что представляют собой линии магнитного поля прямого проводника с током
Магнитное поле прямого тока. Линии магнитного поля. Правило буравчика и правой руки
Содержание
Магнитное поле возникает, если у нас есть движущиеся электрические заряды. Но мы не можем увидеть или почувствовать его с помощью наших органов чувств.
Физика может дать нам такую удивительную возможность — увидеть магнитное поле. Также мы сможем определить его форму, как и где оно располагается, каким-то образом охарактеризовать его.
Для этого нам будут нужны не какие-то сложные приборы, а всего лишь железные опилки. В данном уроки мы рассмотрим их применение и сделаем определенные выводы о магнитном поле прямого тока.
Использование железных опилок для обнаружения магнитного поля
Магнитное поле возникает вокруг проводников, по которым течет ток. Чтобы его обнаружить, есть множество способов, некоторые из которых мы рассматривали в прошлом уроке.
Теперь мы рассмотрим еще один способ — использование мелких железных опилок.
Почему для изучения магнитного поля можно использовать железные опилки? Ответ очень прост: эти маленькие кусочки железа, оказавшись в магнитном поле, намагничиваются — становятся маленькими магнитным стрелками.
Опыт Эрстеда уже показал нам, что магнитная стрелка отклоняется от своего первоначального положения при наличии рядом проводника, по которому течет ток. Теперь у нас будет не одна такая стрелка, а большое их множество. Мы же можем пронаблюдать за тем, как ось каждой такой стрелки будет устанавливаться при действии сил магнитного поля.
Определение формы магнитного поля
Как же «выглядит» магнитное поле? Давайте проведем простой опыт (рисунок 1).
У нас есть прямой проводник с током. Сделаем в листе картона отверстие и проденем через него наш проводник. На картон насыпем тонкий слой железных опилок и включим ток.
Что же мы увидим? Как теперь располагаются железные опилки в магнитном поле прямого тока?
Под действием магнитного поля опилки примут интересное положение. Они теперь не беспорядочно лежат на листе картона, а располагаются вокруг проводника по концентрическим окружностям.
Линии магнитного поля
Чтобы описать магнитное поле и созданные им окружности из железных опилок, мы введем новое определение — магнитные линии.
Магнитные линии магнитного поля — это линии, вдоль которых в магнитном поле располагаются оси маленьких магнитных стрелок.
То есть, если мы соединим опилки, образовавшие одну из окружностей, воображаемой линией, то получим окружность, в центре который находится проводник (рисунок 2).
Обратите внимание, что стрелки не только выстраиваются вдоль этих линий, но и ориентируются все в одном направлении по этой окружности. Для того, чтобы проще было это оценить, рядом с проводником можно разместить обычные магнитные стрелки, как на рисунке 2.
Они располагаются на линии магнитного поля, указывая одним своим полюсом в одну сторону. Здесь мы не говорим, что они указывают направо или налево. Они разворачиваются одним полюсом как бы в одном направлении движения по окружности.
Направление магнитных линий и форма магнитного поля
Получается, что использование опилок дало нам две новые характеристики магнитного поля: мы видим не только его форму с помощью магнитных линий, но и замечаем, что сами линии имеют определенное направление.
Итак, мы можем сделать следующие выводы:
Магнитные линии магнитного поля тока представляют собой замкнутые кривые (концентрические окружности в случае магнитного поля прямого тока), охватывающие проводник.
Направление, которое указывает северный полюс магнитной стрелки в каждой точке поля, принято за направление магнитной линии магнитного поля.
Связь направлений магнитных линий и направления электрического тока
Магнитные линии дают нам возможность изобразить магнитное поле графически.
На каком расстоянии от проводника мы можем нарисовать его магнитные линии? Ответ прост — для графического изображения мы можем использовать удобный для нас масштаб.
Магнитное поле существует во всех точках пространства, окружающего проводник с током. Значит, мы можем правомерно провести магнитную линию через любую точку.
Хорошо, но как определить направление магнитных линий? Опыты показывают следующее:
Направление магнитных линий магнитного поля тока связано с направлением тока в проводнике.
Так как магнитные линии лежат в плоскости, перпендикулярной проводнику с током, на чертежах принято изображать сечение проводника (проводник в разрезе). Направление тока при этом условно обозначается крестиком, если ток направлен от нас, и точкой, если ток направлен на нас (рисунок 3).
Взгляните на рисунок 4, а. Ток течет вниз по проводнику. Магнитные стрелки устанавливаются вдоль магнитных линий. Их оси ориентируется таким образом, как показано на рисунке.
Графическое изображение такого магнитного поля представлено на рисунке 4, б. Проводник с током расположен перпендикулярно плоскости чертежа, как будто мы смотрим на него сверху, а не сбоку. Направление тока мы обозначили крестиком на самом проводнике (от нас), и указали направление магнитных линий (куда указывают северные полюса магнитных стрелок.
На рисунке 5, б показано графическое изображение такого поля. Тот факт, что ток направлен к нам, условно обозначен точкой на проводнике. Направление магнитных линий поменялось на противоположное.
Такой простой опыт подтвердил нам тот факт, что направление магнитных линий связано с направлением тока.
Правило буравчика и правило правой руки
Можно запомнить, как соотносятся направление тока в проводнике и направление магнитных линий, а можно воспользоваться простым способом — правилом буравчика.
Если правой рукой вкручивать буравчик (винт, штопор) острием по направлению тока, то ваш большой палец будет поворачиваться по направлению магнитных линий.
Может вам покажется более удобной для использования другая интерпретация этого мнемонического правила — правило правой руки (рисунок 6).
Если обхватить правой рукой прямой проводник с током с отставленным большим пальцем так, чтобы он совпадал с направлением тока, то ваши четыре пальца покажут направление магнитных линий.
Упражнения
Упражнение №1
Каким полюсом повернется к наблюдателю магнитная стрелка, если ток в проводнике направлен от A к B (рисунок 7)? Изменится ли ответ, если стрелку поместить над проводником?
Пользуясь полученными знаниями, мы можем сказать, что магнитная стрелка повернется к нам южным полюсом (рисунок 8, а).
Как мы это определили? Если нарисовать чертеж (рисунок 8, б) точкой A к нам, то ток будет идти от нас. Так мы можем, используя готовые результаты опытов, приведенные в данном уроке выше, определить направление магнитных линий поля. Магнитная стрелка повернется северным полюсом по направлению этих линий, т. е. от нас.
Пользуясь правилом правой руки, мы получим тот же результат: если большой палец будет указывать направление тока, то четыре пальца укажут направление магнитных линий.
Если же мы поместим проводник под магнитной стрелкой, то ее положение поменяется. Она повернется к нам северным полюсом, потому что в этой точке магнитные линии будут направлены так же к нам.
Упражнение №2
В стене расположен (замурован) прямой электрический провод. Как найти место нахождения провода и направление тока в нем, не вскрывая стену?
Мы можем обнаружить такой провод с помощью магнитной стрелки на подставке или обычного компаса. Передвигая компас вдоль стены (и при этом не поворачивая его), нужно следить за положением магнитной стрелки. Если она начнет отклоняться, значит, в этом месте на нее действует магнитное поле проводника с током — наш провод где-то рядом.
Чтобы определить направление тока в этом проводе, посмотрим, куда указывает северный полюс стрелки компаса. Его направление будет совпадать с направлением магнитных линий. Если он повернется вправо, то ток направлен вверх, а если влево, то ток направлен вниз.
Магнитное поле
Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.
Природа магнетизма
Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.
Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой — на ЮГ.
Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.
Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.
Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец — южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм «Южный парк», он же Сауз (South) парк).
Магнитные линии и магнитный поток
Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.
Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.
Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии — они замкнуты и непрерывны. В магните это будет выглядеть примерно так.
Если приблизить два разноименных полюса, то произойдет притягивание магнитов
Если же приблизить одноименными полюсами, то произойдет их отталкивание
Итак, ниже важные свойства магнитных силовых линий.
Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.
Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке «а» или на рисунке «б»?
Видим, что на рисунке «а» мало силовых магнитных линий, а на рисунке «б» их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке «б» больше, чем на рисунке «а».
В физике формула магнитного потока записывается как
Ф — магнитный поток, Вебер
В — плотность магнитного потока, Тесла
а — угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах
S — площадь, через которую проходит магнитный поток, м 2
Что же такое 1 Вебер? Один вебер — это магнитный поток, который создается полем индукцией 1 Тесла через площадку 1м 2 расположенной перпендикулярно направлению магнитного поля.
Напряженность магнитного поля
Формула напряженности
Слышали ли вы когда-нибудь такое выражение: «напряженность между ними все росла и росла». То есть по сути напряженность — это что-то невидимое, какая-то сдерживающая сила, энергия. Здесь почти все то же самое. Напряженностью магнитного поля также часто называют силой магнитного поля. Напряженность магнитного поля напрямую зависит от плотности магнитного потока и выражается формулой
H — напряженность магнитного поля, Ампер/метр
B — плотность магнитного потока, Тесла
Эта формула работает только тогда, когда между витками катушки находится воздух, либо вакуум. Более крутая формула выглядит вот так.
μ — это относительная магнитная проницаемость.
У разных веществ она разная
Напряженность магнитного поля проводника с током
Итак, имеем какой-либо проводник, по которому течет электрический ток.
Для того, чтобы вычислить напряженность магнитного поля на каком-то расстоянии от проводника при условии, что проводник находится в воздушном пространстве либо в вакууме, достаточно воспользоваться формулой
H — напряженность магнитного поля, Ампер/метр
I — сила тока, текущая через проводник, Ампер
r — расстояние до точки, в которой измеряется напряженность, метр
Магнитное поле проводника с током
Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.
Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.
Ввинчиваем по часовой стрелке — саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.
Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам — кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.
Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?
Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.
Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.
Соленоид
А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину. У нас должно получится что-то типа этого.
Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.
Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.
Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.
Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала — феррита.
Если в электрических цепях есть такое понятие, как ЭДС — электродвижущая сила, то и в магнитных цепях есть свой аналог — МДС — магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.
I — это сила тока в катушке, Амперы
N — количество витков катушки, штуки)
Также советую посмотреть очень простое и интересное видео про магнитное поле.
Похожие статьи по теме «магнитное поле»
Магнитное поле. Линии
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: взаимодействие магнитов, магнитное поле проводника с током.
Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.
Взаимодействие магнитов
На двух сторонах каждого магнита расположены северный полюс и южный полюс. Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим. Об этом свидетельствуют следующие опытные факты.
• Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.
• Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.
• Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).
Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей. Изолированных магнитных полюсов (так называемых магнитных монополей — аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.
По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля.А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.
Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.
Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.
Линии магнитного поля
Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.
1. Линии магнитного поля, или магнитные силовые линии — это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии.
2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии.
3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства.
Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.
Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1 ).
Рис. 1. Поле постоянного магнита
Опыт Эрстеда
Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.
Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году — в знаменитом опыте Эрстеда.
Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и — северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока. Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма. Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи.
Рис. 2. Опыт Эрстеда
Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.
Магнитное поле прямого провода с током
Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3 ).
Рис. 3. Поле прямого провода с током
Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.
Правило винта (или правило буравчика, или правило штопора — это уж кому что ближе ;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока.
Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки — вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).
Магнитное поле витка с током
Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4 ).
Рис. 4. Поле витка с током
Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.
Правило часовой стрелки. Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки.
Правило винта. Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока.
Как видите, ток и поле меняются ролями — по сравнению с формулировками этих правил для случая прямого тока.
Магнитное поле катушки с током
Рис. 5. Катушка (соленоид)
Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 6 ).
Рис. 6. поле катушки с током
На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 5 правый конец катушки подключить к «плюсу» источника тока, а левый конец — к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.
1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля — параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.
2. Вне катушки поле близко к нулю. Чем больше витков в катушке — тем слабее поле снаружи неё.
Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.
Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.
Гипотеза Ампера. Элементарные токи
Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита — полюса всегда присутствуют в магните парами.
Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.
Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него.
Что это за токи? Эти элементарные токи циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.
Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.
Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7 ; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).
Рис. 7. Элементарные токи магнита
Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).
Гипотеза Ампера оказалась справедливой — это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке — почти через сто лет после гениальной догадки Ампера.