при взаимодействии галактик. В этих моделях важной проблемой является проблема потери угл. момента стекающим газом. Дело в том, что даже в галактиках с малым угл. моментом газ (без потери момента) должен оседать в диск с радиусом, значительно превышающим радиус керна. Обсуждается механизм потери момента в результате интенсивного звездообразования в галактич. газовом диске, следствием к-рого являются усиленная турбулентность и ускоренное стекание газа к центр. областям галактики. Бароподоб-ные структуры, часто наблюдаемые в Я. г., также, возможно, способствуют переносу газа из диска в ядро.

1 % в первонач. облаке имела предельно малый момент). Скорее всего, схема образования Я. г. более сложна, и эта задача требует дальнейшего решения.

Источник

Что представляет собой ядро галактики

В отдельных случаях процессы, протекающие в ядрах, не могут быть объяснены св-вами только сконцентрированных в них звезд и газа. Таковы галактики с активными (нестационарными) ядрами, составляющие по численности ок. 1% норм. галактик (с неактивными ядрами). Нестационарность ядер проявляется в генерации мощного рентг., УФ-, ИК- и радиоизлучения, в выбросах облаков радиоизлучающей плазмы, в ускорении газовых облаков и т.д. По морфологическим св-вам галактики с нестационарными ядрами существенно отличаются от норм. галактик. Ниже рассматриваются св-ва нестационарных ядер галактик.

2. Типы галактик с нестационарными ядрами

Лацертиды получили свое название от объекта BL Lac, в каталоге переменных звезд характеризуются оптич. переменностью с большой амплитудой (до 4-5m), переменным радиоизлучением и заметной поляризацией излучения. Они имеют вид звездоподобных объектов, окруженных туманными оболочками. В их оптич. спектрах нет эмиссионных линий, по к-рым можно было бы измерить красное смещение и тем самым расстояние до объекта. В нек-рых случаях, когда удается получить и исследовать спектр слабой туманной оболочки вокруг ядра лацертиды, оказывается, что этот спектр содержит линии поглощения, типичные для звездного компонента удаленной галактики.

К осн. св-вам нестационарных ядер галактик относят: излучение ядра составляет значительную часть излучения галактики; в широком интервале длин волн излучение ядра явл. нетепловым и избыточным по сравнению с норм. галактиками в УФ-, ИК-, радио- и рентгеновской областях; излучение ядра, как правило, переменно; в спектре ядра присутствуют широкие эмиссионные линии.

Эти св-ва не обязательно присущи в полной совокупности каждому нестационарному ядру. Так, сейфертовские галактики не обладают заметным радиоизлучением, лацертиды не имеют широких эмиссионных линий и т.д.

Выявление галактик с нестационарными ядрами производится по одному или нескольким перечисленным св-вам. Так, лацертиды выявляют по переменности их оптич. или радиоизлучения (многие из лацертид были известны ранее как переменные звезды). Важным признаком нестационарности явл. иное, чем у норм. галактик, распределение энергии в спектре. Квазары выявляют, в частности, по ярким эмиссионным линиям что представляет собой ядро галактикии CIV, к-рые при больших красных смещениях (что представляет собой ядро галактики) попадают в оптич. диапазон. Число квазаров, открываемых оптич. методами, сейчас же превышает число квазаров, открываемых по их радиоизлучению. По-видимому, число оптических (радиоспокойных) квазаров составляет не менее 50%, а возможно и 90%, от всех квазаров. Весьма эффективным оказалось обнаружение галактик с нестационарными ядрами по их рентг. излучению (см. Рентгеновская астрономия ).

3. Линейчатые спектры

Наиболее подробно линейчатые спектры изучены у сейфертовских галактик. По виду спектров эти галактики делят на два типа. У галактик 1-го типа разрешенные спектральные линии имеют ширины, соответствующие доплеровским скоростям в неск. тыс. км/с (см. Доплера эффект ), тогда как запрещенные линии ‘уже, их ширины соответствуют скоростям источников в неск. сотен тыс. км/с. Сейфертовские галактики 2-го типа имеют как разрешенные, так и запрещенные линии одинаковой ширины, отвечающие скоростям движения до тысячи км/с. Аналогичные спектры наблюдаются и у радиогалактик, у к-рых также есть два подкласса: с широкими и узкими линиями в спектре. Численность объектов в подклассах различна: число сейфертовских галактик 1-го типа (с широкими линиями) относится к числу галактик 2-го типа, как 3:1, у радиогалактик отношение обратной (1:3).

Эти цифры отражают, по-видимому, существенные и пока неясные стороны эволюции галактик с нестационарными ядрами.

Линейчатые спектры квазаров и сейфертовских галактик в основном подобны (за исключением узких линий поглщения, см. Квазары ); спектры лацертид, как указывалось, преимущественно непрерывные, без эмиссионных линий.

Табл. 1. Характерные параметры газовых оболочек нестационарных ядер галактик.

ПараметрЗона свечения
разрешенных линийзапрещенных линий
Светомить в линии OIII (4959 и 5007что представляет собой ядро галактики) что представляет собой ядро галактикиэрг/с что представляет собой ядро галактикиэрг/с
Масса газачто представляет собой ядро галактикичто представляет собой ядро галактики
Кинетическая энергия газачто представляет собой ядро галактики10 50 эрг
Эффективная скорость2000 км/с300 км/с
Характерный размер что представляет собой ядро галактикисм
(0,1 пк)
что представляет собой ядро галактикисм
(1 пк)

Приведенные данные получены из спектроскопических наблюдений, а затем расчетом получен размер газовой оболочки. Прямым измерениям с Земли объектов с размерами меньше секунды дуги мешает неспокойствие атмосферы (см. Разрешающая способность ). Для одной из сейфертовских галактик NGC 4151 размер ядра был измерен при помощи фотографирования с ракеты за пределами атмосферы. Верхняя граница размера газовой оболочки ядра оказалась равной 0,05″, что соответствует линейному размеру ок. 10 пк.

Спектроскопические наблюдения позволяют найти помимо плотности и темп-ры газовых масс содержание хим. элементов в оболочке. В тех случаях, когда удается получить надежные данные, оказывается, что хим. состав газа в нестационарных ядрах галактик в общем соответствует составу норм. звезд в солнечных окрестностях. Этот факт безусловно отражает существенные черты эволюции нестационарного ядра галактики.

Изучение интенсивностей эмиссионных линий позволяет построить т.н. фотоионизационную модель газовой оболочки ядра галактики. Согласно этой модели, газ в оболочке ионизуется УФ-излучением, идущим из центрального источника, в свою очередь становясь источником более длинноволнового излучения Расчет интенсивности эмиссионных линий в рамках такой модели (с учетом хим. состава, распределения плотности и темп-ры) оказался в хорошем согласии с наблюдениями.

Определяемые по ширинам эмиссионных линий скорости движения газа в оболочке составляют неск. тыс. км/с. Предполагают, что столь значительные скорости газ приобретает благодаря давлению излучения центрального источника или давлению электронов высоких энергий. В последнем случае посредником в передаче энергии от электронов к ускоряемому газу должно быть магн. поле. По порядку величины энергия, излучаемая в спектр. линиях за ед. времени (табл. 1), сравнима с кинетич. энергией газа, отнесенной к характерному кинематич. времени облаков (времени их торможения). По-видимому, ускоренные облака тормозятся в окружающей среде и, теряя скорость, постепенно образуют сплошную газовую оболочку ядра с дисперсией скоростей того же порядка, что и дисперсия скоростей звезд. Возможно, этим объясняется наличие двух зон (подсистем) газа с различающимися характеристиками.

4. Непрерывные спектры

Важнейшим св-вом непрерывного излучения нестационарных Я.г. явл. их оптич. переменность. Переменность ядер в ИК-диапазоне еще не подстверждена с достаточной уверенностью. Обнаружена переменность рентг. излучения. На рис. 4 приведены данные фотометрич. наблюдений одной из наиболее изученных сейфертовских галактик NGC 4151, доказывающие переменность оптич. излучения с характерным временем в неск. лет. На аналогичных кривых блеска др. сейфертовских галактик и квазаров заметны два компонента: долгопериодические изменения блеска с характерными временами в неск. лет и отдельные вспышки с временами порядка недель и месяцев. Общепринятого объяснения переменности ядер галактик не существует; более того, даже частные вопросы, напр., их возможная периодичность, все еще остаются дискуссионными.

Табл. 2. Массы и светимости нестационарных ядер галактик

Объектычто представляет собой ядро галактики что представляет собой ядро галактикиэрг/c)
Квазары
3C 273
3C 48
8,7
8,95
47,3
46,65
Радиогалактики
3C 120
3C 390,3
8,4
8,95
45,0
45,2
Сейфертовские галактики 1-го типа
NGC 1275
NGC 4151
NGC 3227
7,0
7,7
6,9
44,7
44,75
43,0
Маркарян 2058,245,0
Сейфертовские галактики 2-го типа
Маркарян 1
NGC 1068
7,7
9,1
43,5
44,3

Интегрирование по спектру позволяет вычислить полную (болометрическую) светимость ядра Lя. Нек-рые типичные значения Lя приведены в табл. 2.

Генезис и физику ядра следует рассматривать в тесной связи с общими св-вами окружающей галактики.

5. Теоретические модели активных ядер

В этой модели одной из осн. проблем явл. выяснение природы источников вещества, падающего на черную дыру. Возможны следующие источники: межгалактический газ, аккрецируемый галактикой; падение расеивающегося вещества планетарных туманностей и, наконец, приливное разрушение звезд, пролетающих на близких расстояниях от черной дыры. Разрушая звезды, черная дыра может увеличить свою массу до критич. значения что представляет собой ядро галактикиза характерное время что представляет собой ядро галактикилет. При массе что представляет собой ядро галактикиприливной радиус черной дыры равен ее гравитационному радиусу ( что представляет собой ядро галактикиа.е.), и звезды поглощаются черной дырой, не разрушаясь. После этого черная дыра уже не будет окружена газом от разрушенных звезд. Не исключено, что рассматриваемую стадию можно отождествить с лацертидами, к-рые, в отличие от всех остальных типов галактик с нестационарными ядрами, не имеют в ядрах газа, дающего эмиссионные линии.

Рассмотренные модели отражают, возможно, различные стадии эволюции нестационарных Я.г. На ранних стадиях эволюции важную роль играют процессы в плотных звездных скоплениях, особенно повышенная частота вспышек сверхновых звезд. Магнитоплазменные модели в какой-то мере отражают наблюдаемые св-ва радиогалактик. Наконец, стадия черной дыры, по-видимому, явл. неизбежным финалом эволюции любой массивной гравитирующей конфигурации. Недавно было проведено детальное исследование радиогалактики М87 в созвездии Девы. Это гигантская эллиптическая галактика практически не вращается. Во внешних областях галактики дисперсия скоростей составляет 230 км/с и отношение что представляет собой ядро галактики=6 (в солнечных единицах). По мере приближения к центру галактики дисперсия скоростей увеличивается до значения 350 км/с, а отношение что представляет собой ядро галактикивозрастает до 60. Возрастание дисперсии скоростей с одновременным падением яркости можно объяснить существованием в центре М87 массивного тела с что представляет собой ядро галактики. Не исключено, что таким телом явл. черная дыра.

Лит.:
Звезды и звездные системы, М., 1981; Происхождение и эволюция галактик и звезд, М., 1976; Бербидж Дж., Бербидж М., Квазары, пер. с англ., М., 1969; Тейлер Р.Дж., Галактики. Строение и эволюция, пер. с англ., М., 1981; Воронцов-Вельяминов Б.А., Внегалактическая астрономия, 2 изд., М., 1978; На переднем крае астрофизики, пер. с англ., М., 1979.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *