что представляют собой магнитные линии магнитного поля тока

Магнитное поле тока, магнитный ток.

Магнитное поле тока представляет собой силовое поле, воздействующее на электрические заряды и на тела, находящиеся в движении и имеющие магнитный момент, вне зависимости от состояния их движения. Магнитное поле является частью электромагнитного поля.

Ток заряженных частиц либо магнитные моменты электронов в атомах создают магнитное поле. Также, магнитное поле возникает в результате определенных временных изменений электрического поля.

Вектор индукции магнитного поля В представляет собой главную силовую характеристику магнитного поля. В математике В = В (X,Y,Z) определяется как векторное поле. Это понятие служит для определения и конкретизации физического магнитного поля. В науке зачастую вектор магнитной индукции попросту, для краткости, именуется магнитным полем. Очевидно, что такое применение допускает некоторую вольную трактовку этого понятия.

Ещё одной характеристикой магнитного поля тока есть векторные потенциал.

что представляют собой магнитные линии магнитного поля тока

В научной литературе часто можно встретить, что в качестве главной характеристики магнитного поля, в условиях отсутствия магнитной среды (вакууме), рассматривается вектор напряжённости магнитного поля. Формально, такая ситуация вполне приемлема, поскольку в вакууме вектор напряженности магнитного поля H и вектор магнитной индукции B совпадают. В тоже время, вектор напряженности магнитного поля в магнитной среде не наполнен тем же физическим смыслом, и является второстепенной величиной. Исходя из этого при формальной равенства этих подходов для вакуума, систематическая точка зрения рассматривает вектор магнитной индукции основной характеристикой магнитного поля тока.

что представляют собой магнитные линии магнитного поля тока

Магнитное поле, безусловно, представляет собой особенный вид материи. С помощью этой материи происходит взаимодействие между обладающими магнитным моментом и движущимися заряженными частицами либо телами.

Специальная теория относительности рассматривает магнитные поля как следствие существования самих электрических полей.

В совокупности магнитное и электрическое поля формируют электромагнитное поле. Проявлениями электромагнитного поля является свет и электромагнитные волны.

что представляют собой магнитные линии магнитного поля тока

Порождается магнитное поле либо током заряженных частиц, либо трансформирующимся во временном пространстве электрическим полем, либо собственными магнитными моментами частиц. Магнитные моменты частиц для однообразного восприятия формально сводятся к электрическим токам.

Вычисление значения магнитного поля.

Простые случаи позволяют вычислить значения магнитного поля проводника с током по закону Био-Савара-Лапласа, либо при помощи теоремы о циркуляции. Таким же образом может быть найдено значение магнитного поля и для тока, произвольно распределённого в объёме или пространстве. Очевидно, эти законы применимы для постоянных либо относительно медленно изменяющихся магнитных и электрических полей. То есть, в случаях наличия магнитостатики. Более сложные случаи требуют вычисления значения магнитного поля тока согласно уравнений Максвелла.

Проявление наличия магнитного поля.

Основным проявлением магнитного поля является влияние на магнитные моменты частиц и тел, на заряженные частицы находящиеся в движении. Силой Лоренца называется сила, которая воздействует на электрически заряженную частицу, которая движется в магнитном поле. Эта сила имеет постоянно выраженную перпендикулярную направленность к векторам v и B. Она также имеет пропорциональное значение заряду частицы q, составляющей скорости v, осуществляющейся перпендикулярно направлению вектора магнитного поля B, и величине, которая выражает индукцию магнитного поля B. Сила Лоренца согласно Международной системе единиц имеет такое выражение: F = q [v, B], в системе единиц СГС: F = q / c [v, B]

Векторное произведение отображено квадратными скобками.

В результате влияния силы Лоренца на движущиеся по проводнику заряженные частицы, магнитное поле и может осуществлять воздействие на проводник с током. Силой Ампера является сила, действующая на проводник с током. Составляющими этой силы считаются силы, воздействующие на отдельные заряды, которые движутся внутри проводника.

Явление взаимодействия двух магнитов.

Явление магнитного поля, которое мы можем встретить в повседневной жизни, получило название взаимодействие двух магнитов. Оно выражается в отталкивании друг от друга одинаковых полюсов и притяжении противоположных полюсов. С формальной точки зрения описать взаимодействия между двумя магнитами как взаимодействие двух монополей, является достаточно полезной, реализуемой и удобной идеей. В то же время, детальный анализ свидетельствует, что в действительности это не совсем верное описание явления. Основным вопросом, остающимся без ответа в рамках такой модели, является, почему монополя не могут быть разделены. Собственно, экспериментально доказано, что любое изолированное тело не имеет магнитный заряд. Также эту модель невозможно применить к магнитному полю, созданному макроскопическим током.

С нашей точки зрения, правильно считать, что сила, действующая на магнитный диполь, находящийся в неоднородном поле, стремится развернуть его таким образом, чтобы магнитный момент диполя имел одинаковое с магнитным полем направление. Однако нет магнитов, которые подвержены воздействию суммарной силы со стороны однородного магнитного поля тока. Сила, которая действует на магнитный диполь с магнитным моментом m выражается следующей формулой:

что представляют собой магнитные линии магнитного поля тока.

Действующая на магнит сила со стороны неоднородного магнитного поля, выражается суммой всех сил, которые определяются данной формулой, и воздействующих на элементарные диполи, которые составляют магнит.

Электромагнитная индукция.

В случае изменения во времени потока вектора магнитной индукции через замкнутый контур, в этом контуре формируется ЭДС электромагнитной индукции. Если контур неподвижен, она порождается вихревым электрическим полем, которое возникает в результате изменения магнитного поля со временем. Когда магнитное поле не изменяется со временем и нет изменений потока из-за движения контура-проводника, то ЭДС порождается силой Лоренца.

Источник

Магнитное поле

Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

что представляют собой магнитные линии магнитного поля тока

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой — на ЮГ.

что представляют собой магнитные линии магнитного поля тока

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

что представляют собой магнитные линии магнитного поля тока

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

что представляют собой магнитные линии магнитного поля тока

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец — южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм «Южный парк», он же Сауз (South) парк).

что представляют собой магнитные линии магнитного поля тока

Магнитные линии и магнитный поток

Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.

что представляют собой магнитные линии магнитного поля тока

Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.

Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии — они замкнуты и непрерывны. В магните это будет выглядеть примерно так.

что представляют собой магнитные линии магнитного поля тока

Если приблизить два разноименных полюса, то произойдет притягивание магнитов

что представляют собой магнитные линии магнитного поля тока

Если же приблизить одноименными полюсами, то произойдет их отталкивание

что представляют собой магнитные линии магнитного поля тока

Итак, ниже важные свойства магнитных силовых линий.

Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.

Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке «а» или на рисунке «б»?

что представляют собой магнитные линии магнитного поля тока

Видим, что на рисунке «а» мало силовых магнитных линий, а на рисунке «б» их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке «б» больше, чем на рисунке «а».

В физике формула магнитного потока записывается как

что представляют собой магнитные линии магнитного поля тока

Ф — магнитный поток, Вебер

В — плотность магнитного потока, Тесла

а — угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах

S — площадь, через которую проходит магнитный поток, м 2

что представляют собой магнитные линии магнитного поля тока

Что же такое 1 Вебер? Один вебер — это магнитный поток, который создается полем индукцией 1 Тесла через площадку 1м 2 расположенной перпендикулярно направлению магнитного поля.

Напряженность магнитного поля

Формула напряженности

Слышали ли вы когда-нибудь такое выражение: «напряженность между ними все росла и росла». То есть по сути напряженность — это что-то невидимое, какая-то сдерживающая сила, энергия. Здесь почти все то же самое. Напряженностью магнитного поля также часто называют силой магнитного поля. Напряженность магнитного поля напрямую зависит от плотности магнитного потока и выражается формулой

что представляют собой магнитные линии магнитного поля тока

H — напряженность магнитного поля, Ампер/метр

B — плотность магнитного потока, Тесла

Эта формула работает только тогда, когда между витками катушки находится воздух, либо вакуум. Более крутая формула выглядит вот так.

что представляют собой магнитные линии магнитного поля тока

μ — это относительная магнитная проницаемость.

У разных веществ она разная

что представляют собой магнитные линии магнитного поля тока

Напряженность магнитного поля проводника с током

Итак, имеем какой-либо проводник, по которому течет электрический ток.

что представляют собой магнитные линии магнитного поля тока

Для того, чтобы вычислить напряженность магнитного поля на каком-то расстоянии от проводника при условии, что проводник находится в воздушном пространстве либо в вакууме, достаточно воспользоваться формулой

что представляют собой магнитные линии магнитного поля тока

H — напряженность магнитного поля, Ампер/метр

I — сила тока, текущая через проводник, Ампер

r — расстояние до точки, в которой измеряется напряженность, метр

Магнитное поле проводника с током

Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.

что представляют собой магнитные линии магнитного поля тока

Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.

что представляют собой магнитные линии магнитного поля тока

Ввинчиваем по часовой стрелке — саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.

Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам — кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.

что представляют собой магнитные линии магнитного поля тока

Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?

что представляют собой магнитные линии магнитного поля тока

Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.

что представляют собой магнитные линии магнитного поля тока

Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.

Соленоид

А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину. У нас должно получится что-то типа этого.

что представляют собой магнитные линии магнитного поля тока

Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.

что представляют собой магнитные линии магнитного поля тока

Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.

Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.

что представляют собой магнитные линии магнитного поля тока

Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала — феррита.

что представляют собой магнитные линии магнитного поля тока

Если в электрических цепях есть такое понятие, как ЭДС — электродвижущая сила, то и в магнитных цепях есть свой аналог — МДС — магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.

что представляют собой магнитные линии магнитного поля тока

I — это сила тока в катушке, Амперы

N — количество витков катушки, штуки)

Также советую посмотреть очень простое и интересное видео про магнитное поле.

Похожие статьи по теме «магнитное поле»

Источник

Магнитные линии – направление, значение в схеме

Магнитное поле — это силовое поле, действующее на движущиеся частицы, обладающие электрическим зарядом. Для наглядности магнитное поле изображают в виде магнитных линий или линий магнитной индукции. Какой вид имеют эти линии, где они начинаются и где кончаются – ответы на эти вопросы читайте ниже.

что представляют собой магнитные линии магнитного поля тока

Немного из истории магнетизма

Исследование явления магнетизма началось много веков назад, когда еще в VI в. до н.э. в древнем Китае были обнаружен камни (горная порода), которые притягивали к себе железные предметы. В 1269 г. французский исследователь Петр Перегрин разместил на поверхности постоянного сферического магнита маленькие стальные иголки и увидел, что они расположились не хаотично, а по определенным линиям, которые пересекались в двух точках, названных “полюсами” по аналогии с географическими полюсами Земли. Можно сказать, что это была первая “визуализация” магнитных линий.

Только в 1845 г. английский физик Майкл Фарадей для понимания сути магнитных явлений сформулировал понятие “магнитного поля”. Он считал, что как электрическое, так и магнитное взаимодействия осуществляются посредством невидимых полей — электрического и магнитного. Магнитное поле непрерывно в пространстве и способно действовать на движущиеся заряды.

В 1831 г. Майкл Фарадей обнаружил, что переменное магнитное поле порождает электрическое и наоборот — непостоянное (изменяющееся во времени) электрическое поле создает магнитное поле. Это явление стало известно как закон электромагнитной индукции Фарадея. Слово индукция латинского происхождения (induction) означает “наведение, выведение”.

Основные признаки и свойства магнитных линий

Магнитное поле существует вокруг постоянных магнитов (полосовых, дугообразных или иной формы) и вокруг металлического провода, по которому течет электрический ток.

Магнитное поле изображается в виде магнитных линий или линий магнитной индукции. Линия магнитной индукция — это некая геометрическая кривая, в любой точке которой вектор (направление) магнитной индукции направлен по касательной к ней.

Можно выделить основные свойства магнитных линий:

Магнитные линии полосового магнита

С помощью простого эксперимент можно продемонстрировать свойства магнитных линий. Полосовой магнит кладется на горизонтальную поверхность, на него сверху — прозрачная (неметаллическая) пластинка, на которую насыпают мелкие железные опилки. Под действием магнита опилки намагничиваются и становятся как бы магнитными стрелочками. Видно, что опилки располагаются вдоль магнитных линий, которые выходят из северного полюса N и входят в южный полюс S. Гуще всего линии расположены в районе полюсов магнита.

что представляют собой магнитные линии магнитного поля тока

Рис. 1. Магнитные линии полосового магнита

Магнитные линии дугообразного магнита

По аналогичной схеме можно поставить эксперимент с дугообразным магнитом.

что представляют собой магнитные линии магнитного поля тока

Рис. 2. Магнитные линии дугообразного магнита.

Видно, что по всему магниту магнитные линии начинаются на северном полюсе и оканчиваются на южном.

Магнитные линии прямого провода с током

Используем такую же схему эксперимента для прямого провода, по которому течет электрический ток. В данном случае можно заменить прозрачную пластину на кусок картона или фанеры.

что представляют собой магнитные линии магнитного поля тока

Рис. 3. Магнитные линии прямого провода с током.

Видно, что опилки выстраиваются по концентрическим окружностям, показывая форму магнитных линий. При изменении направления тока опилки поворачиваются на 1800. Следовательно, направление магнитных линий в данном случае связано с направлением тока в проводнике.

Известно, что Земля — это огромный “полосовой” магнит. Благодаря этому, с помощью магнитной стрелки компаса мы можем ориентироваться в пространстве. Но надо иметь ввиду, что есть места с крупными залежами магнетитов (железных руд), которые создают сильное “фоновое” магнитное поле, которое поворачивает стрелку компаса вдоль своих магнитных линий. Одно из таких мест — Курская магнитная аномалия, расположенная в Курской области нашей страны.

Что мы узнали?

Итак, мы узнали, что магнитное поле изображают в виде магнитных линий, которые: непрерывны, замкнуты, в постоянных магнитах магнитные линии выходят из северного полюса и заканчиваются в южном полюсе, направление магнитных линий прямого провода с электрическим током зависит от направления тока.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *