электрические сигналы в мозге это

Ритмы при ЭЭГ — обозначение и расшифровка

Ритмы ЭЭГ – это диагностируемые электрические колебания головного мозга. Различные степени бодрствования сопровождаются изменениями частотного спектра сигналов ЭЭГ.

В зависимости от амплитуды, формы волн, топографии, частотного диапазона и типа реакции различают ритмы электроэнцефалографии.

электрические сигналы в мозге это

Основные ритмы ЭЭГ обозначают греческими буквами:

Как работает электроэнцефалография?

Передача сигналов в нервной системе человека осуществляется как химическим (с помощью нейротрансмиттеров), так и электрическим (потенциалы действия) путем. Одиночный потенциал действия или мембранное напряжение одного нейрона являются слишком слабыми, чтобы их было возможно уловить не инвазивными методами диагностики. Однако электроды могут улавливать суммирование синхронно действующих потенциалов действия и сделать колебания электрической активности видимыми.

Существует определенная связь между психическим состоянием человека и волнами ЭЭГ. Отклонения или необычные мозговые волны могут указывать на патологию. Анализом и описанием таких волн занимается невролог.

Электроды измеряют активность тех частей коры головного мозга, которые имеют высокую плотность нервных клеток. Однако ЭЭГ измеряет не только электрический потенциал нервных клеток в головном мозге, но также мышцы головы и кожи. Соответственно, основные ритмы ЭЭГ не отражают точную активность нейронов. Ритмы ЭЭГ и их связь с функциональным состоянием мозга является предметом споров в научной среде.

Дельта-ритмы

Дельта-ритмы ЭЭГ имеют низкую частоту от 0,1 до

Источник

Что такое ЭЭГ и зачем она нужна

Ученые любят искать первое упоминание своей науки. К примеру, я видел статью, где всерьез утверждалось, что первые опыты по электрической стимуляции мозга были проведены в Древнем Риме, когда кого-то ударил током электрический угорь. Так или иначе, обычно, историю электрофизиологии принято отсчитывать примерно от опытов Луиджи Гальвани (XVIII век). В этом цикле статей мы попробуем рассказать небольшую часть того, что наука узнала за последние 300 лет про электрическую активность мозга человека, про то, какие профиты из всего этого можно извлечь.

электрические сигналы в мозге это

Откуда берется электрическая активность мозга

Мозг состоит из нейронов и глии. Нейроны проявляют электрическую активность, глия тоже может это делать, но по-другому [1], [2], и мы на нее сегодня обращать внимания не будем.

Электрическая активность нейронов заключается в перекачивании между клеткой и окружающей средой ионов натрия, калия и хлора. Между нейронами сигналы передаются с помощью химических медиаторов. Когда медиатор, выделяемый одним нейроном, попадает на подходящий рецептор другого нейрона, он может открыть химически активируемые ионные каналы, и впустить в клетку небольшое количество ионов. В результате клетка немного меняет свой заряд. Если в клетку вошло достаточно много ионов (например, сигнал пришел одновременно на несколько синапсов), открываются другие ионные каналы, зависимые от напряжения (их больше), и клетка за считанные миллисекунды активируется целиком по принципу “все или ничего”, после чего возвращается в прежнее состояние. Этот процесс называется потенциалом действия.

электрические сигналы в мозге это

Как ее можно зарегистрировать

Лучший способ записать активность отдельных клеток — воткнуть в кору электрод. Это может быть один провод, может быть матрица с несколькими десятками каналов, может быть штырь с несколькими сотнями, а может быть гибкая плата с несколькими тысячами (как тебе такое, илон маск ).

На животных это делают уже давно. Иногда по жизненным показаниям (эпилепсия, болезнь Паркинсона, полный паралич) делают на человеке. Пациенты с имплантами способны печатать текст силой мысли, управлять экзоскелетами, и даже контролировать все степени свободы промышленного манипулятора.

Выглядит впечатляюще, но в ближайшее время в каждую районную поликлинику, и, тем более, к здоровым людям, такие методы не придут. Во-первых, это очень дорого — стоимость процедуры для каждого пациента измеряется сотнями тысяч долларов. Во-вторых, имплантация электродов в кору — все-таки серьезная нейрохирургическая операция со всеми возможными осложнениями и поражением нервной ткани вокруг импланта. В-третьих, сама технология несовершенна — непонятно, что делать с тканевой совместимостью имплантов, и как предотвратить их обрастание глией, в результате чего нужный сигнал со временем перестает регистрироваться. Кроме того, обучение каждого пациента использованию импланта может занимать больше года ежедневных тренировок.

Можно не втыкать провода глубоко в кору, а аккуратно положить на нее — получится электрокортикограмма. Тут сигнал отдельных нейронов уже не зарегистрировать, но можно увидеть активность очень маленьких областей (общее правило — чем дальше от нейронов, тем хуже пространственное разрешение метода). Уровень инвазивности ниже, но все равно нужно вскрывать череп, поэтому этот метод используется в основном для контроля во время операций.

Можно положить провода даже не на кору, а на твердую мозговую оболочку (тонкий череп, который находится между мозгом и настоящим черепом). Тут уровень инвазивности и возможных осложнений еще ниже, но сигнал все еще довольно качественный. Получится эпидуральная ЭЭГ. Всем хорош метод, однако, тут все равно нужна операция.

Наконец, минимально инвазивный метод исследования электрической активности мозга — электроэнцефалограмма, а именно, запись с помощью электродов, которые находятся на поверхности головы. Метод самый массовый, сравнительно дешевый (топовые приборы стоят не дороже нескольких десятков тысяч долларов, а большинство в разы дешевле, расходники практически бесплатны), и имеет самое высокое временное разрешение из неинвазивных методов — можно изучать процессы восприятия, которые занимают считанные миллисекунды. Недостатки — низкое пространственное разрешение и шумный сигнал, который, однако, содержит достаточное количество информации для некоторых медицинских и нейроинтерфейсных целей.

На картинке с потенциалом действия видно, что у кривой есть две основных части — собственно, потенциал действия (большой пик) и синаптический потенциал (маленькое изменение амплитуды перед большим пиком). Логично было бы предположить, что то, что мы регистрируем на поверхности головы, является суммой потенциалов действия отдельных нейронов. Однако, на деле все работает наоборот — потенциал действия занимает около 1 миллисекунды и, несмотря на высокую амплитуду, через череп и мягкие ткани не проходит, а вот синаптические потенциалы за счет большей длительности, хорошо суммируются и регистрируются на поверхности черепа. Это было доказано с помощью одновременной записи инвазивными и неинвазивными методами. Также важно, что активность не каждого нейрона может быть зарегистрирована с помощью ЭЭГ (подробнее тут).

Важно, что в мозге находится около 86 миллиардов нервных клеток (о том, как это можно с такой точностью посчитать, читайте тут), и активность одного нейрона в таком шуме считать невозможно. Однако, какую-то информацию все равно вытащить можно. Представьте себе, что вы стоите в центре футбольного стадиона. Пока фанаты просто шумят и разговаривают между собой, вы слышите равномерный гул, но как только даже небольшая часть присутствующих начинает скандировать кричалку, ее уже можно довольно отчетливо расслышать. Точно так же и с нейронами — на поверхности черепа можно увидеть осмысленный сигнал, только если сразу большое количество нейронов проявляют синхронную активность. Для неинвазивной ЭЭГ это примерно 50 тысяч синхронно работающих нейронов.

Впервые идея померить напряжение на голове человека была реализована в 1924 году довольно интересной личностью. Первая запись ЭЭГ выглядела вот так:

электрические сигналы в мозге это

Сложно понять, что означает этот сигнал, но сразу видно, что он не похож на белый шум — в нем заметны веретена колебаний высокой амплитуды и отличающейся частоты. Это альфа-ритм — самый заметный ритм мозга, который можно увидеть невооруженным взглядом.

Сейчас, конечно, ритмы ЭЭГ анализируются не на глаз, а математическими методами, самые простые из которых — спектральные.

электрические сигналы в мозге это
Разбитый на полосы спектр Фурье электроэнцефалограммы (источник)

Всего есть несколько полос, в которых обычно анализируют ритмическую активность ЭЭГ, вот самые популярные:

8-14 Гц — Альфа-ритм. Представлен в основном в затылочных зонах. Сильно увеличивается при закрытии глаз, также подавляется при умственном напряжении и увеличивается при расслаблении. Этот ритм производится, когда возбуждение циркулирует между корой и таламусом. Таламус — своего рода маршрутизатор, который решает, как перенаправлять в кору потоки входящей информации. Когда человек закрывает глаза, ему становится нечего делать, он начинает генерировать фоновую активность, которая и вызывает альфа-ритм в коре. Кроме того, важную роль играет default mode network — сеть структур, которые активны во время спокойного бодрствования, но это уже тема для отдельной статьи.

электрические сигналы в мозге это

Разновидность альфа-ритма, с которой его легко перепутать — мю-ритм. Он имеет схожие характеристики, но регистрируется в центральных областях головы, где находится моторная кора. Важная особенность — его мощность уменьшается, когда человек двигает конечностями, или даже думает о том, чтобы это сделать.

14-30 Гц — Бета-ритм. Больше выражен в лобных долях мозга. Увеличивается при умственном напряжении.

30+ Гц — Гамма-ритм. Может быть, где-то внутри мозга он и есть, но большая часть того, что можно записать с поверхности, происходит от мышц. Выяснили это следующим образом:

Нужно каким-то образом убрать мышечную активность с головы, чтобы записать ЭЭГ с мышцами и без. К сожалению, нет простого способа отключить мышцы на голове, не отключив их во всем теле. Берем ученого (никто другой на такое бы не согласился), накачиваем его миорелаксантом, в результате чего у него отключаются все мышцы. Проблема — если отключить все мышцы, в том числе диафрагму и межреберные, то он не сможет дышать. Решение — кладем его на ИВЛ. Проблема — он еще и говорить без мышц не может. Решение — наложим ему на руку жгут, чтобы туда не попадал миорелаксант, тогда он может этой рукой подавать сигналы. Проблема — если затянуть эксперимент, то рука отвалится. Решение — прекращаем эксперимент когда ученый перестает чувствовать руку, и надеемся, что все закончится хорошо. Результат — доля в спектре частот ЭЭГ больше 20 Гц на фоне миорелаксанта становится меньше в 10-200 раз, чем выше частота, тем выше падение.

1-4 Гц — Дельта-ритм. Выражен во время фазы, внезапно, дельта-сна (самый глубокий сон), также повышается при стрессе.

Кроме ритмической активности, в ЭЭГ есть еще вызванная. Если мы точно знаем, в какой момент мы показываем человеку стимул (это может быть картинка, звук, тактильное ощущение и даже запах), мы можем посмотреть, какая была реакция именно на этот стимул. Соотношение сигнал-шум такого ответа по отношению к фоновой ЭЭГ довольно низкое, но если мы покажем стимул, к примеру, 10 раз, нарежем ЭЭГ относительно момента предъявления и усредним, то можно получить довольно подробные кривые, которые называют вызванными потенциалами (не путать с потенциалами действия).

электрические сигналы в мозге это

Это вызванный потенциал на звук. Подробности оставим психофизиологам — тут нам достаточно понимать, что каждый экстремум что-то да означает. При достаточном усреднении будут видны ответы структур начиная от слухового нерва (I) и заканчивая ассоциативной корой (P2).

Что с ней можно сделать

Сделать можно много чего, но сегодня мы сконцентрируемся на нейрокомпьютерных интерфейсах. Это системы анализа ЭЭГ в реальном времени, которые позволяют отдавать компьютеру или роботу команды без помощи мышц — самое близкое к телекинезу, что может предоставить современная наука.

Самое очевидное, что приходит в голову — сделать интерфейс на ритмической активности. Мы же помним, что альфа-ритма мало, когда человек напряжен, и много, когда он расслаблен? Вот и расслабляйтесь. Пишем ЭЭГ, делаем преобразование Фурье, когда мощность в окне вокруг 10 герц стала выше определенного порога, зажигаем лампочку — вот и контроль компьютера силой мысли. Тот же принцип может позволить управлять другими ритмами. За счет простоты и нетребовательности к оборудованию появилось достаточно много игрушек, работающих на этом принципе — Neurosky, Emotiv, тысячи их. В принципе, если хорошо постараться, человек может научиться приходить в нужное состояние, которое будет правильно классифицироваться. Проблема потребительских девайсов в том, что они часто пишут не очень качественный сигнал, и поголовно не умеют вычитать артефакты от движения глаз и мимических мышц. В результате появляется реальная возможность научиться управлять мышцами и глазами, а не мозгом (а подсознание работает так, что чем больше стараться этого не делать, тем хуже будет получаться). Кроме того, само соотношение сигнал-шум в ритмах довольно низкое, и интерфейс работает медленно и неточно (если получится правильно угадать состояние с точностью больше 70% — это уже достижение). Да и научная база по состояниям кроме расслабления и концентрации, мягко говоря, зыбкая. Тем не менее, при правильной реализации метод может иметь свое применение.

Важный подвид интерфейсов на ритмах — представление движений. Тут человеку предлагается не воображать что-то абстрактно расслабляющее, а представлять движение, скажем, правой руки. Если делать это правильно (а научиться правильному представлению сложно), можно выявить снижение мю-ритма в левом полушарии. Точность таких интерфейсов тоже крутится вокруг 70%, но они находят свое применение в тренажерах для восстановления после инсультов и травм, в том числе при помощи различных экзоскелетов, поэтому они все равно нужны.

Другой класс ЭЭГ-нейроинтерфейсов основывается на использовании вызванной активности всех сортов. Эти интерфейсы отличаются очень высокой надежностью, при удачном стечении обстоятельств приближающейся к 100%.

Самый популярный вид нейроинтерфейсов включает в себя потенциал Р300. Он возникает тогда, когда человек пытается выделить один нужный ему стимул среди многих ненужных.

электрические сигналы в мозге это

электрические сигналы в мозге это

К примеру, если вот тут пытаться посчитать, сколько раз загорится буква “А”, и при этом не обращать внимания на все остальные, то в ответ на этот стимул при усреднении мы увидим красную линию, а при усреднении всех остальных — синюю. Разница между ними заметна невооруженным взглядом, и обучить классификатор, который будет их различать, не составляет особого труда.

Такие интерфейсы обычно не очень красивые, и не очень быстрые (печать одной буквы займет около 10 секунд), но могут быть полезны полностью парализованным пациентам.

Кроме того, в ИМК-Р300 есть когнитивный компонент — мало просто смотреть на букву, надо активно обращать на нее внимание. Это позволяет, при выполнении определенных условий, делать на этой технологии довольно интересные игры (но это тема для другой статьи).

За счет того, что Р300 это когнитивный потенциал, для него не очень важно, что, собственно, показывают человеку, главное, чтобы он мог на это реагировать. В результате интерфейс будет работать, даже если буквы будут сменять друг друга в одной точке — это полезно для пациентов, которые не могут двигать глазами.

электрические сигналы в мозге это

Есть и другие интересные вызванные потенциалы, в частности SSVEP (ЗВПУС) — потенциалы стабильного состояния. Если искать аналогии в области связи, то Р300 работает как рация — сигналы от разных стимулов разделяются по времени, а SSVEP это классический FDMA — разделение по несущей частоте, как в GSM-связи.

Нужно показать человеку несколько стимулов, которые мигают с разными частотами. При выборе стимула, на него достаточно внимательно посмотреть, и через несколько секунд его частота магическим образом окажется в зрительной коре, откуда ее можно вытащить корреляционными или спектральными методами. Это быстрее и проще, чем считать буквы для Р300, но долго смотреть на такое мигание тяжело.

Там, где есть FDMA, там самое место CDMA:

электрические сигналы в мозге это

Серое — бинарная последовательнсть, цветное — вызванная ей активность во всех каналах, карта — распределение выраженности потенциала в ЭЭГ. Видно, что максимум на затылке — в зрительных областях

Можно модулировать мигание стимулов не частотами и фазами, а ортогогнальными бинарными последовательностями, которые точно так же окажутся в зрительной коре и отклассифицируются с помощью корреляционного анализа. Это может помочь немного оптимизировать обучение классификатора и ускорить работу интерфейса — на одну букву может уходить меньше 2 секунд. За счет удачного выбора цветов можно сделать интерфейс чуть менее вырвиглазным, хотя полностью от мигания избавиться не получится. К сожалению, когнитивный компонент тут не так сильно выражен — отслеживание движений глаз дает сопоставимые результаты, но технически проще, дешевле и удобнее.

Когда я говорю о том, насколько хорошо могут работать те или иные типы интерфейсов, приходится постоянно оперировать соотношением сигнал-шум. Действительно, вызванные потенциалы имеют низкую амплитуду — около 5 микровольт, при том, что фоновый альфа-ритм запросто может иметь амплитуду в 20. Такой слабый сигнал кажется довольно сложным для классификации, но на самом деле все это довольно просто, если правильно поставить эксперимент и хорошо записать ЭЭГ. Сейчас большинство академических исследований сосредоточено в области придумывания новых классификаторов, в том числе применения нейросетей, но довольно хорошего уровеня можно достигнуть уже с самыми простыми линейными классификаторами из scikit-learn. К примеру, хороший датасет с Р300 и кодом лежит здесь.

Нейрокомпьютерные интерфейсы — развивающаяся технология, выглядит как магия, особенно для неподготовленного человека. Однако в реальности это метод, в котором много неочевидных сложностей. Секрет здесь, как и с любой технологией, заключается в том, чтобы учитывать все ограничения и находить такие сферы ее применения, в которых эти ограничения не мешают работе.

Источник

Когда назначают ЭЭГ?

Что такое электрическая активность мозга

Мозг состоит из нервных клеток – нейронов, которые обладают способностью передавать «по цепочке» электрические импульсы. На различные внешние раздражители реагируют различные участки мозга – в пределах этих участков нейроны передают единый импульс. Кроме того, при определенных условиях импульсы могут ослаблять или усиливать друг друга.

Электрические импульсы, возникающие в мозге, способен уловить электроэнцефалограф. Он состоит из электродов, присоединенных к компьютеру. Электроды, закрепленные на голове пациента, улавливают импульсы и передают их на компьютер для расшифровки и отображения. На бумаге импульсы отображаются в виде волн. Волны отличаются по характеристикам (частоте и амплитуде) и делятся на альфа-, бета-, дельта-, тета- и мю-волны.

Что показывает ЭЭГ

Электроэнцефалограмма позволяет специалисту увидеть признаки различных нарушений работы головного мозга и оценить их характер. Например, с помощью ЭЭГ можно распознать:

электрические сигналы в мозге это

Как проводится процедура

На голову пациенту надевают шапочку с закрепленными на ней электродами. Врач исследует электрическую активность мозга пациента в состоянии покоя, просит моргнуть, чтобы учесть погрешности при моргании, а затем дополнительно воздействует на пациента, прося его глубоко подышать (гипервентиляция) и изучая его реакцию на вспышки света (фотостимуляция).

В каких случаях рекомендуют снять электроэнцефалограмму?

Противопоказания к ЭЭГ

Четких противопоказаний к процедуре нет. В некоторых случаях процедура может быть затруднена из-за открытых ран и травм, мешающих присоединению электродов, а также у детей младшего возраста и людей с некоторыми психическими расстройствами – т.к. им сложно сохранять покой, необходимый для проведения обследования и точной интерпретации результата.

Как готовиться к ЭЭГ

Не принимайте противосудорожные, седативные и бодрящие препараты за 3-4 суток до исследования, ограничьте также кофе и крепкий чай, энергетики и шоколад.
Перед процедурой голова должна быть хорошо вымыта и очищена от укладочных средств, волосы высушены;
За пару часов до исследования как следует поешьте, чтобы не допустить чувства голода и падения уровня сахара в крови – это может исказить результаты исследования;
Если планируется провести ЭЭГ в состоянии сна (обычно требуется при эпилепсии), ночь накануне исследования должна быть бессонной.

Источник

Мозг, общение нейронов и энергетическая эффективность

По всей видимости, в эволюции сформировались энергетически эффективные механизмы кодирования и передачи информации в мозге. Подпись: «Усердно пытаюсь минимизировать энергозатраты».

Автор
Редакторы

Статья на конкурс «био/мол/текст»: Клеточные процессы, обеспечивающие обмен информацией между нейронами, требуют много энергии. Высокое энергопотребление способствовало в ходе эволюции отбору наиболее эффективных механизмов кодирования и передачи информации. В этой статье вы узнаете о теоретическом подходе к изучению энергетики мозга, о его роли в исследованиях патологий, о том, какие нейроны более продвинуты, почему синапсам иногда выгодно не «срабатывать», а также, как они отбирают только нужную нейрону информацию.

электрические сигналы в мозге это

Конкурс «био/мол/текст»-2017

Эта работа опубликована в номинации «Свободная тема» конкурса «био/мол/текст»-2017.

электрические сигналы в мозге это

Генеральный спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

электрические сигналы в мозге это

Спонсором приза зрительских симпатий и партнером номинации «Биомедицина сегодня и завтра» выступила фирма «Инвитро».

электрические сигналы в мозге это

Происхождение подхода

С середины ХХ века известно, что головной мозг потребляет значительную часть энергоресурсов всего организма: четверть всей глюкозы и ⅕ всего кислорода в случае высшего примата [1–5]. Это вдохновило Уильяма Леви и Роберта Бакстера из Массачусетского технологического института (США) на проведение теоретического анализа энергетической эффективности кодирования информации в биологических нейронных сетях (рис. 1) [6]. В основе исследования лежит следующая гипотеза. Поскольку энергопотребление мозга велико, ему выгодно иметь такие нейроны, которые работают наиболее эффективно — передают только полезную информацию и затрачивают при этом минимум энергии.

Это предположение оказалось справедливым: на простой модели нейронной сети авторы воспроизвели экспериментально измеренные значения некоторых параметров [6]. В частности, рассчитанная ими оптимальная частота генерации импульсов варьирует от 6 до 43 имп./с — почти так же, как и у нейронов основания гиппокампа. Их можно подразделить на две группы по частоте импульсации: медленные (

40 имп./с). При этом первая группа значительно превосходит по численности вторую [7]. Аналогичная картина наблюдается и в коре больших полушарий: медленных пирамидальных нейронов (

4—9 имп./с) в несколько раз больше, чем быстрых ингибиторных интернейронов (>100 имп./с) [8], [9]. Так, видимо, мозг «предпочитает» использовать поменьше быстрых и энергозатратных нейронов, чтобы те не израсходовали все ресурсы [6], [9–11].

электрические сигналы в мозге это

Рисунок 1. Представлены два нейрона. В одном из них фиолетовым цветом окрашен пресинаптический белок синаптофизин. Другой нейрон полностью окрашен зеленым флуоресцентным белком. Мелкие светлые крапинки — синаптические контакты между нейронами [12]. Во вставке одна «крапинка» представлена ближе.
Группы нейронов, связанных между собой синапсами, называются нейронными сетями [13], [14]. Например, в коре больших полушарий пирамидальные нейроны и интернейроны образуют обширные сети. Слаженная «концертная» работа этих клеток обусловливает наши высшие когнитивные и другие способности. Аналогичные сети, только из других типов нейронов, распределены по всему мозгу, определенным образом связаны между собой и организуют работу всего органа.

Что такое интернейроны?

Нейроны центральной нервной системы разделяются на активирующие (образуют активирующие синапсы) и тормозящие (образуют тормозящие синапсы). Последние в значительной степени представлены интернейронами, или промежуточными нейронами. В коре больших полушарий и гиппокампе они ответственны за формирование гамма-ритмов мозга [15], которые обеспечивают слаженную, синхронную работу других нейронов. Это крайне важно для моторных функций, восприятия сенсорной информации, формирования памяти [9], [11].

Интернейроны отличаются способностью генерировать значительно более высокочастотные сигналы, чем другие нейроны. Они также содержат больше митохондрий, главных органелл энергетического метаболизма, «фабрик» по производству АТФ. Последние к тому же содержат большое количество белков цитохром-с оксидазы и цитохрома-с, являющихся ключевыми для метаболизма. Так, интернейроны являются крайне важными и, в то же время, энергозатратными клетками [8], [9], [11], [16].

Работа Леви и Бакстера [6] развивает концепцию «экономии импульсов» Горация Барлоу из Университета Калифорнии (США), который, кстати, является потомком Чарльза Дарвина [17]. Согласно ей, при развитии организма нейроны стремятся работать только с наиболее полезной информацией, фильтруя «лишние» импульсы, ненужную и избыточную информацию. Однако эта концепция не дает удовлетворительных результатов, так как не учитывает метаболические затраты, связанные с нейрональной активностью [6]. Расширенный подход Леви и Бакстера, в котором внимание уделено обоим факторам, оказался более плодотворным [6], [18–20]. И энергозатраты нейронов, и потребность в кодировании только полезной информации являются важными факторами, направляющими эволюцию мозга [6], [21–24]. Поэтому, чтобы лучше разобраться в том, как устроен мозг, стоит рассматривать обе эти характеристики: сколько нейрон передает полезной информации и сколько энергии при этом тратит.

За последнее время этот подход нашел множество подтверждений [10], [22], [24–26]. Он позволил по-новому взглянуть на устройство мозга на самых разных уровнях организации — от молекулярно-биофизического [20], [26] до органного [23]. Он помогает понять, каковы компромиссы между выполняемой функцией нейрона и ее энергетической ценой и в какой степени они выражены.

Как же работает этот подход?

Положим, у нас есть модель нейрона, описывающая его электрофизиологические свойства: потенциал действия (ПД) и постсинаптические потенциалы (ПСП) (об этих терминах — ниже). Мы хотим понять, эффективно ли он работает, не тратит ли неоправданно много энергии. Для этого нужно вычислить значения параметров модели (например, плотность каналов в мембране, скорость их открывания и закрывания), при которых: (а) достигается максимум отношения полезной информации к энергозатратам и в то же время (б) сохраняются реалистичные характеристики передаваемых сигналов [6], [19].

Поиск оптимума

Эти «оптимальные» значения параметров затем нужно сравнить с измеренными экспериментально и определить, насколько они отличаются. Общая картина отличий укажет на степень оптимизации данного нейрона в целом: насколько реальные, измеренные экспериментально, значения параметров совпадают с рассчитанными. Чем слабее выражены отличия, тем нейрон более близок к оптимуму и работает энергетически более эффективно, оптимально. С другой стороны, сопоставление конкретных параметров покажет, в каком конкретно качестве этот нейрон близок к «идеалу».

Далее, в контексте энергетической эффективности нейронов рассмотрены два процесса, на которых основано кодирование и передача информации в мозге. Это нервный импульс, или потенциал действия, благодаря которому информация может быть отправлена «адресату» на определенное расстояние (от микрометров до полутора метров) и синаптическая передача, лежащая в основе собственно передачи сигнала от одного нейрона на другой.

Потенциал действия

Потенциал действия (ПД) — сигнал, которые отправляют друг другу нейроны. ПД бывают разные: быстрые и медленные, малые и большие [28]. Зачастую они организованы в длинные последовательности (как буквы в слова), либо в короткие высокочастотные «пачки» (рис. 2).

электрические сигналы в мозге это

Большое разнообразие сигналов обусловлено огромным количеством комбинаций разных типов ионных каналов, синаптических контактов, а также морфологией нейронов [28], [29]. Поскольку в основе сигнальных процессов нейрона лежат ионные токи, стоит ожидать, что разные ПД требуют различных энергозатрат [20], [27], [30].

Что такое потенциал действия?

электрические сигналы в мозге это

ПД — это относительно сильное по амплитуде скачкообразное изменение мембранного потенциала.

Анализ разных типов нейронов (рис. 4) показал, что нейроны беспозвоночных не очень энергоэффективны, а некоторые нейроны позвоночных почти совершенны [20]. По результатам этого исследования, наиболее энергоэффективными оказались интернейроны гиппокампа, участвующего в формировании памяти и эмоций, а также таламокортикальные релейные нейроны, несущие основной поток сенсорной информации от таламуса к коре больших полушарий.

электрические сигналы в мозге это

Рисунок 4. Разные нейроны эффективны по-разному. На рисунке представлено сравнение энергозатрат разных типов нейронов. Энергозатраты рассчитаны в моделях как с исходными (реальными) значениями параметров (черные столбцы), так и с оптимальными, при которых с одной стороны нейрон выполняет положенную ему функцию, с другой — затрачивает при этом минимум энергии (серые столбцы). Самыми эффективными из представленных оказались два типа нейронов позвоночных: интернейроны гиппокампа (rat hippocampal interneuron, RHI) и таламокортикальные нейроны (mouse thalamocortical relay cell, MTCR), так как для них энергозатраты в исходной модели наиболее близки к энергозатратам оптимизированной. Напротив, нейроны беспозвоночных менее эффективны. Условные обозначения: SA (squid axon) — гигантский аксон кальмара; CA (crab axon) — аксон краба; MFS (mouse fast spiking cortical interneuron) — быстрый кортикальный интернейрон мыши; BK (honeybee mushroom body Kenyon cell) — грибовидная клетка Кеньона пчелы.

Почему они более эффективны? Потому что у них малó перекрывание Na- и К-токов. Во время генерации ПД всегда есть промежуток времени, когда эти токи присутствуют одновременно (рис. 3в). При этом переноса заряда практически не происходит, и изменение мембранного потенциала минимально. Но «платить» за эти токи в любом случае приходится, несмотря на их «бесполезность» в этот период. Поэтому его продолжительность определяет, сколько энергетических ресурсов растрачивается впустую. Чем он короче, тем более эффективно использование энергии [20], [26], [30], [43]. Чем длиннее — тем менее эффективно. Как раз в двух вышеупомянутых типах нейронов, благодаря быстрым ионным каналам, этот период очень короткий, а ПД — самые эффективные [20].

Кстати, интернейроны гораздо более активны, чем большинство других нейронов мозга. В то же время они крайне важны для слаженной, синхронной работы нейронов, с которыми образуют небольшие локальные сети [9], [16]. Вероятно, высокая энергетическая эффективность ПД интернейронов является некой адаптацией к их высокой активности и роли в координации работы других нейронов [20].

Синапс

Передача сигнала от одного нейрона к другому происходит в специальном контакте между нейронами, в синапсе [12]. Мы рассмотрим только химические синапсы (есть еще электрические), поскольку они весьма распространены в нервной системе и важны для регуляции клеточного метаболизма, доставки питательных веществ [5].

Чаще всего, химический синапс образован между окончанием аксона одного нейрона и дендритом другого. Его работа напоминает. «переброс» эстафетной палочки, роль которой и играет нейромедиатор — химический посредник передачи сигнала [12], [42], [44–48].

На пресинаптическом окончании аксона ПД вызывает выброс нейромедиатора во внеклеточную среду — к принимающему нейрону. Последний только этого и ждет с нетерпением: в мембране дендритов рецепторы — ионные каналы определенного типа — связывают нейромедиатор, открываются и пропускают через себя разные ионы. Это приводит к генерации маленького постсинаптического потенциала (ПСП) на мембране дендрита. Он напоминает ПД, но значительно меньше по амплитуде и происходит за счет открывания других каналов. Множество этих маленьких ПСП, каждый от своего синапса, «сбегаются» по мембране дендритов к телу нейрона (зеленые стрелки на рис. 3а) и достигают начального сегмента аксона, где вызывают открывание Na-каналов и «провоцируют» его на генерацию ПД.

Такие синапсы называются возбуждающими: они способствуют активации нейрона и генерации ПД. Существуют также и тормозящие синапсы. Они, наоборот, способствуют торможению и препятствуют генерации ПД. Часто на одном нейроне есть и те, и другие синапсы. Определенное соотношение между торможением и возбуждением важно для нормальной работы мозга, формирования мозговых ритмов, сопровождающих высшие когнитивные функции [49].

Как это ни странно, выброс нейромедиатора в синапсе может и не произойти вовсе — это процесс вероятностный [18], [19]. Нейроны так экономят энергию: синаптическая передача и так обусловливает около половины всех энергозатрат нейронов [25]. Если бы синапсы всегда срабатывали, вся энергия пошла бы на обеспечение их работы, и не осталось бы ресурсов для других процессов. Более того, именно низкая вероятность (20–40%) выброса нейромедиатора соответствует наибольшей энергетической эффективности синапсов. Отношение количества полезной информации к затрачиваемой энергии в этом случае максимально [18], [19]. Так, выходит, что «неудачи» играют важную роль в работе синапсов и, соответственно, всего мозга. А за передачу сигнала при иногда «не срабатывающих» синапсах можно не беспокоиться, так как между нейронами обычно много синапсов, и хоть один из них да сработает.

Еще одна особенность синаптической передачи состоит в разделении общего потока информации на отдельные компоненты по частоте модуляции приходящего сигнала (грубо говоря, частоте приходящих ПД) [50]. Это происходит благодаря комбинированию разных рецепторов на постсинаптической мембране [38], [50]. Некоторые рецепторы активируются очень быстро: например, AMPA-рецепторы (AMPA происходит от α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid). Если на постсинаптическом нейроне представлены только такие рецепторы, он может четко воспринимать высокочастотный сигнал (такой, как, например, на рис. 2в). Ярчайший пример — нейроны слуховой системы, участвующие в определении местоположения источника звука и точном распознавании коротких звуков типа щелчка, широко представленных в речи [12], [38], [51]. NMDA-рецепторы (NMDA — от Nmethyl-Daspartate) более медлительны. Они позволяют нейронам отбирать сигналы более низкой частоты (рис. 2г), а также воспринимать высокочастотную серию ПД как нечто единое — так называемое интегрирование синаптических сигналов [14]. Есть еще более медленные метаботропные рецепторы, которые при связывании нейромедиатора, передают сигнал на цепочку внутриклеточных «вторичных посредников» для подстройки самых разных клеточных процессов. К примеру, широко распространены рецепторы, ассоциированные с G-белками. В зависимости от типа они, например, регулируют количество каналов в мембране или напрямую модулируют их работу [14].

Различные комбинации быстрых AMPA-, более медленных NMDA- и метаботропных рецепторов позволяют нейронам отбирать и использовать наиболее полезную для них информацию, важную для их функционирования [50]. А «бесполезная» информация отсеивается, она не «воспринимается» нейроном. В таком случае не приходится тратить энергию на обработку ненужной информации. В этом и состоит еще одна сторона оптимизации синаптической передачи между нейронами.

Что еще?

Энергетическая эффективность клеток мозга исследуется также и в отношении их морфологии [35], [52–54]. Исследования показывают, что ветвление дендритов и аксона не хаотично и тоже экономит энергию [52], [54]. Например, аксон ветвится так, чтобы суммарная длина пути, который проходит ПД, была наименьшей. В таком случае энергозатраты на проведение ПД вдоль аксона минимальны.

Снижение энергозатрат нейрона достигается также при определенном соотношении тормозящих и возбуждающих синапсов [55]. Это имеет прямое отношение, например, к ишемии (патологическому состоянию, вызванному нарушением кровотока в сосудах) головного мозга. При этой патологии, вероятнее всего, первыми выходят из строя наиболее метаболически активные нейроны [9], [16]. В коре они представлены ингибиторными интернейронами, образующими тормозящие синапсы на множестве других пирамидальных нейронов [9], [16], [49]. В результате гибели интернейронов, снижается торможение пирамидальных. Как следствие, возрастает общий уровень активности последних (чаще срабатывают активирующие синапсы, чаще генерируются ПД). За этим немедленно следует рост их энергопотребления, что в условиях ишемии может привести к гибели нейронов.

При изучении патологий внимание уделяют и синаптической передаче как наиболее энергозатратному процессу [19]. Например, при болезнях Паркинсона [56], Хантингтона [57], Альцгеймера [58–61] происходит нарушение работы или транспорта к синапсам митохондрий, играющих основную роль в синтезе АТФ [62], [63]. В случае болезни Паркинсона, это может быть связано с нарушением работы и гибелью высоко энергозатратных нейронов черной субстанции, важной для регуляции моторных функций, тонуса мышц. При болезни Хантингтона, мутантный белок хангтингтин нарушает механизмы доставки новых митохондрий к синапсам, что приводит к «энергетическому голоданию» последних, повышенной уязвимости нейронов и избыточной активации. Все это может вызвать дальнейшие нарушения работы нейронов с последующей атрофией полосатого тела и коры головного мозга. При болезни Альцгеймера нарушение работы митохондрий (параллельно со снижением количества синапсов) происходит из-за отложения амилоидных бляшек. Действие последних на митохондрии приводит к окислительному стрессу, а также к апоптозу — клеточной гибели нейронов.

Еще раз обо всем

В конце ХХ века зародился подход к изучению мозга, в котором одновременно рассматривают две важные характеристики: сколько нейрон (или нейронная сеть, или синапс) кодирует и передает полезной информации и сколько энергии при этом тратит [6], [18], [19]. Их соотношение является своего рода критерием энергетической эффективности нейронов, нейронных сетей и синапсов.

Использование этого критерия в вычислительной нейробиологии дало существенный прирост к знаниям относительно роли некоторых явлений, процессов [6], [18–20], [26], [30], [43], [55]. В частности, малая вероятность выброса нейромедиатора в синапсе [18], [19], определенный баланс между торможением и возбуждением нейрона [55], выделение только определенного рода приходящей информации благодаря определенной комбинации рецепторов [50] — все это способствует экономии ценных энергетических ресурсов.

Более того, само по себе определение энергозатрат сигнальных процессов (например, генерация, проведение ПД, синаптическая передача) позволяет выяснить, какой из них пострадает в первую очередь при патологическом нарушении доставки питательных веществ [10], [25], [56]. Так как больше всего энергии требуется для работы синапсов, именно они первыми выйдут из строя при таких патологиях, как ишемия, болезни Альцгеймера и Хантингтона [19], [25]. Схожим образом определение энергозатрат разных типов нейронов помогает выяснить, какой из них погибнет раньше других в случае патологии. Например, при той же ишемии, в первую очередь выйдут из строя интернейроны коры [9], [16]. Эти же нейроны из-за интенсивного метаболизма — наиболее уязвимые клетки и при старении, болезни Альцгеймера и шизофрении [16].

В общем, подход к определению энергетически эффективных механизмов работы мозга является мощным направлением для развития и фундаментальной нейронауки, и ее медицинских аспектов [5], [14], [16], [20], [26], [55], [64].

Благодарности

Искренне благодарен моим родителям Ольге Наталевич и Александру Жукову, сестрам Любе и Алене, моему научному руководителю Алексею Браже и замечательным друзьям по лаборатории Эвелине Никельшпарг и Ольге Слатинской за поддержку и вдохновение, ценные замечания, сделанные при прочтении статьи. Я также очень благодарен редактору статьи Анне Петренко и главреду «Биомолекулы» Антону Чугунову за пометки, предложения и замечания.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *