группа крови биохимический полиморфизм белков их использование в практике животноводства

84. Практическое использование групп крови и полиморфных систем в животноводстве.

ЗНАЧЕНИЕ ГРУПП КРОВИ ДЛЯ ПРАКТИКИ

Контроль достоверности происхождения животных. Одна из главных областей практического применения групп крови — контроль происхождения животных. Такое их использование вы­звано тем, что в некоторых стадах встречается 20 % и более ошибок в происхождении животных. Это может быть следствием не только недостатков в работе техников по искусственному осеменению, потери номеров, неправильного их чтения, но и результатом повторных осеменений животных спермой разных производителей (в повторную охоту приходит до 50 % коров, а продолжительность стельности в норме изменяется от 270 до 292 дней) и других случаев.

Контроль происхождения необходим и при испытании свино­маток по качеству потомства, осемененных смешанной спермой хряков (В. Н. Тихонов, 1967), для установления моно- и дизи-готности двоен, при получении животных методом транспланта­ции эмбрионов и т. д.

Контроль достоверности происхождения животных возможен благодаря: 1) кодоминантному наследованию антигенных факто­ров; 2) их неизменности в течение онтогенеза; 3) огромному числу комбинаций групп крови, которые в пределах вида прак­тически не бывают одинаковыми у двух особей, за исключением монозиготных близнецов.

В таблице 33 приведен пример уточнения отцовства в случае, когда корова в первый раз и повторно была осеменена спермой разных быков. По системе А невозможно уточнить происхожде­ние потомка, так как аллель DH есть у обоих быков. В системе В теленок получил один аллель ВОгА от матери (такого аллеля нет у предполагаемых отцов), а второй АВ — от быка N° 2 (этого аллеля нет у первого производителя). Поэтому уже можно сделать заклю­чение, что отцом теленка является бык № 2 (исходя из второго правила). Это заключение подтверждается и наличием у потомст­ва аллеля W в системе С. Точно так же по системе F—V можно сделать заключение, что первый производитель не может быть отцом, так как он гомозиготен по аллелю F/F, а потомок гомози­готен по противоположному аллелю V/V (третье правило).

Иммуногенетический анализ близнецов. Как известно, близне­цов, развивающихся из одной зиготы, называют монозиготными или однояйцовыми, а из двух оплодотворенных яйцеклеток (зигот) — дизиготными или двуяйцевыми. Монозиготные близне­цы всегда одного пола и имеют одинаковые группы крови. Раз­нополые двойни всегда дизиготные и с разными группами крови. В среднем у крупного рогатого скота рождается около 2—3 % двоен, среди которых 50 % двуполых пар, 25 % пар бычков и 25 % телочек. Среди общего количества двоен только 10 % бы­вает монозиготных (поровну мужского и женского пола).

В 90 % случаев у двоен крупного рогатого скота возникает анастомоз (срастание) кровеносных сосудов, и, как следст­вие этого, у дизиготных двоен наблюдается химеризм (моза-ицизм) эритроцитов. Смесь двух различных типов эритроцитов называется эритроцитарнымхимеризмом.

Впервые это явление открыл Оуэн в 1945 г. у двоен крупного рогатого скота, что явилось важным вкладом в разработку теории приобретенной иммунологической толерантности. В эмбрио­нальный период при анастомозе сосудов образуется два типа эритроцитов и антигенов, соответствующих их генотипам (рис. 43). Но в связи с обменом эритроцитов на ранней стадии онтогенеза у близнецов не образуются антитела на чужеродные антигены друг друга (явление толерантности), поэтому в течение всей жизни можно проводить (как и у однояйцовых близнецов) пересадку органов и тканей.

Около 90 % телок из разнополых двоен в результате анасто­моза сосудов становятся бесплодными — фримартинами, и их, • естественно, приходится выбраковывать. Сейчас существует точка зрения, что антиген, Н—Y направляет развитие недиффе­ренцированных гонад по мужскому (тестикулярному) типу. Бес­плодие самок вызвано не передачей тестостерона от бычка-близ­неца телочке, как предполагали раньше, а химерностыо половых хромосом у самки (XX/XY). Развитие в химерных яичниках кле­ток XX по мужскому типу определяется антигеном Н—Y, кото­рый вырабатывается клетками XY. С помощью групп крови можно выявить до 98 % дизиготных пар. Химеризм эритроцитов встречается у человека (очень редко), овец и свиней.

Межпородная и внутрипородная дифференциации. Группы крови, как и другие биохимические полиморфные системы, по­зволяют изучать историю эволюции домашних животных, проис­хождение и родство пород, генетическую структуру их и внутри-породную дифференциацию, проводить планирование и кон­троль селекционного процесса.

Одна из самых жирномолочных пород мира — джерсейская имеет ряд В-аллелей, которые не встречаются у других западноев­ропейских пород скота, кроме гернсейской. У этой породы также высока частота антигена Z’, тогда как у западноевропейских пород он редок, но зато встречается у зебу Африки, Азии и скота юга Восточной Европы. Подтверждено с помощью групп крови генеа­логическое родство голландского и холмогорского скота.

В. Н. Тихонов (1991) установил, что антиген Fa встречается почти у всех животных вьетнамской черной, польско-китайской и беркширской пород свиней (около 100 %), в меньшей степени у кемеровской, миргородской и северокавказской (54 и 38 %), низкая частота у украинской степной (3 %), тогда как у свиней крупной белой, эстонской белой и других пород этот антиген отсутствует или имеет очень низкую частоту. Эти исследования объяснили филогенез многих современных пород от древних свиней Юго-Восточной Азии и показали генетическое сцепление локусов систем групп крови F с локусом белой масти. Выявлена и внутрипородная- дифференциация животных по группам крови в пределах линий и семейств. Ряд ученых указывают на возмож­ность поддержания генетического сходства животных линий с родоначальником и выведения генетически маркированных линий животных с использованием групп крови.

Построение генетических карт. Изучение сцепления локусов ^групп крови и биохимических полиморфных систем и частоты ккроссинговера между ними дает возможность составить генети­ческие карты хромосом. Карты хромосом позволяют следить за наследственной передачей болезней, если они сцеплены с груп­пами крови или другими полиморфными системами.

У свиней J- и С-локусы групп крови сцеплены с генами главного локуса гистосовместимости свиней (SLA). Частота кроссинговера. между J- и С-локусами равна 6 сМ, а между J-локусом и SLA — 9,8 сМ. В. Н. Тихонов и др. (1982) впервые картировали локус структурного гена аллотипа А=23 альфа-гло­булина сыворотки крови в хромосоме №16 свиньи.

В. Н. Тихоновым обобщены данные по картированию боль­шой группы локусов у свиней (рис. 44). Определено расстояние локусов от центромеры. По мнению других авторов, J-, С- и SLA-локусы находятся в 7-й хромосоме, локус группы крови Н, контролирующий ингибицию А- и О-факторов (S) и чувствитель­ность к галотану (Hal), — в 6-й хромосоме (P. Thomsen, 1990).

Связь групп крови с резистентностью к болезням. Известно, что заболеваемость язвой двенадцатиперстной кишки у людей с груп­пой крови О (I) в 1,3—1,5 раза выше, чем у лиц с другими группа­ми. Среди лиц с А (П)-группой частота пораженное™ туберкуле­зом и раком желудка в 1,4 и 1,2 раза соответственно больше, чем у лиц с О-группой.

К настоящему времени выполнено огромное количество работ по изучению корреляции групп крови и биохимических поли­морфных систем с резистентностью к болезням, а также с раз­личными признаками продуктивности. Поиск подобных связей основан на четырех (рис. 45) теоретических положениях: 1) плейотропном действии генов, т. е. когда гены, обусловливающие группы крови или биохимические полиморф­ные системы (маркерные гены), прямо или косвенно влияют на резистентность к болезням и продуктивность;

2) сцеплении между локусами групп крови или биохими­ческих полиморфных систем и локусами, влияющими на резис­тентность или продуктивность;

3) гетерозисе, когда гетерозиготность по группам крови или биохимическим полиморфным системам повышает резис­тентность к болезням или продуктивность;

4\ иммунологической несовместимости ма­тери и плода, при которой вследствие разных генотипов у матери и плода по группам крови возникают, например, гемолитическая болезнь у жеребят, поросят, эритробластоз у человека.

Н-группа крови используется для определения чувствитель­ности свиней к синдрому стресса (PSS), который характеризуется внезапной смертью животных, вызванной транспортировкой, высокой температурой и другими стрессорами. К PSS чувстви­тельны гомозиготные Н а Н а особи. Локусы Н-системы группы крови и PHI (фосфогексоизомеразы) связаны с чувствительнос­тью к синдрому злокачественной гипертермии (MHS), который вызывается лекарственными веществами, галотаном.

Аллель В 21 группы крови у птиц коррелирует с повышенной резистентностью к болезни Марека. Цыплята генотипа В 2 /В 2 более резистентны к вирусу саркомы Рауса, чем особи с геноти­пом В 5 5 .

Гемолитическая болезнь новорожденных. В 1940 г. Левин с сотрудниками открыли гемолитическую болезнь новорожденных у человека, обусловленную несовместимостью генотипов матери и плода. В браках резус-положительных (Rh + ) мужчин с резус-отрицательными (Rh

Во многом сходное заболевание встречается у поросят, жере­бят и телят. Но в отличие от человека плацента указанных видов непроницаема для антител и они накапливаются в молозиве (рис. 46). Только после сосания матери в первые 24—48 ч у новорожденного наблюдаются патологические изменения в виде желтушности склеры глаз, слабости, учащенного дыхания, сни­жения числа эритроцитов. Молодняк в таких случаях погибает в течение нескольких дней.

У лошадей изогемолиз новорожденных наиболее часто возни­кает, когда жеребята имеют Ai- и Q-антигены соответствующих систем групп крови, наследуемых от отца и отсутствующих у ма­терей. Иногда иммунологический конфликт наступает при насле­довании потомков от отца антигенов R и S. Своевременное неза­долго до выжеребки выявление антител у матерей и поение жере­бенка первые два дня жизни молозивом другой кобылы позволяют избежать заболевания. В это время молозиво матери сдаивают.

Частота изогемолиза новорожденных у жеребят английской чистокровной породы составляет около 1 %. Полагают, что эта болезнь в основном встречается у лошадей арабской породы и других, от нее происходящих.

Естественный изогемолиз новорожденных у крупного рогато­го скота встречается редко, поэтому до 1970 г. не было зареги­стрировано ни одного случая заболевания. В настоящее время имеется много данных о том, что в стадах, вакцинированных против анаплазмоза, частота изогемолиза (N1) достигает 3—20 %. По данным Керр (1973), в одном стаде от 24 коров, за год до отела вакцинированных против анаплазмоза, было 66,6 % пора­женных N1 телят, из которых 18 % погибло. Полагают, что в большинстве случаев изогемолиз новорожденных у крупного ро­гатого скота — следствие вакцинации против анаплазмоза. • У свиней, как и у лошадей, основная причина N1 1 и В 3 у кур коррелируют с высокой яйценоскостью.

Повышение продуктивности может быть связано и с гетерози-‘ готностью по группам крови. Так, увеличение гетерозиготности по В-локусу у кур привело к повышению вылупляемости цып­лят, интенсивности роста и яйценоскости.

Одна из гипотез, объясняющих гетерозис (превосходство гиб-ридов над родительскими формами по степени развития того или иного признака), — гипотеза сверхдоминантности. Она основы­вается на утверждении, что в гетерозиготе гены более полно проявляются, чем в гомозиготе. В. Н. Тихонов установил, что гетерозиготность по некоторым антигенам групп крови ведёт к гетерозису. При спаривании гомозиготных особей типа Gbb x х Gbb в среднем от свиноматки получено 10,67 поросенка, при спаривании гетерозиготных животных типа Gab x Gab — 11,47, а при спаривании Gaa x Gbb — 12,34 поросенка (гетерозис по плодовитости). В последнем случае масса гетерозиготных поро­сят в 2-месячном возрасте выше на 11 %.

ЗНАЧЕНИЕ БИОХИМИЧЕСКОГО ПОЛИМОРФИЗМА

Биохимические полиморфные системы белков используются для следующих целей:

1) изучения причин и динамики генотипической изменчивос­ти, составляющей основу эволюционной генетики;

2) уточнения происхождения отдельных животных;

3) описания межпородной и внутрипородной дифференциа­ции, изучения филогенеза и аллелофонда пород, линий и се­мейств, а также генетических процессов, происходящих в попу­ляциях животных, и изменения их генетической структуры в процессе селекции;

4) определения моно- и дизиготных двоен;

5) построения генетических карт хромосом;

6) подбора гетерозисной сочетаемости;

7) выявления связи с резистентностью к заболеваниям, про­дуктивностью;

8) использования биохимических систем в качестве генетичес­ких маркеров в селекции животных.

Изучение 9 полиморфных систем белков у 10 главных групп скота позволило подтвердить вывод о том, что зебувидный скот Индии значительно отличается от европейских пород и принад­лежит к другому виду (Bos indicus). Санга (тип африканского горбатого скота) занимает промежуточное положение между ин­дийским зебу и европейскими породами, но в то же время имеет свои уникальные признаки. Часть из них — следствие обмена генов в результате миграции зебувидного скота Индии в Африку. Использование генных частот позволяет вычислить генетические дистанции между породами и определить их эволюционную вза­имосвязь. На рисунке 48 в качестве примера показаны эволюци­онные взаимосвязи между 14 породами скота.

По данным С. А. Петрушки (1970), частота аллеля P-Lg A была в 2 раза выше у животных голландской и симментальской пород (0,514 и 0,436) в сравнении с бурой латвийской (0,210). Многие европейские породы имеют очень низкую частоту типов транс-феррина Т^ и TF.

Использование полиморфных систем белков вместе с группа­ми крови повышает точность определения происхождения жи­вотных. Так, по группам крови отцовство можно установить в 81 % случаев, а дополнительные анализы только типов транс-феррина повышают точность до 90 %.

Данные по красной датской породе свидетельствуют о том, что только 3 % генетической изменчивости в содержании жира и 5 % в молочности обусловлены различиями по группам крови. Видимо, есть большая вероятность установления более тесной корреляции генетических полиморфных систем с резистентнос-тью к некоторым заболеваниям вследствие менее сложной их генетической детерминации, чем признаков продуктивности Анализ полиморфизма яичного белка овоглобулинового локу-са G3 показал, что куры с типом АВ более устойчивы к пуллоро-зу-тифу. Восприимчивость к этому заболеванию кур породы леггорн была связана с аллелем G^S, а породы корниш — с алле-лем G B 3-

В Австралии, а потом в Кении у породы овец ромни-марш с типом гемоглобина НЬА найдена более высокая резистентность к гемонхозу (заболевание, вызываемое нематодами, паразитирую­щими в сычуге), чем у животных с гемоглобином типов НЬВ и НЬАВ. Однако имеются сведения и об отсутствии связи типов гемоглобина у местных флоридских овец с невосприимчивостью к гемонхозу.

У свиней установлена связь типов фермента фосфогексоизо-мераза (PHI) с синдромом злокачественной гипертермии (MHS). Коэффициент корреляции между чувствительностью к MHS и генотипом РН1 В /РН1 В равен 0,19, а относительный риск возник­новения MHS у особей этого генотипа по отношению к имею­щим его животным был 18,8.

Изучение новых биохимических полиморфных систем позво­лит глубже понять динамику генотипической изменчивости в популяциях и механизмы поддержания этой изменчивости, изме­нение генетической структуры популяций при селекции, плани­рование и контроль с их помощью селекционного процесса. Можно рассчитывать на выявление более однозначных связей отдельных аллелей или их совокупности с резистентностью к болезням, признакам продуктивности и использовать полиморф- ные системы как генетические маркеры в селекции.

Источник

Группы крови и биохимический полиморфизм белков

Группы крови в каждой системе наследуются как простые менделевские признаки независимо от других систем. Каждый антиген обусловлен одним аллелем.

Большинство аллелей генетических систем групп крови наследуется по типу кодоминирования, т.е. в гетерозиготе фенотипически проявляются оба гена. Можно выделить три основных правила наследования групп крови:

— каждая особь наследует по одному из двух аллелей от отца и от матери в каждой системе групп крови;

— особь с антигенами, не обнаруженными хотя бы у одного из родителей, не может быть потомком данной родительской пары;

— гомозиготная особь по одному антигену, не может быть потомком гомозиготной особи с противоположным антигеном.

Определение групп крови у крупного рогатого скота. Определение групп крови проводят с помощью реагентов (моноспецифических сывороток). У животных берут кровь, центрифугируют для осаждения эритроцитов и сливают надосадочную жидкость. Эритроциты трижды промывают физиологическим раствором и центрифугируют. Из тщательно отмытых эритроцитов готовят 2,5% суспензию для определения групп крови.

Определение групп крови проводят на полиэтиленовых пластинках с ячейками. В лунки капают по две капли реагентов, затем добавляют одну каплю 2,5% суспензии эритроцитов исследуемого животного. Смесь перемешивают и оставляют на 15 мин при комнатной температуре. Затем добавляют по одной капле комплемента (сыворотка крови кролика или морской свинки), смесь встряхивают и оставляют на 30 мин. По истечении этого времени смесь тщательно перемешивают и инкубируют в течение 2-2,5 час при температуре 26-28 0 С. После этого срока проводят читку реакции. При наличии в эритроцитах антигена в сыворотке наступает гемолиз: оболочки эритроцитов разрываются, и гемоглобин окрашивает жидкость в розовый цвет. При отсутствии реакции эритроциты оседают на дно, среда остается неокрашенной.

Основной метод изучения полиморфизма белков и ферментов – электро-форез в крахмальном или полиакриламидном геле и иммуноэлектрофорез. Белковые молекулы обычно несут определенный электрический заряд, величина которого связана со строением белковых молекул. Поэтому в электрическом поле они продвигаются с разной скоростью, что и позволяет их разделять.

Кроме полиморфных систем гемоглобина и трансферрина у животных изучено большое количество других: церуллоплазмин,щелочная и кислая фосфотазы, амилаза, постальбумин и др.

В животноводстве полиморфные системы белков крови используются для тех же целей, что и группы крови.

Задачи по иммуногенетике

1. Свиноматка была покрыта двумя хряками. Результаты иммунологи-ческого исследования родителей и потомства приведены в таблице. Установите для каждого поросенка его отца, показав, по каким антигенам сделано заключение об его отцовстве.

Результаты иммунологического исследования родителей

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *