Efi в авто что это
Система Впрыска EFI(Electronic Fuel Injection).
EFI — электронная система впрыска топлива(Electronic Fuel Injection).
В 1958-м году компания Chrysler предложила свою систему Electrojector на автомобилях Chrysler 300D, DeSoto Adventurer, Dodge D-500 и Plymouth Fury. Это были первые серийные автомобили оснащенные системой EFI. Эта система EFI была совместно разработана компаниями Chrysler и Bendix. Большинство из 35 автомобилей изначально оборудованные электронной системой впрыска были переоборудованы с 4-карбюраторных систем. Патенты системы впрыска Electrojector впоследствии были проданы компании Bosch.
Компания Bosch разработала электронную систему впрыска топлива D-Jetronic, которая впервые была применена на автомобиле VW 1600TL/E в 1967 году. Это была первая электронная система впрыска топлива, которая для расчета топливо-воздушной смеси использовала показания датчиков частоты вращения двигателя и плотности воздуха во впускном коллекторе. Эта система была адаптирована для автомобилей таких производителей, как VW, Mercedes-Benz, Porsche, Citroën, Saab и Volvo. В 1974-м году Bosch модернизировала систему D-Jetronic до систем K-Jetronic и L-Jetronic, хотя некоторые автомобили (например Volvo 164) продолжали использовать систему D-Jetronic еще на протяжении несколько лет. В 1970 году компания Isuzu вместе с Bosch адаптировали систему впрыском топлива D-Jetronic для автомобиля Isuzu 117 Coupe, которая продавалась только в Японии.
В 1975-м году на автомобиле Cadillac Seville появилась система EFI разработанная компанией Bendix и смоделированная практически аналогична Bosch D-Jetronic. Система L-Jetronic впервые появилась в 1974-м году на автомобиле Porsche 914, которая использует механический счетчик расхода воздуха. Этот подход требует дополнительных датчиков для измерения атмосферного давления и температуры, для того чтобы в конечном итоге вычислить «воздушную массу». L-Jetronic получила широкое распространение на европейских автомобилей того периода, и несколько японских моделей спустя некоторое время.
В Японии в январе 1974-м году Toyota впервые установила систему EFI на двигатель 18R-E, которым опционально оснащался автомобиль Toyota Celica. Система EFI установленная на двигатель 18R-E являлась многоточечной системой впрыска топлива. Nissan предложил электронную многоточечную систему впрыска топлива в 1975 году. Это была система компании Bosch L-Jetronic, установленной на двигатель Nissan L28E и Nissan Fairlady Z, Nissan Cedric и Nissan Gloria. Вскоре Toyota последовала той же технологии в 1978 году, которую опробовала на двигателе 4M-E, устанавливающимся на Toyota Crown, Toyota Supra и Toyota Mark II. В 1980 году в качестве стандартного оборудования Isuzu Piazza и Mitsubishi Starion оснастили электронной системой впрыска топлива, разработанных отдельно обеими компаниями дизельных двигателей. В 1981 году Mazda продемонстрировала систему EFI на автомобиле Mazda Luce с двигателем Mazda FE, а в 1983 Subaru оснастила ею свой двигатель EA81, установленный на автомобиль Subaru Leone. Honda в 1984 разработала собственную систему PGM-FI для Honda Accord и Honda Vigor (двигатель Honda ES3).
В 1980 году Motorola представила первый электронный блок управления двигателем(ECU) ЕЭС III. Он тесно интегрирован с системами управления двигателем, например, впрыском топлива и зажиганием. На сегодняшний день это стандартный подход для управления системами впрыска топлива.
Основные типы электронного впрыска
SPFI (Single Point Fuel Ijection) − Одноточечный инжектор устанавливается в корпусе дроссельной заслонки, в том месте, где в раньше устанавливался карбюратор. Таким образом электронный впрыск выполняется при помощи одной форсунки сразу для всех цилиндров.
Такая схема впрыска была введена в 1940-х годах на больших авиационных двигателях. В автомобильной промышленности на двигателях легковых автомобилях одноточечный инжектор стали устанавливать в 1980-е годы. У разных производителей система имела разные названия, например TBI у General Motors, CFI у Ford, EGI у Mazda. Из-за того, что топливо впрыскивается во впускные каналы, такая схема имеет общее название «мокрый впрыск».
Самый главный плюс системы SPFI состоит в низкой стоимости самой системы. Большинство вспомогательных компонентов карбюратора, таких как воздушный фильтр, впускной коллектор и воздушный тракт могут использоваться совместно с системой SPFI без дополнительных доработок. Система SPFI широко использовалась на американском рынке с 1980-го по 1995-й год, на европейском же была популярна в начале и середине 1990-х годов.
CFI (Continuous Fuel Injection) − Непрерывный впрыск топлива. Топливо впрыскивается непрерывно при помощи одной или нескольких форсунок, но с переменной скоростью. Это главное отличие от большинства систем впрыска, в которых топливо впрыскивается короткими импульсами различной продолжительности каждого импульса.
Непрерывный впрыск может быть, как одноточечным так и многоточечный, но не может быть непосредственным.
Самая распространенная система непрерывного впрыска K-Jetronic производства Bosch, который появился в 1974-м году. Система K-Jetronic использовалась на протяжении многих лет с 1974-го до середины 1990-х годов такими авто-производителями, как BMW, Lamborghini, Ferrari, Mercedes-Benz, Volkswagen, Ford, Porsche, Audi, Saab, DeLorean, Volvo и Toyota.
CPFI (Central Port Fuel Injection) − Центральный впрыск топлива. Эту систему использовала General Motors с 1992-го по 1996-й год. В ней используются каналы с тарельчатыми клапанами от центрального инжектора для распыления топлива в каждый впускной канал, а не в корпус дроссельной заслонки, как в системе SPFI. Давление топлива аналогично системе SPFI.
MPFI (Multi Point Fuel Injection) − Многоточечный(Мультиточечный) впрыск топлива. Впрыск топлива осуществляется во впускной канал чуть выше от впускного клапана каждого цилиндра, а не в центральной точке впускного коллектора. Система MPFI (или MPI) может быть одновременной или последовательной, т.е. все форсунки работают ассинхронно, каждая из них управляется отдельно CPU двигателя и подает импульс в необходимый момент для каждой форсунки каждого цилиндра.
Многие современные системы EFI используют последовательную систему впрыска топлива MPFI. Но в новых бензиновых двигателях систему MPFI уверенно начинают заменять системы прямого(непосредственного) впрыска.
DFI (Direct Fuel Injection) − Прямой(Непосредственный) впрыск топлива. В двигатель с непосредственным впрыском, в отличие от всех других систем впрыска, топливо впрыскивается непосредственно в камеру сгорания.
Впервые система непосредственного впрыска топлива DFI была применена на двигателе Mitsubishi (GDI − Gasoline Direct Injection). Сегодня эта система впрыска активно применяется на новых двигателях автомобильных производителей Audi (TFSI), Volkswagen (FSI, TSI), Toyota D4 и т.д.
Использование непосредственного впрыска позволяет достичь 15% топливной экономичности и повысить экологичный класс двигателя.
Система DFI достаточно дорога относительно других систем электронного впрыска топлива за счет того, что для обеспечения ее нормальной работы требуется достичь большое давление в топливной магистрали. Для этого используется специальный топливный насос высокого давления(ТНВД). В свою очередь форсунки подвергаются более высокому давлению и температуре, из-за чего для их производства применяются более дорогостоящие материалы. А так же требуются высокоточные электронные системы, чтобы впрыск топлива в цилиндры происходил в строго определенное время. С такой системой весь впускной коллектор становится сухим, что позволяет содержать систему впуска в идеально чистом состоянии.
Принцип работы двигателя с efi
5.11. Система электронного впрыска топлива (EFI-система)
Система электронного впрыска топлива ( EFI-система) для двигателей 1,6 и 1,8 л ( двигатели 1,3 л оборудованы аналогичной системой)
Топливный насос, расположенный в баке, обеспечивает подачу топлива под постоянным давлением в распределитель, из которого топливо равномерно распределяется по форсункам. Из распределителя топливо подается во впускные каналы цилиндров через форсунки. Количество впрыскиваемого топлива строго контролируется электронным блоком управления (ЕСМ-блоком). Регулятор давления топлива обеспечивает изменение давления топлива в соответствии с разрежением на всасывающем коллекторе. Топливный фильтр смонтирован между топливным насосом и распределителем топлива и предназначен для очистки бензина и защиты агрегатов системы впрыска от выхода из строя.
СИСТЕМА ЗАБОРА ВОЗДУХА
ЭЛЕКТРОННЫЙ БЛОК УПРАВЛЕНИЯ (ECM-БЛОК)
Управление электронным впрыском топлива и другими системами обеспечивается электронным блоком управления, который в свою очередь является частью центральной компьютерной системы управления (ССS–
системы). В состав ЕСМ
–
блока входит микропроцессор.
На блок управления поступают сигналы от целого ряда датчиков, которые отслеживают такие параметры как температура воздуха на входе в цилиндры, угол поворота дроссельной заслонки, температура охлаждающей жидкости, число оборотов двигателя, скорость движения автомобиля и содержание кислорода в отработанных газах.
На основании этих данных блок управления определяет длительность впрыска топлива, при которой обеспечивается поддержание оптимального соотношения бензина и воздуха в горючей смеси. Некоторые из этих датчиков и соответствующие реле, срабатывающие от блока управления, не входят в состав системы электронного впрыска топлива, однако смонтированы по всему пространству моторного отсека.
В подразделе 6.2 приводится более подробное описание блока управления и управляемых от этого блока систем электрооборудования двигателя.
Система электронного впрыска топлива (EFI) представляет собой совокупность управляемых топливных клапанов, открываемых электрическим сигналом, и обеспечивающих подачу топлива в двигатель. Соотношение воздух/топливо определяется временем, в течении которого форсунки остаются открытыми во время рабочего цикла. Это время называется длительностью импульса. Компьютер EFI собирает данные с группы датчиков, которые сообщают ему, на каких оборотах работает двигатель и нагрузку на него в данный момент. Имея эти данные, компьютер начинает просматривать находящуюся в его памяти информацию, чтобы определить, как долго он должен держать форсунки открытыми, чтобы обеспечить топливные требования, продиктованные этими условиями. Когда эта информация найдена, она извлекается из памяти и передается к форсункам как импульс напряжения определенной длительности. Длительность импульса измеряется в тысячных долях секунды, или в миллисекундах (мс). Когда этот цикл закончен, программа компьютера сообщает ему, об этом, и он продолжает выполнять его снова и снова, при этом компьютер всегда готов получить новые исходные данные. Все это — получение данных, анализ, и преобразование занимают приблизительно 15 % мощности компьютера. Оставшаяся часть времени это простой процессора. Жаль, что вы не можете получить денежную компенсацию за время бездействия процессора. Датчики, на которые компьютер полагается, чтобы получать информацию — неотъемлемая часть EFI и являются глазам и ушам си стемы:
Датчик массового расхода воздуха/датчик расхода воздуха. Система впрыска, работающая с датчиком массового расхода воздуха или датчиком расхода воздуха, названа системой впрыска «с массовым расходом». Чувствительный элемент измеряет число молекул воздуха, попадающих в систему в любой момент времени. Если это число разделить на обороты двигателя, это даст точное значение количества топлива, не обходимого для одного рабочего цикла в двигателе.
Датчик температуры воздуха. Плотность воздуха изменяется как функция температуры. Поэтому, компьютер должен знать, что необходимо изменить длительность импульса, если датчик температуры воздуха обнаруживает изменение температуры воздуха.
Барометрический датчик. Плотность воздуха также изменяется с высотой. Датчик атмосферного давления сообщает компьютеру об изменении высоты.
Датчик температуры охлаждающей жидкости. Количество топлива, требуемое двигателю, обратно пропорционально температуре двигателя. Датчик температуры охлаждающей жидкости отражает рабочую температуру двигателя. Холодному двигателю требуется большее количество топлива для того, чтобы получить достаточно паров топлива для воспламенения. Чем более нагрет двигатель, тем легче парообразование, и меньше количество требуемого топлива.
Датчик давления во впускном коллекторе. Не все системы EFJ оборудованы датчиком давления во впускном коллекторе. Те, в которых он присутствует, называются системами EF1, работающими на принципе «плотность/скорость». Когда используется датчик давления во впускном коллекторе, датчик массового расхода воздуха или датчик расхода воздуха становится не нужен. Давление во впускном коллекторе в любой данный момент достаточно точно отражает нагрузку на двигатель. Следовательно, датчик давления во впускном коллекторе сообщает компьютеру данные о текущем эксплуатационном режиме.
Датчик кислорода. Датчик кислорода измеряет количество остаточного кислорода в выхлопных газах после процесса горения. Он установлен в выпускном коллекторе и таким образом становится для компьютера «сторожевым псом» фактического качества смеси. Если датчик обнаруживает слишком большое количество кислорода, компьютер, на основе информации в его памяти, будет немного увеличивать длительность импульсов впрыска, таким образом, добавляя топливо и используя избыточный кислород. Контролируя оставшийся кислород, компьютер может непрерывно поддерживать необходимую длительность импульсов, для обеспечения запрограммированного соотношения воздух/топливо. В жизни датчик кислорода нужен для поддержания соотношения воздух/топливо в рамках, необходимых для работы трехкомпонентного катализатора. Это не устройство для экономии топлива или обеспечения мощности.
Датчик частоты вращения. Импульсы впрыска каждый рабочий цикл должны, конечно, всегда соответствовать частоте вращения двигателя. Датчик оборотов двигателя обеспечивает это, контролируя низковольтные импульсы на катушке зажигания.
Датчик положения распределительного вала. В системе последовательного впрыска датчик положения распределительного вала сообщает блоку управления, в каком порядке работают цилиндры двигателя. По сигналам этого датчика блок управления определяет, в каком порядке осуществлять впрыск.
Датчик положения дроссельной заслонки. Полезная мощность двигателя в значительной степени зависит от положения дроссельной заслонки. Полностью открытая дроссельная заслонка, очевидно, говорит о том, что от двигателя требуется все, на что он способен, и расход топлива должен, в этом случае, быть увеличен. Поэтому, положение дроссельной заслонки является для компьютера важным параметром. Еще один тип данных, которые дает датчик положения дроссельной заслонки — скорость изменения положения дроссельной заслонки. Эта функция становится эквивалентом ускорительного насоса в карбюраторе. Ускорительный насос обеспечивает быстрое обогащение смеси, при быстром открытии дроссельной заслонки.
Дополнительные компоненты системы EFI — топливный насос, регулятор давления, топливопроводы, пневмоклапаны, регулятор холостых оборотов и различные реле.
Efi что это в автомобиле
— электронная система впрыска топлива
(Electronic Fuel Injection).
В 1958-м году компания Chrysler
предложила свою систему
Electrojector
на автомобилях
Chrysler 300D, DeSoto Adventurer, Dodge D-500 и Plymouth Fury.
Это были первые серийные автомобили оснащенные системой
EFI.
Эта система
EFI
была совместно разработана компаниями
Chrysler
и
Bendix.
Большинство из
35 автомобилей
изначально оборудованные электронной системой впрыска были переоборудованы с
4-карбюраторных систем.
Патенты системы впрыска
Electrojector
впоследствии были проданы компании
Bosch.
Компания Bosch
разработала электронную систему впрыска топлива
D-Jetronic,
которая впервые была применена на автомобиле
VW 1600TL/E
в 1967 году. Это была первая электронная система впрыска топлива, которая для расчета топливо-воздушной смеси использовала показания датчиков частоты вращения двигателя и плотности воздуха во впускном коллекторе. Эта система была адаптирована для автомобилей таких производителей, как
VW, Mercedes-Benz, Porsche, Citroën, Saab и Volvo.
В 1974-м году
Bosch
модернизировала систему
D-Jetronic
до систем
K-Jetronic
и
L-Jetronic,
хотя некоторые автомобили (например
Volvo 164
) продолжали использовать систему
D-Jetronic
еще на протяжении несколько лет. В 1970 году компания
Isuzu
вместе с
Bosch
адаптировали систему впрыском топлива
D-Jetronic
для автомобиля
Isuzu 117 Coupe,
которая продавалась только в Японии.
В 1975-м году на автомобиле Cadillac Seville
появилась система
EFI
разработанная компанией
Bendix
и смоделированная практически аналогична
Bosch D-Jetronic.
Система
L-Jetronic
впервые появилась в 1974-м году на автомобиле
Porsche 914,
которая использует механический счетчик расхода воздуха. Этот подход требует дополнительных датчиков для измерения атмосферного давления и температуры, для того чтобы в конечном итоге вычислить
“воздушную массу”
.
L-Jetronic
получила широкое распространение на европейских автомобилей того периода, и несколько японских моделей спустя некоторое время.
В Японии в январе 1974-м году Toyota
впервые установила систему
EFI
на двигатель
18R-E,
которым опционально оснащался автомобиль
Toyota Celica.
Система
EFI
установленная на двигатель
18R-E
являлась многоточечной системой впрыска топлива.
Nissan
предложил электронную многоточечную систему впрыска топлива в 1975 году. Это была система компании
Bosch L-Jetronic,
установленной на двигатель
Nissan L28E и Nissan Fairlady Z, Nissan Cedric и Nissan Gloria.
Вскоре
Toyota
последовала той же технологии в 1978 году, которую опробовала на двигателе
4M-E,
устанавливающимся на
Toyota Crown, Toyota Supra и Toyota Mark II.
В 1980 году в качестве стандартного оборудования
Isuzu Piazza и Mitsubishi Starion
оснастили электронной системой впрыска топлива, разработанных отдельно обеими компаниями дизельных двигателей. В 1981 году
Mazda
продемонстрировала систему
EFI
на автомобиле
Mazda Luce
с двигателем
Mazda FE,
а в 1983
Subaru
оснастила ею свой двигатель
EA81,
установленный на автомобиль
Subaru Leone.Honda
в 1984 разработала собственную систему
PGM-FI
для
Honda Accord и Honda Vigor
(двигатель
Honda ES3
).
В 1980 году Motorola представила первый электронный блок управления двигателем(ECU) ЕЭС III.
Он тесно интегрирован с системами управления двигателем, например, впрыском топлива и зажиганием. На сегодняшний день это стандартный подход для управления системами впрыска топлива.
mark2grande71 › Блог › Система Впрыска EFI(Electronic Fuel Injection).
EFI
— электронная система впрыска топлива
(Electronic Fuel Injection).
В 1958-м году компания Chrysler
предложила свою систему
Electrojector
на автомобилях
Chrysler 300D, DeSoto Adventurer, Dodge D-500 и Plymouth Fury.
Это были первые серийные автомобили оснащенные системой
EFI.
Эта система
EFI
была совместно разработана компаниями
Chrysler
и
Bendix.
Большинство из
35 автомобилей
изначально оборудованные электронной системой впрыска были переоборудованы с
4-карбюраторных систем.
Патенты системы впрыска
Electrojector
впоследствии были проданы компании
Bosch.
Компания Bosch
разработала электронную систему впрыска топлива
D-Jetronic,
которая впервые была применена на автомобиле
VW 1600TL/E
в 1967 году. Это была первая электронная система впрыска топлива, которая для расчета топливо-воздушной смеси использовала показания датчиков частоты вращения двигателя и плотности воздуха во впускном коллекторе. Эта система была адаптирована для автомобилей таких производителей, как
VW, Mercedes-Benz, Porsche, Citroën, Saab и Volvo.
В 1974-м году
Bosch
модернизировала систему
D-Jetronic
до систем
K-Jetronic
и
L-Jetronic,
хотя некоторые автомобили (например
Volvo 164
) продолжали использовать систему
D-Jetronic
еще на протяжении несколько лет. В 1970 году компания
Isuzu
вместе с
Bosch
адаптировали систему впрыском топлива
D-Jetronic
для автомобиля
Isuzu 117 Coupe,
которая продавалась только в Японии.
В 1975-м году на автомобиле Cadillac Seville
появилась система
EFI
разработанная компанией
Bendix
и смоделированная практически аналогична
Bosch D-Jetronic.
Система
L-Jetronic
впервые появилась в 1974-м году на автомобиле
Porsche 914,
которая использует механический счетчик расхода воздуха. Этот подход требует дополнительных датчиков для измерения атмосферного давления и температуры, для того чтобы в конечном итоге вычислить
“воздушную массу”
.
L-Jetronic
получила широкое распространение на европейских автомобилей того периода, и несколько японских моделей спустя некоторое время.
В Японии в январе 1974-м году Toyota
впервые установила систему
EFI
на двигатель
18R-E,
которым опционально оснащался автомобиль
Toyota Celica.
Система
EFI
установленная на двигатель
18R-E
являлась многоточечной системой впрыска топлива.
Nissan
предложил электронную многоточечную систему впрыска топлива в 1975 году. Это была система компании
Bosch L-Jetronic,
установленной на двигатель
Nissan L28E и Nissan Fairlady Z, Nissan Cedric и Nissan Gloria.
Вскоре
Toyota
последовала той же технологии в 1978 году, которую опробовала на двигателе
4M-E,
устанавливающимся на
Toyota Crown, Toyota Supra и Toyota Mark II.
В 1980 году в качестве стандартного оборудования
Isuzu Piazza и Mitsubishi Starion
оснастили электронной системой впрыска топлива, разработанных отдельно обеими компаниями дизельных двигателей. В 1981 году
Mazda
продемонстрировала систему
EFI
на автомобиле
Mazda Luce
с двигателем
Mazda FE,
а в 1983
Subaru
оснастила ею свой двигатель
EA81,
установленный на автомобиль
Subaru Leone.Honda
в 1984 разработала собственную систему
PGM-FI
для
Honda Accord и Honda Vigor
(двигатель
Honda ES3
).
В 1980 году Motorola представила первый электронный блок управления двигателем(ECU) ЕЭС III.
Он тесно интегрирован с системами управления двигателем, например, впрыском топлива и зажиганием. На сегодняшний день это стандартный подход для управления системами впрыска топлива.
Основные типы электронного впрыска SPFI (Single Point Fuel Ijection)
− Одноточечный инжектор устанавливается в корпусе дроссельной заслонки, в том месте, где в раньше устанавливался карбюратор. Таким образом электронный впрыск выполняется при помощи одной форсунки сразу для всех цилиндров.
Такая схема впрыска была введена в 1940-х годах на больших авиационных двигателях. В автомобильной промышленности на двигателях легковых автомобилях одноточечный инжектор стали устанавливать в 1980-е годы. У разных производителей система имела разные названия, например TBI
у
General Motors, CFI
у
Ford
,
EGI
у
Mazda.
Из-за того, что топливо впрыскивается во впускные каналы, такая схема имеет общее название
“мокрый впрыск”.
Самый главный плюс системы SPFI
состоит в низкой стоимости самой системы. Большинство вспомогательных компонентов карбюратора, таких как воздушный фильтр, впускной коллектор и воздушный тракт могут использоваться совместно с системой
SPFI
без дополнительных доработок. Система
SPFI
широко использовалась на американском рынке с 1980-го по 1995-й год, на европейском же была популярна в начале и середине 1990-х годов.
CFI (Continuous Fuel Injection)
− Непрерывный впрыск топлива. Топливо впрыскивается непрерывно при помощи одной или нескольких форсунок, но с переменной скоростью. Это главное отличие от большинства систем впрыска, в которых топливо впрыскивается короткими импульсами различной продолжительности каждого импульса.
Непрерывный впрыск может быть, как одноточечным так и многоточечный, но не может быть непосредственным. Самая распространенная система непрерывного впрыска K-Jetronic производства Bosch,
который появился в 1974-м году. Система
K-Jetronic
использовалась на протяжении многих лет с 1974-го до середины 1990-х годов такими авто-производителями, как
BMW, Lamborghini, Ferrari, Mercedes-Benz, Volkswagen, Ford, Porsche, Audi, Saab, DeLorean, Volvo и Toyota.
CPFI (Central Port Fuel Injection)
− Центральный впрыск топлива. Эту систему использовала
General Motors
с 1992-го по 1996-й год. В ней используются каналы с тарельчатыми клапанами от центрального инжектора для распыления топлива в каждый впускной канал, а не в корпус дроссельной заслонки, как в системе
SPFI.
Давление топлива аналогично системе
SPFI.
MPFI (Multi Point Fuel Injection)
− Многоточечный(Мультиточечный) впрыск топлива. Впрыск топлива осуществляется во впускной канал чуть выше от впускного клапана каждого цилиндра, а не в центральной точке впускного коллектора. Система
MPFI
(или
MPI
) может быть одновременной или последовательной, т.е. все форсунки работают ассинхронно, каждая из них управляется отдельно
CPU
двигателя и подает импульс в необходимый момент для каждой форсунки каждого цилиндра.
Многие современные системы EFI
используют последовательную систему впрыска топлива
MPFI.
Но в новых бензиновых двигателях систему
MPFI
уверенно начинают заменять системы прямого(непосредственного) впрыска.
DFI (Direct Fuel Injection)
− Прямой(Непосредственный) впрыск топлива. В двигатель с непосредственным впрыском, в отличие от всех других систем впрыска, топливо впрыскивается непосредственно в камеру сгорания. Впервые система непосредственного впрыска топлива
DFI
была применена на двигателе
Mitsubishi (GDI − Gasoline Direct Injection).
Сегодня эта система впрыска активно применяется на новых двигателях автомобильных производителей
Audi (TFSI), Volkswagen (FSI, TSI), Toyota D4
и т.д.
Использование непосредственного впрыска позволяет достичь 15% топливной экономичности и повысить экологичный класс двигателя.
достаточно дорога относительно других систем электронного впрыска топлива за счет того, что для обеспечения ее нормальной работы требуется достичь большое давление в топливной магистрали. Для этого используется специальный топливный насос высокого давления
(ТНВД).
В свою очередь форсунки подвергаются более высокому давлению и температуре, из-за чего для их производства применяются более дорогостоящие материалы. А так же требуются высокоточные электронные системы, чтобы впрыск топлива в цилиндры происходил в строго определенное время. С такой системой весь впускной коллектор становится сухим, что позволяет содержать систему впуска в идеально чистом состоянии.
Что нужно для эффективной работы лодочного мотора с системой EFI?
Особых усилий для поддержания работы лодочного мотора с системой EFI не требуется. В обязательном порядке при покупке лодочного мотора с этой системой и перед запуском его, внимательно изучить руководство пользователя и следовать всем требованиям и рекомендациям, указанным там. Читая руководство вы обнаружите, что система EFI не требует какого либо текущего обслуживания, кроме небольших операций, которые чем то напоминают обслуживание карбюратора в двигателе.
Очистка
Чистое топливо является залогом надежной работы не только системы EFI, но и всего мотора в целом. Для предотвращения загрязнения в системе впрыска EFI устанавливаются топливные фильтры. Эти фильтры гораздо надежнее, чем обычные, которые стоят в топливной системе мотора. Их поры значительно меньше и они фильтруют значительно больше загрязнений в топливе.
Уход за мотором с системой впрыска топлива
Сегодня повсеместно можно встретить в продаже лодочный моторы с системой впрыска топлива (электронное управление впрыском топлива EFI). Они достаточно сложны и их можно назвать чудом современной техники. (Обслуживание и уход за лодочным мотором).
Изначально электронные системы впрыска топлива EFI разрабатывались для автомобильной промышленности. Они отлично выполняют свою работу уже не одно десятилетие и остаются очень надежными. Работают практически безотказно. И не так давно эти системы впрыска перекочевали на воду, а точнее на подвесные лодочный моторы. Для справки сразу заметим, что скорость движение электронов по проводам составляет 300 000 км/сек. и вот с такой скоростью электронные блоки управления EFI управляют распределением топлива. Направляют точно отмеренные порции топлива в строго определенные интервалы времени. Это дает заметные улучшения характеристик мотора, экономит топливо, выхлопные газы очищаются и соответственно снижается загрязнение окружающей среды.
Системой EFI управляет бортовой электронный блок. По сути это микрокомпьютер. И кроме системы подачи топлива, электронным способом управляются и другие жизненно важные функции мотора. Сама система EFI состоит из модулей управления ECM, которые в свою очередь могут быть запрограммированы или перепрограммированы. Из-за таких гибких возможностей по настройке всей системы в целом электронное управление мотором, а в частности EFI стало очень популярным в автостроении и моторостроении.
Система впрыска топлива (EFI)
Система впрыска состоит из трех основных подсистем: топливной, подачи воздуха и электронного управления.
Топливо подается насосом через фильтр к каждой форсунке под давлением, устанавливаемым регулятором давления топлива. Избыток топлива возвращается в бак. Топливо впрыскивается во впускной коллектор в соответствии с сигналами от электронного блока управления.
Система подачи воздуха
Система подачи воздуха обеспечивает двигатель необходимым для работы количеством воздуха. Количество воздуха, поступающего в двигатель, определяется углом открытия дроссельной заслонки и частотой вращения коленчатого вала двигателя. Поток воздуха проходит воздушный фильтр, канал корпуса дроссельной заслонки и поступает в верхнюю часть впускного коллектора, откуда он распределяется по цилиндрам двигателя. При низкой температуре охлаждающей жидкости открывается клапан системы управления частотой вращения холостого хода, и воздух поступает в верхнюю часть впускного коллектора по перепускному каналу в дополнение к воздуху, проходящему через дроссельную заслонку. Таким образом, даже если дроссельная заслонка полностью закрыта, воздух поступает в верхнюю часть впускного коллектора, и, следовательно, увеличивается частота вращения холостого хода (1-я ступень управления частотой вращения холостого хода). Верхняя часть впускного коллектора снижает пульсации воздушного потока.
Система электронного управления
Все двигатели оборудованы системой электронного управления фирмы TOYOTA, которая управляет впрыском топлива, опережением зажигания, диагностической системой и т.д. при помощи электронного блока управления (ЭБУ).
4Y – две жизни последней генерации линейки Y
В 1985 году этот двигатель уже не был слишком современным и интересным. Карбюратор в базовой версии 2.2-литрового 4Y просто стал легендой, на сервисах в Японии его даже не брались ремонтировать, столь сложной была конструкция. Поэтому также появилась версия 4Y-EC. Мотор получил не только удачную систему впрыска EFI с меньшим количеством проблем, но и стал более приспособленным к экологическим требованиям.
Устанавливали движок на Hilux, а затем он получил вторую жизнь в Китае. По сей день используют разработку в таких целях:
Это интересно, так как мотор точно не является самым удачным. Но именно 4Y китайцы выбрали для подражания. Возможно, поэтому многие жалуются на надежность китайских силовых установок. Впрочем, у 4Y есть и свои преимущества. Найти контрактный мотор в России не проблематично, но их состояние далеко не всегда соответствует довольно высокой запрашиваемой стоимости.
Файлы EFI являются загрузчиками UEFI и вот как они работают
Файл с расширением EFI является файлом интерфейса расширяемого микропрограммного обеспечения.
Файлы EFI являются исполняемыми файлами загрузчика, существуют в компьютерных системах на основе UEFI (Unified Extensible Firmware Interface) и содержат данные о том, как должен происходить процесс загрузки.
Файлы EFI можно открывать с помощью EFI Developer Kit и Microsoft EFI Utilities, но, честно говоря, если вы не разработчик оборудования, мало смысла в «открытии» файла EFI.
Где находится файл EFI в Windows?
В большинстве случаев этот файл EFI хранится в специальном системном разделе EFI. Этот раздел обычно скрыт и не имеет буквы диска.
Например, в системе UEFI с установленной Windows 10 файл EFI будет расположен в следующем месте в этом скрытом разделе:
На некоторых компьютерах Windows файл winload.efi действует как загрузчик и обычно хранится в следующем месте:
В системе без установленной операционной системы с пустой переменной BootOrder менеджер загрузки материнской платы ищет в предопределенных местах файл EFI, например на дисках в оптических дисках и другие связанные СМИ. Это происходит потому, что, если это поле пустое, у вас не установлена работающая ОС, и, вероятно, вы собираетесь установить одну из следующих.
Например, на установочном DVD-диске Windows 10 или образе ISO существуют следующие два файла, которые менеджер загрузки UEFI вашего компьютера быстро найдет:
Где находится файл EFI в других операционных системах?
Вот некоторые местоположения файлов EFI по умолчанию для некоторых операционных систем, отличных от Windows:
macOS использует следующий EFI-файл в качестве загрузчика, но не во всех ситуациях:
Загрузчик EFI для Linux будет отличаться в зависимости от установленного дистрибутива, но вот несколько:
Все еще не можете открыть или использовать файл?
Обратите внимание, что есть некоторые типы файлов, которые очень похожи на «.EFI», которые у вас могут быть, и поэтому вы можете открыть их с помощью обычной программы. Это наиболее вероятно, если вы просто неправильно прочитали расширение файла.
Если вы уверены, что можете открыть файл, который у вас есть, то он, скорее всего, не в том формате, который описан на этой странице. Вместо этого дважды проверьте расширение файла для вашего файла и исследуйте программу, которая может открыть его или преобразовать в новый формат.
Вы можете даже попробовать загрузить его в службу конвертации файлов, например Zamzar, чтобы узнать, распознает ли он тип файла и предложить формат преобразования.
Серия 2Y – что поменяли при смене генерации?
Наверное, самым плохим решением в этом движке остался карбюратор. Также не удовлетворял владельцев привод клапанов через толкатели – морально устаревшая система, которую сложно настроить и сохранить в дальнейшем. Двигатель в целом зарекомендовал себя неплохо.
В различных модификациях мотор получил от 79 до 95 л.с., а также до 152 Н*м крутящего момента. Устанавливали двигатель на Hiace и TownAce, исключительно в коммерческих целях использования.
Версии 2Y-J и 2Y-U увеличили экологичность и сократили ресурс, их в России крайне сложно найти. В большинстве своем они просто умерли в Японии, не попав на рынок контрактных двигателей.
Особое внимание вызывает версия 2Y-P. Этот мотор Toyota подготовила для работы на сжиженном газе. Установка LPG не губит мотор, поэтому экономить на топливе на нем оказалось вовсе не сложно. Двигатель хорошо настроен именно для работы на газу, при этом его ресурс практически не меняется.
Как только мы включаем компьютер, в нем немедленно начинает работать миниатюрная операционная система, которую мы знаем как BIOS. Она занимается тестированием устройств, памяти, загрузкой операционных систем, распределением ресурсов аппаратуры. Многие функции этого набора программ (их объем обычно около 256-512 Кб) позволяют поддерживать старые операционные системы вроде MS-DOS, предоставляя им множество возможностей. Со времен PC/AT-8086 BIOS менялся очень мало, а ко времени запуска первых Пентиумов его развитие почти остановилось. Собственно, менять в нем стало нечего, кроме двойного BIOS, поддержки сетевых средств и возможности перепрошивки. А вот минусов стало много: стартовый вход в реальный режим процессора, 16-разрядная адресация и 1 Мб доступной памяти, невозможность иметь «ремонтную» консоль. И, конечно, вечная проблема поддержки жестких дисков. Даже сейчас гарантированно поддерживаются диски до 2,2 Тб, не более.
Компания Intel еще в 2005 года решила поменять BIOS на EFI/UEFI (Unified Extensible Firmware Interface). Система EFI — более продвинутая базовая операционная система. На некоторых платформах Unix и Windows UEFI уже давно работает, но массового перехода пока не свершилось, несмотря на благие намерения. А они таковы:
Как работает EBC
В рамках UEFI-стандарта определяется архитектура виртуальной машины регистрового типа EFI Byte Code Virtual Machine
. Интерпретатор команд входит в состав firmware системной платы. Встроенное программное обеспечение плат расширения пишется в системе команд виртуальной машины, в идеале, без использования инструкций центрального процессора. Таким образом, плата расширения будет работоспособна на любой системной плате, поддерживающей EBC, независимо от типа центрального процессора. На сегодня их список не блещет разнообразием: как обычно, здесь есть AMD и Intel в 32-битном и 64-битном вариантах, Itanium, ARM.
Архитектура виртуального процессора EBC
64-разрядный виртуальный процессор EBC содержит 8 регистров общего назначения (R0-R7), поддерживает прямую, косвенную и непосредственную адресацию операндов. Система команд включает арифметические и логические операции, сдвиги, пересылки операндов с поддержкой знакового расширения, условную и безусловную передачу управления, вызовы подпрограмм и возвраты, а также ряд вспомогательных операций. Поддерживается стек, при этом указатель стека (регистр R0) согласно традициям архитектуры x86, классифицируется как регистр общего назначения. Примечательно, что специальная форма инструкции CALL, позволяет из EBC-подпрограмм вызывать подпрограммы, написанные на «родном
» языке платформы, в силу того, что иногда такая необходимость все же возникает. Таким же образом из EBC-программ можно вызывать процедуры поддержки UEFI-протоколов, используя при этом модель передачи входных и выходных параметров, не зависящую от типа центрального процессора.
Приступаем к экспериментам
Предлагаемый пример «Hello, EBC!» является UEFI-приложением, написанным в системе команд виртуальной машины EBC (EFI Byte Code). Как уже сказано выше, интерпретатор команд EBC, позволяющий запускать модули данного типа, резидентно входит в состав UEFI firmware системной платы. Использование EBC вместо машинного кода позволяет создавать кроссплатформенные приложения и драйверы, включая firmware различных плат расширения, что делает данные устройства совместимыми с платформами, использующими центральные процессоры архитектуры, отличной от x86.
Пояснения к примеру
Программа выводит текстовое сообщение, используя процедуру вывода строки из набора функций EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL
. Рассмотрим детальнее ее исходный код.
Для вызова данной EFI-функции в стеке необходимо передать два параметра: указатель на интерфейсный блок используемого протокола и указатель на строку, представленную в формате UNICODE. Эти параметры подготавливаются в регистрах R1 и R2, затем заносятся в стек инструкциями PUSHn, начиная с последнего параметра. Затем, в регистре R3 размещается адрес для вызова процедуры, прочитанный из интерфейсного блока используемого протокола и выполняется вызов целевой процедуры вывода строки. После возврата, освобождаем стек инструкциями POPn.
Системные таблицы и кроссплатформенность
Для вызова сервисных процедур UEFI-протоколов, приложения используют указатели, находящиеся в системных таблицах UEFI и различных интерфейсных блоках. В 32-битных реализациях UEFI используются указатели размером 4 байта, в 64-битных – размером 8 байт. Следовательно, адрес указателя внутри таблицы будет зависеть от разрядности центрального процессора. Как же обеспечивается кроссплатформенность?
Рассмотрим пример инструкции, передающей в регистр R1 содержимое ячейки памяти, адрес которой равен исходному значению регистра R1 плюс смещение
Смещение задано в виде двух слагаемых: +5 и +24.
Первое слагаемое +5 является номером адресуемого указателя. Интерпретатор команд EBC умножает это значение на размер указателя, который равен 4 для 32-битных реализаций UEFI и 8 для 64-битных.
Второе слагаемое +24 является константой, не зависящей от типа платформы. Оно используется для задания размера заголовка таблицы EFI_SYSTEM_TABLE
Подобным образом работают инструкции PUSHn (Push Natural), используемые при подготовке стекового фрейма для вызываемых процедур. Разрядность параметров, записываемых в стек (32 или 64 бита) зависит от разрядности центрального процессора. Так обеспечивается шлюзование между EBC-кодом приложения и процедурами, входящими в состав UEFI-firmware написанными в системе команд центрального процессора.
Трансляция и запуск
Для трансляции программы и генерации EBC-приложения используется FASM 1.69.50. Инструкции виртуальной машины EFI Byte Code заданы в виде шестнадцатеричных констант. Руководствуясь исследовательским интересом, мы намеренно отказались от использования языков высокого уровня и написали наш пример на ассемблере EBC. При этом нам пришлось решить несколько задач, связанных с тем, что транслятор FASM не поддерживает EBC.
После трансляции, в заголовке файла helloebc.efi, по адресам 84h, 85h байты 64h, 86h необходимо заменить на BCh, 0Eh. Таким образом, поле Machine Type
, исходно содержащее 8664h (x86-64 machine) заменяем на 0EBCh (EBC machine). Для запуска редактора, встроенного в UEFI Shell, в командной строке требуется набрать:
hexedit helloebc.efi
.
.
Коррекция поля Machine Type в заголовке приложения
После этого можно запускать приложение.
.
Результат работы приложения
Приложение также можно запустить под отладчиком Intel EBC Debugger.
.
Загрузка отладчика командой load и запуск EBC-приложения под отладчиком Intel EBC Debugger
Резюме
Работу тестового примера мы проверили в средах IA32 EFI и x64 UEFI. Теоретически, он должен работать на платформах с процессорами Itanium и ARM, но из-за недоступности указанных систем мы не смогли в этом убедиться.
Приложение транслируется в режиме PE64 (Portable Executable 64-bit). Некоторые устаревшие EFI-реализации (например, эмулятор Intel EFI Version 1.10.14.59 Sample Implementation
, запускаемый с загрузочной дискеты) не совместимы с данным форматом приложения. Это выражается в некорректной интерпретации таблицы перемещаемых элементов, используемой при настройке модуля на адреса загрузки. Один из путей решения – выполнять настройку программно.
Так как транслятор FASM не поддерживает EFI Byte Code, для обеспечения эффективного программирования на уровне ассемблера EBC в среде FASM, нам предстоит сделать следующее:
14. Датчик скорости автомобиля 15. Щиток приборов 16. Реле включения фар 17. Переключатель обогревателя заднего стекла 18. Выключатель стоп-сигнала 19. Стартер 20. Электронный блок управления 21. Каталитический нейтрализатор 22. Регулятор давления топлива 23. Датчик абсолютного давления во впускном клапане 24. Топливный фильтр 25. Контрольный воздушный клапан холостого хода 26. Датчик угла поворота дроссельной заслонки 27. Усилитель кондиционера |
Система электронного впрыска топлива (EFI–система)
Общие сведения
Система электронного впрыска топлива ( EFI-система) для двигателей 1,6 и 1,8 л ( двигатели 1,3 л оборудованы аналогичной системой)
1. Датчик концентрации кислорода 2. Датчик температуры охлаждающей жидкости 3. Датчик детонации (только для двигателей 1,8 л. 7А-FE) 4. Интегральный электронный блок зажигания (IIA) 5. Форсунка 6. Датчик температуры засасываемого воздуха 7. Батарея 8. Бачок с активированным углем 9. Вакуумный клапан (распределитель) 10. Топливный насос 11. Топливный бак 12. Реле топливного насоса 13. Переключатель положения Park/ Neutral (для автомобилей с автоматической трансмиссией) | 14. Датчик скорости автомобиля 15. Щиток приборов 16. Реле включения фар 17. Переключатель обогревателя заднего стекла 18. Выключатель стоп-сигнала 19. Стартер 20. Электронный блок управления 21. Каталитический нейтрализатор 22. Регулятор давления топлива 23. Датчик абсолютного давления во впускном клапане 24. Топливный фильтр 25. Контрольный воздушный клапан холостого хода 26. Датчик угла поворота дроссельной заслонки 27. Усилитель кондиционера |
Автомобили оборудованы системой электронного впрыска топлива (EFI-системой), в которую входят три подсистемы – топливная система, система забора воздуха и электронная система управления ТОПЛИВНАЯ СИСТЕМА
Топливный насос, расположенный в баке, обеспечивает подачу топлива под постоянным давлением в распределитель, из которого топливо равномерно распределяется по форсункам. Из распределителя топливо подается во впускные каналы цилиндров через форсунки. Количество впрыскиваемого топлива строго контролируется электронным блоком управления (ЕСМ-блоком). Регулятор давления топлива обеспечивает изменение давления топлива в соответствии с разрежением на всасывающем коллекторе. Топливный фильтр смонтирован между топливным насосом и распределителем топлива и предназначен для очистки бензина и защиты агрегатов системы впрыска от выхода из строя. СИСТЕМА ЗАБОРА ВОЗДУХА
Система забора воздуха состоит из воздушного фильтра, камеры дроссельной заслонки и канала, соединяющего эти два агрегата. Датчик температуры воздуха (IAT-датчик) отслеживает температуру забираемого воздуха. Сигнал с датчика поступает на электронный блок управления, который обеспечивает дозировку впрыскиваемого топлива в соответствии с температурой воздуха. Дроссельной заслонкой управляет водитель. По мере открывания дроссельной заслонки увеличивается скорость поступающего воздуха, что приводит к понижению его температуры. Датчик регистрирует изменение температуры воздуха и подает сигнал на блок ЕСМ, который в свою очередь подает сигнал, увеличивающий дозу впрыскиваемого топлива, на форсунки.
ЭЛЕКТРОННЫЙ БЛОК УПРАВЛЕНИЯ (ECM-БЛОК)
Управление электронным впрыском топлива и другими системами обеспечивается электронным блоком управления, который в свою очередь является частью центральной компьютерной системы управления (ССS
—
системы). В состав ЕСМ
—
блока входит микропроцессор. На блок управления поступают сигналы от целого ряда датчиков, которые отслеживают такие параметры как температура воздуха на входе в цилиндры, угол поворота дроссельной заслонки, температура охлаждающей жидкости, число оборотов двигателя, скорость движения автомобиля и содержание кислорода в отработанных газах. На основании этих данных блок управления определяет длительность впрыска топлива, при которой обеспечивается поддержание оптимального соотношения бензина и воздуха в горючей смеси. Некоторые из этих датчиков и соответствующие реле, срабатывающие от блока управления, не входят в состав системы электронного впрыска топлива, однако смонтированы по всему пространству моторного отсека. В
подразделе 6.2 приводится более подробное описание блока управления и управляемых от этого блока систем электрооборудования двигателя. Проверка