эволюционно более позднее образование головного мозга включающее в свой состав хвостатое ядро

эволюционно более позднее образование головного мозга включающее в свой состав хвостатое ядро

У пациентов с ОКР были проведены исследования с множеством структурных методов визуализации, включая компьютерную томографию (КТ) и магнитно-резонансную томографию (МРТ) с целью идентификации регионов, участвующих в патогенезе ОКР. КТ-сканирования показало значительное уменьшение объема хвостатого ядра у пациентов с ОКР по сравнению с нормальным здоровым контролем. Однако другие структуры, такие как чечевицеобразные ядра и желудочки мозга, были одинаковыми по размеру в обеих группах, предполагая возможное вовлечение хвостатого ядра в патогенез ОКР. Аналогично, раннее исследование МРТ продемонстрировало значительно меньший объем каудатного ядра у пациентов с ОКР по сравнению с нормальным контролем, но другие области, включая префронтальную кору здесь не имели различий. Другие исследования структурной визуализации при ОКР также предположили наличие аномалий, в основном связанных со схемами ( петлями ) лобно-стриатноо-таламическими. Обзор структурных исследований нейровизуализации при тревожных расстройствах, включая ОКР, показал наличие изменений в хвостатотом ядре, скорлупе (putamen), бледном шаре ( globus pallidus) и полосатом теле.

Методы функциональной визуализации косвенно измеряют уровни активности в определенных областях мозга и используются для определения того, являются ли те или иные структуры вовлеченными в патогенез ОКР аномально активными. Отметим, что функциональные исследования нейровизуализации при ОКР являются более последовательными по сравнению с результатами подобных исследований других психических расстройств. В ранних исследованиях ОКР использовались однофотонные эмиссионные КТ (ОФЭКТ) и позитронно-эмиссионная томография (ПЭТ). Эти исследования, а также недавние исследования с использованием функциональной МРТ показали усиленную активацию в областях базальных ганглиев (преимущественно головки хвостатых тел ), переднем цингулуме и орбитофронтальной коре у пациентов с ОКР по сравнению с нормальным здоровым контролем. Итак, пациенты с ОКР могут иметь аномальную метаболическую активность в базальных ганглиях и других связанных с ними областях.

Исследования гексаметилпропиламина оксим- при ОФЭКТ продемонстрировали его повышенное поглощение в префронтальной области медиальной лобной коры, снижение поглощения в левых базальных ганглиях и снижение поглощения в правом хвостовом ядре. В исследовании SPECT с использованием флувоксамина в течение 12 недель было обнаружено, что уровни регионального церебрального кровотока значительно снижаются в левом хвостатом ядре и левой и правой скорлупе как у респондентов, так и у тех, кто не отвечал на терапию. Другое исследование показало, что те, кто отвечал на фармакотерапию показали диффузное снижение регионального церебрального кровотока в префронтальной области по сравнению с исходно высоким уровнем активности этих структур до начала лечения. Хвостатые ядра и префронтальный цингулум показали значительное региональное снижение церебрального кровотока после лечения пароксетином в течение 12 недель. Аналогичные изменения наблюдались также в хвостатом ядре и префронтальной коре после психотерапии. Эти результаты показывают потенциальную обратимость нарушений мозга после лечения пациентов с ОКР. В некоторых исследованиях также основное внимание уделялось плотности рецепторов транспортера и доступности рецепторов для связывания лекарственных средств при ОКР. Исследование SPECT показало снижение связывания переносчиков дофамина у пациентов с ОКР после лечения селективными ингибиторами обратного захвата серотонина (СИОЗС) в базальных ганглиях по сравнению с исходным уровнем, причем изменения в отношении связывания коррелировали с изменениями тяжести симптомов по шкале Y-BOCS. Эти данные свидетельствуют о потенциальной роли дофаминергической системы базальных ганглиях в динамике симптомов ОКР.

Магнитная резонансная спектроскопия ( MRS) позволяет проводить in vivo и неинвазивную оценку биохимии мозга. Основные принципы, лежащие в основе MRS, такие же, как и МРТ, но здесь добавляется дополнительный объем информации путем обнаружения резонансных частот различных метаболитов. Чаще всего 1H-MRS выполняется как один воксель, в котором спектр определяется из конкретной области мозга, тогда как MRS-визуализация обеспечивает метаболические карты. Этот метод предоставляет данные об уровнях N-ацетил-аспартата (NAA, маркер плотности нейронов и их целостности), холина (Cho, маркер клеточной плотности и предшественнике нейротрансмиттера ацетил холина ), креатина (Cr, маркер клеточной энергии ), мио-инозитола (mI, маркер мембранного оборота и миелинизация) и комплекса Glx, образованного Glu и глутамином; оба они участвуют в синтезе ГАМК.

Источник

Функции стриопаллидарной системы, лимбической системы и коры полушарий большого мозга

эволюционно более позднее образование головного мозга включающее в свой состав хвостатое ядро эволюционно более позднее образование головного мозга включающее в свой состав хвостатое ядро эволюционно более позднее образование головного мозга включающее в свой состав хвостатое ядро эволюционно более позднее образование головного мозга включающее в свой состав хвостатое ядро

эволюционно более позднее образование головного мозга включающее в свой состав хвостатое ядро

эволюционно более позднее образование головного мозга включающее в свой состав хвостатое ядро

№1.1. Функции бледного шара. Афферентные и эфферентные связи

эволюционно более позднее образование головного мозга включающее в свой состав хвостатое ядро

Бледный шар (globus pallidus s. pallidum) имеет преимущественно крупные нейроны Гольджи I типа. Связи бледного шара с таламусом, скорлупой, хвостатым ядром, средним мозгом, гипоталамусом, соматосенсорной системой и др. свидетельствуют об его участии в организации простых и сложных форм поведения.

Раздражение бледного шара с помощью вживленных электродов вызывает сокращение мышц конечностей, активацию или торможение γ-мотонейронов спинного мозга. У больных с гиперкинезами раздражение разных отделов бледного шара (в зависимости от места и частоты раздражения) увеличивало или снижало гиперкинез.

Стимуляция бледного шара в отличие от стимуляции хвостатого ядра не вызывает торможения, а провоцирует ориентировочную реакцию, движения конечностей, пищевое поведение (обнюхивание, жевание, глотание и т.д.).

Повреждение бледного шара вызывает у людей гипомимию, маскообразность лица, тремор головы, конечностей (причем этот тремор исчезает в покое, во сне и усиливается при движениях), монотонность речи. При повреждении бледного шара наблюдается миоклония — быстрые подергивания мышц отдельных групп или отдельных мышц рук, спины, лица.

В первые часы после повреждения бледного шара в остром опыте на животных резко снижалась двигательная активность, движения характеризовались дискоординацией, отмечалось наличие незавершенных движений, при сидении — поникшая поза. Начав движение, животное долго не могло остановиться. У человека с дисфункцией бледного шара затруднено начало движений, исчезают вспомогательные и реактивные движения при вставании, нарушаются содружественные движения рук при ходьбе, появляется симптом пропульсии: длительная подготовка к движению, затем быстрое движение и остановка. Такие циклы у больных повторяются многократно.

Большая часть афферентных сигналов, приходящих к базальным ганглиям, поступает в полосатое тело базальных ганглий. Эти сигналы исходят почти исключительно из трех источников: от всех областей коры больших полушарий, от внутрипластинчатых ядер таламуса и черной субстанции базальных ганглий. Эфферентные волокна от стриатума идут к бледному шару базальных ганглий и черной субстанции, от которой начинается дофаминергический путь к полосатому телу и пути, идущие к таламусу. От внутреннего отдела бледного шара берет начало самый важный из всех эфферентных трактов, заканчивающийся в таламусе и в крыше среднего мозга.

№1.2. Функции хвостатого ядра и скорлупы. Афферентные и эфферентные связи

Хвостатое ядро (nucleus caudatus) и скорлупа (putamen) являются эволюционно более поздними, чем бледный шар, образованиями и функционально оказывают на него тормозящее влияние.

Хвостатое ядро и скорлупа имеют сходное гистологическое строение. Их нейроны относятся ко II типу клеток Гольджи, т. е. имеют короткие дендриты, тонкий аксон; их размер до 20 мк. Этих нейронов в 20 раз больше, чем нейронов Гольджи I типа, имеющих разветвленную сеть дендритов и размер около 50 мк.

Функции любых образований головного мозга определяются прежде всего их связями, которых у базальных ядер достаточно много. Эти связи имеют четкую направленность и функциональную очерченность.

Хвостатое ядро и скорлупа получают нисходящие связи преимущественно от экстрапирамидной коры через подмозолистый пучок. Другие поля коры большого мозга также посылают большое количество аксонов к хвостатому ядру и скорлупе.

Обилие и характер связей хвостатого ядра и скорлупы свидетельствуют об их участии в интегративных процессах, организации и регуляции движений, регуляции работы вегетативных органов.

Раздражение поля 8 коры большого мозга вызывает возбуждение нейронов хвостатого ядра, а поля 6 — возбуждение нейронов хвостатого ядра и скорлупы. Одиночное раздражение сенсомоторной области коры большого мозга может вызывать возбуждение или торможение активности нейронов хвостатого ядра. Эти реакции возникают через 10—20 мс, что свидетельствует о прямых и опосредованных связях коры большого мозга с хвостатым ядром.

эволюционно более позднее образование головного мозга включающее в свой состав хвостатое ядро

Медиальные ядра таламуса имеют прямые связи с хвостатым ядром, свидетельством чего служит реакция его нейронов, наступающая через 2—4 мс после раздражения таламуса.

Во взаимодействиях хвостатого ядра и бледного шара превалируют тормозные влияния. Если раздражать хвостатое ядро, то большая часть нейронов бледного шара тормозится, а меньшая возбуждается. В случае повреждения хвостатого ядра у животного появляется двигательная гиперактивность.

Взаимодействие черного вещества и хвостатого ядра основано на прямых и обратных связях между ними. Установлено, что стимуляция хвостатого ядра усиливает активность нейронов черного вещества. Стимуляция черного вещества приводит к увеличению, а разрушение — к уменьшению количества дофамина в хвостатом ядре. Установлено, что дофамин синтезируется в клетках черного вещества, а затем со скоростью 0,8 мм/ч транспортируется к синапсам нейронов хвостатого ядра. В хвостатом ядре в 1 г нервной ткани накапливается до 10 мкг дофамина, что в 6 раз больше, чем в других отделах переднего мозга, бледном шаре, в 19 раз больше, чем в мозжечке. Благодаря дофамину проявляется растормаживающий механизм взаимодействия хвостатого ядра и бледного шара.При недостатке дофамина в хвостатом ядре (например, при дисфункции черного вещества) бледный шар растормаживается, активизирует спинно-стволовые системы, что приводит к двигательным нарушениям в виде ригидности мышц.

Кортико-стриарные связи топически локализованы. Так, передние области мозга связаны с головкой хвостатого ядра. Патология, возникающая в одной из взаимосвязанных областей кора — хвостатое ядро, функционально компенсируется сохранившейся структурой.Кортико-стриарные связи топически локализованы. Так, передние области мозга связаны с головкой хвостатого ядра. Патология, возникающая в одной из взаимосвязанных областей кора — хвостатое ядро, функционально компенсируется сохранившейся структурой.

Хвостатое ядро и бледный шар принимают участие в таких интегративных процессах, как условнорефлекторная деятельность, двигательная активность. Это выявляется при стимуляции хвостатого ядра, скорлупы и бледного шара, деструкции и при регистрации электрической активности.

Прямое раздражение некоторых зон хвостатого ядра вызывает поворот головы в сторону, противоположную раздражаемому полушарию, животное начинает двигаться по кругу, т. е. возникает так называемая циркуляторная реакция.

Раздражение других областей хвостатого ядра и скорлупы вызывает прекращение всех видов активности человека или животного: ориентировочной, эмоциональной, двигательной, пищевой. При этом в коре большого мозга наблюдается медленноволновая активность.

У человека стимуляция хвостатого ядра во время нейрохирургической операции нарушает речевой контакт с больным: если больной что-то говорил, то он замолкает, а после прекращения раздражения не помнит, что к нему обращались. В случаях травм головного мозга с раздражением головки хвостатого ядра у больных отмечается ретро-, антеро- или ретроантероградная амнезия.

У таких животных, как обезьяны, раздражения хвостатого ядра на разных этапах реализации условного рефлекса приводят к торможению выполнения данного рефлекса. Например, если у обезьяны через вживленные электроды раздражать хвостатое ядро перед подачей условного сигнала, то обезьяна не реагирует на сигнал, как будто не слышала его; раздражение ядра после того, как обезьяна на сигнал направляется к кормушке или уже начинает брать пищу из кормушки, приводит к остановке животного, после прекращения раздражения обезьяна, не завершив условной реакции, возвращается на место, т. е. она «забывает», что был раздражающий сигнал (ретроградная амнезия).

Раздражение хвостатого ядра может полностью предотвратить восприятие болевых, зрительных, слуховых и других видов стимуляции. Раздражение вентральной области хвостатого ядра снижает, а дорсальной — повышает слюноотделение.

При стимуляции хвостатого ядра удлиняются латентные периоды рефлексов, нарушается переделка условных рефлексов. Выработка условных рефлексов на фоне стимуляции хвостатого ядра становится невозможной. Видимо, это объясняется тем, что стимуляция хвостатого ядра вызывает торможение активности коры большого мозга.

Ряд подкорковых структур также получает тормозное влияние хвостатого ядра. Так, стимуляция хвостатых ядер вызывала веретенообразную активность в зрительном бугре, бледном шаре, субталамическом теле, черном веществе и др.

Таким образом, специфичным для раздражения хвостатого ядра является преимущественно торможение активности коры большого мозга, подкорковых образований, торможение безусловного и условнорефлекторного поведения.

В то же время при раздражении хвостатого ядра могут появляться некоторые виды изолированных движений. Видимо, хвостатое ядро имеет наряду с тормозящими и возбуждающие структуры.

Выключение хвостатого ядра сопровождается развитием гиперкинезов типа непроизвольных мимических реакций, тремора, атетоза, торсионного спазма, хореи (подергивания конечностей; туловища, как при некоординированном танце), двигательной гиперактивности в форме бесцельного перемещения с места на место.

В случае повреждения хвостатого ядра наблюдаются существенные расстройства высшей нервной деятельности, затруднение ориентации в пространстве, нарушение памяти, замедление роста организма. После двустороннего повреждения хвостатого ядра условные рефлексы исчезают на длительный срок, выработка новых рефлексов затрудняется, общее поведение отличается застойностью, инертностью, трудностью переключений. У обезьян после одностороннего повреждения хвостатого ядра условная реакция восстанавливалась через 30—50 дней, латентные периоды рефлексов удлинялись, появлялись межсигнальные реакции. Двустороннее повреждение приводило к полному торможению условных рефлексов. Видимо, двустороннее повреждение истощает симметричные компенсаторные механизмы.

При воздействиях на хвостатое ядро, помимо нарушений высшей нервной деятельности, отмечаются расстройства движения. Многие авторы отмечают, что у разных животных при двустороннем повреждении полосатого тела появляется безудержное стремление двигаться вперед, при одностороннем — возникают манежные движения.

Несмотря на большое функциональное сходство хвостатого ядра и скорлупы, имеется ряд функций, специфичных для последней. эволюционно скорлупа появляется раньше хвостатого ядра (ее зачатки есть уже у рыб).

Для скорлупы характерно участие в организации пищевого поведения: пищепоиска, пищенаправленности, пищезахвата и пищевладения; ряд трофических нарушений кожи, внутренних органов (например, гепатолентикулярная дегенерация) возникает при нарушениях функции скорлупы. Раздражения скорлупы приводят к изменениям дыхания, слюноотделения.

Как упоминалось ранее, раздражение хвостатого ядра тормозит условный рефлекс на всех этапах его реализации. В то же время раздражение хвостатого ядра препятствует угашению условного рефлекса, т. е. развитию торможения; животное перестает воспринимать новую обстановку. Учитывая, что стимуляция хвостатого ядра приводит к торможению условного рефлекса, следовало бы ожидать, что разрушение хвостатого ядра вызовет облегчение условнорефлекторной деятельности. Но оказалось, что разрушение хвостатого ядра также приводит к торможению условнорефлекторной деятельности. Видимо, функция хвостатого ядра не является просто тормозной, а заключается в корреляции и интеграции процессов оперативной памяти. Это подтверждается также тем, что на нейронах хвостатого ядра конвергирует информация различных сенсорных систем, так как большая часть этих нейронов полисенсорна.

№1.3. Функциональная организация нигро-стриопаллидарной системы

Стриопаллидарная система разделяется по функциональному значению и морфологическим особенностям на стриатум и паллидум (табл. 3).

Таблица 3. Функциональные и морфологические различия стриатума и паллидума

эволюционно более позднее образование головного мозга включающее в свой состав хвостатое ядро

Никакая другая система не поддается в такой степени внешнему моделирующему влиянию гормонов и нейромедиаторов, как экстрапирамидная, так как функционально она входит в структуру лимбической системы. Именно поэтому энергетический настрой движений человека зависит от эмоций, и при поражении подкорковых ганглиев выявляются аффективные нарушения (насильственный смех и плач). Функции экстрапирамидной системы.

1. Регуляция мышечного тонуса в комплексе с другими структурами.

2. Регуляция темпа, ритма и пластики любого произвольного двигательного акта.

3. Обеспечение двигательного компонента в регуляции безусловных рефлексов (половой, оборонительный, старт-рефлекс и др.).

4. Обеспечение последовательности двигательного акта.

5. Обеспечение моторного компонента эмоциональной сферы.

6. Регуляция высокоспециализированных движений человека, которые достигли уровня автоматизмов.

№1.4. Симптомы поражения нигро-стриопаллидарной системы

Поражение паллидума: паллидарный синдром

Основными симптомами поражения бледного шара являются:

• изменение мышечного тонуса по пластическому типу, феномен «зубчатого колеса» (сопротивление, испытываемое при исследовании тонуса, нарастает к концу движения), пластическая ригидность;

• нарушение ритма сон-бодрствование;

• вегетативные расстройства (сальное лицо, шелушение кожи, гиперсаливация).

Поражение полосатого тела: стриарный синдром

При поражении стриарной системы возникает дистонически- гиперкинетический синдром, обусловленный дефицитом тормозящего влияния стриатума на нижележащие двигательные центры, вследствие чего развиваются мышечная гипотония и избыточные непроизвольные движения (гиперкинезы).

№2. Состав и функции лимбической системы

Лимбическая система представляет собой функциональное объединение структур мозга, участвующих в организации эмоционально-мотивационного поведения.

Источник

Эволюционно более позднее образование головного мозга включающее в свой состав хвостатое ядро

а) Роль базальных ганглиев в когнитивном контроле двигательных актов. Контур хвостатого ядра. Понятие «когнитивная способность» означает мыслительные процессы мозга, использующие как сенсорную информацию, поступающую в мозг, так и информацию, уже накопленную в памяти. Большинство наших двигательных актов являются следствием реализации генерируемых в мозге мыслей — процесса, который называют когнитивным контролем двигательной активности. Главную роль в этом контроле играет хвостатое ядро.

Нервные связи между хвостатым ядром и кортикоспинальной моторной системой, показанные на рисунке ниже, слегка отличаются от связей контура скорлупы.

эволюционно более позднее образование головного мозга включающее в свой состав хвостатое ядроКонтур хвостатого ядра системы базальных ганглиев для когнитивного планирования последовательных и параллельных двигательных программ для достижения специфических осознанных целей

Отчасти это связано с тем, что хвостатое ядро, как видно на рисунке ниже, распространяется во все доли большого мозга, начинаясь впереди в лобных долях, затем проходя через теменные и затылочные доли и, наконец, загибаясь снова вперед в височные доли, образуя подобие буквы «С».

эволюционно более позднее образование головного мозга включающее в свой состав хвостатое ядроАнатомические связи базальных ганглиев с корой большого мозга и таламусом, показанные в трехмерном изображении

Кроме того, хвостатое ядро получает основную часть своего «входа» из ассоциативных областей коры большого мозга, лежащих над хвостатым ядром, главным образом из областей, которые объединяют разные типы сенсорной и моторной информации в соответствующие мыслительные программы.

После того как сигналы из коры большого мозга достигают хвостатого ядра, они передаются к внутренней части бледного шара, затем к релейным ядрам переднего вентрального и вентролатерального таламуса и в итоге — назад к префронтальной, премоторной и дополнительной моторной областям коры большого мозга.

Однако практически ни один из возвращающихся сигналов не идет непосредственно к первичной моторной коре. Вместо этого сигналы идут к тем вспомогательным моторным регионам в премоторной и дополнительной моторной областях, которые имеют дело не с возбуждением отдельных мышечных движений, а с организацией программ последовательных движений, длящихся 5 сек или более.

Хорошей иллюстрацией сказанного будет мгновенная и автоматическая реакция человека, увидевшего приближение льва. Он:

(1) отворачивается от льва;

(3) даже пытается влезть на дерево.

Без когнитивных функций у человека не может быть интуитивного знания, позволяющего без слишком длительного размышления реагировать быстро и соответствующим образом.

Таким образом, когнитивный контроль двигательной активности определяет подсознательно и в течение секунд, какой комплекс движений будет полезен для достижения сложной цели, хотя само двигательное поведение в этом случае может продолжаться в течение многих секунд.

б) Участие базальных ганглиев в изменении временных характеристик и масштабного соотношения движений. В процессе регуляции движений реализуются две важные способности мозга:

(1) определять, как быстро движение должно выполняться;

(2) контролировать должную амплитуду движения.

Например, человек может писать букву «а» медленно или быстро. Так же он может написать маленькую «а» на листке бумаги или большую «а» на классной доске. Независимо от выбора пропорции буквы остаются примерно одинаковыми.

У больного с тяжелым поражением базальных ганглиев эти функции распределения во времени и масштабного соотношения движений недостаточны; иногда они практически отсутствуют. Базальные ганглии и здесь функционируют не в одиночку, а в тесной связи с корой большого мозга.

Особенно важной областью коры является задняя теменная кора, представляющая собой локус пространственных координат для регуляции движений всех частей тела, а также для соотношения тела и его частей со всем его окружением. На рисунке ниже показано, как человек, лишенный левой задней теменной коры, может рисовать лицо другого человека, изображая правильно пропорции с правой стороны, но почти игнорируя левую сторону (которая в его правом поле зрения).

эволюционно более позднее образование головного мозга включающее в свой состав хвостатое ядроТипичный рисунок, который может нарисовать человек с тяжелым поражением левой теменной коры, где хранятся пространственные координаты правого поля зрения

Такой человек также не будет пытаться пользоваться своей правой рукой, правой кистью или другими правыми частями тела для выполнения задач, почти не осознавая, что эти части его тела существуют.

Поскольку хвостатое ядро системы базальных ганглиев функционирует в основном в связи с ассоциативными областями коры большого мозга, например задней теменной корой, по-видимому, определение скоростных характеристик и масштабных соотношений движений является функциями этого контура когнитивного двигательного контроля хвостатого ядра.

Однако наше понимание функции базальных ганглиев все еще так неопределенно, что многое из того, что обсуждается в нескольких последних разделах, является предположением, логическим умозаключением, а не доказанным фактом.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *