python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf6 книг по искусственному интеллекту [Python]

[1] Python для сложных задач. Наука о данных и машинное обучение [2018] Плас Дж

Это подробное руководство по самым разным вычислительным и статистическим методам, без которых немыслима любая интенсивная обработка данных, научные исследования и передовые разработки. Читатели, уже имеющие опыт программирования и желающие эффективно использовать Python в сфере Data Science, найдут в этой книге ответы на всевозможные вопросы.

[2] Машинное обучение и TensorFlow [2019] Шакла

[3] Основы Data Science и Big Data. Python и наука о данных [2018] Силен

[5] Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow. Концепции, инструменты и техники для создания интеллектуальных систем [2018] Жерон

«Эта книга — замечательное введение в теорию и практику решения задач с помощью нейронных сетей. Она охватывает ключевые моменты, необходимые для построения эффективных приложений, а также обеспечивает достаточную основу для понимания результатов новых исследований по мере их появления. Я рекомендую эту книгу всем, кто заинтересован в освоении практического машинного обучения».
— Пит Уорден, технический руководитель направления TensorFlow.
Благодаря серии недавних достижений глубокое обучение значительно усилило всю область машинного обучения. В наше время даже программисты, почти ничего не знающие об этой технологии, могут использовать простые и эффективные инструменты для реализации программ, которые способны обучаться на основе данных. В настоящем практическом руководстве показано, что и как следует делать.
За счет применения конкретных примеров, минимума теории и двух фреймворков Python производственного уровня — Scikit-Learn и TensorFlow — автор книги Орельен Жерон поможет вам получить интуитивное представление о концепциях и инструментах, предназначенных для построения интеллектуальных систем. Вы узнаете о ряде приемов, начав с простой линейной регрессии и постепенно добравшись до глубоких нейронных сетей. Учитывая наличие в каждой главе упражнений, призванных закрепить то, чему вы научились, для начала работы нужен лишь опыт программирования.
— Исследуйте область машинного обучения, особенно нейронные сети.
— Используйте Scikit-Learn для отслеживания проекта машинного обучения от начала до конца.
— Исследуйте некоторые обучающие модели, включая методы опорных векторов, деревья принятия решений, случайные леса и ансамблевые методы.
— Применяйте библиотеку TensorFlow для построения и обучения нейронных сетей.
— Исследуйте архитектуры нейронных сетей, включая сверточные сети, рекуррентные сети и глубокое обучение с подкреплением.
— Освойте приемы для обучения и масштабирования глубоких нейронных сетей.
— Используйте практические примеры кода, не овладевая чрезмерно теорией машинного обучения или деталями алгоритмов.

[6] Глубокое обучение в Python [2018] Франсуа Шолле

Источник

Python для сложных задач, наука о данных и машинное обучение, Вандер П.Дж., 2018

К сожалению, на данный момент у нас невозможно бесплатно скачать полный вариант книги.

Но вы можете попробовать скачать полный вариант, купив у наших партнеров электронную книгу здесь, если она у них есть наличии в данный момент.

Также можно купить бумажную версию книги здесь.

Python для сложных задач, наука о данных и машинное обучение, Вандер П.Дж., 2018.

Книга «Python для сложных задач: наука о данных и машинное обучение» — это подробное руководство по самым разным вычислительным и статистическим методам, без которых немыслима любая интенсивная обработка данных, научные исследования и передовые разработки. Читатели, уже имеющие опыт программирования и желающие эффективно использовать Python в сфере Data Science, найдут в этой книге ответы на всевозможные вопросы, например: как считать этот формат данных в скрипт? как преобразовать, очистить эти данные и манипулировать ими? как визуализировать данные такого типа? как при помощи этих данных разобраться в ситуации, получить ответы на вопросы, построить статистические модели или реализовать машинное обучение?

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Предисловие.
Что такое наука о данных.

Эта книга посвящена исследованию данных с помощью языка программирования Python. Сразу же возникает вопрос: что же такое наука о данных (data science)? Ответ на него дать непросто — настолько данный термин многозначен. Долгое время активные критики отказывали термину «наука о данных» в праве на существование либо по причине его избыточности (в конце концов, какая наука не имеет дела с данными?), либо расценивая этот термин как «модное словечко» для придания красоты резюме и привлечения внимания агентов по найму кадров. На мой взгляд, в подобных высказываниях критики упускали нечто очень важное. Лучшее из возможных определений науки о данных приведено в диаграмме Венна в науке о данных, впервые опубликованной Дрю Конвеем в его блоге в сентябре 2010 года (рис. 0.1). Междисциплинарность — ключ к ее пониманию.

Оглавление.

Предисловие.
Глава 1. IPython: за пределами обычного Python.
Глава 2. Введение в библиотеку NumPy.
Глава 3. Манипуляции над данными с помощью пакета Pandas.
Глава 4. Визуализация с помощью библиотеки Matplotlib.
Глава 5. Машинное обучение.
Об авторе.

По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.

On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Источник

Python для сложных задач, наука о данных и машинное обучение, Вандер П.Дж., 2018

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Python для сложных задач, наука о данных и машинное обучение, Вандер П.Дж., 2018.

Книга «Python для сложных задач: наука о данных и машинное обучение» — это подробное руководство по самым разным вычислительным и статистическим методам, без которых немыслима любая интенсивная обработка данных, научные исследования и передовые разработки. Читатели, уже имеющие опыт программирования и желающие эффективно использовать Python в сфере Data Science, найдут в этой книге ответы на всевозможные вопросы, например: как считать этот формат данных в скрипт? как преобразовать, очистить эти данные и манипулировать ими? как визуализировать данные такого типа? как при помощи этих данных разобраться в ситуации, получить ответы на вопросы, построить статистические модели или реализовать машинное обучение?

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Предисловие.
Что такое наука о данных.

Эта книга посвящена исследованию данных с помощью языка программирования Python. Сразу же возникает вопрос: что же такое наука о данных (data science)? Ответ на него дать непросто — настолько данный термин многозначен. Долгое время активные критики отказывали термину «наука о данных» в праве на существование либо по причине его избыточности (в конце концов, какая наука не имеет дела с данными?), либо расценивая этот термин как «модное словечко» для придания красоты резюме и привлечения внимания агентов по найму кадров. На мой взгляд, в подобных высказываниях критики упускали нечто очень важное. Лучшее из возможных определений науки о данных приведено в диаграмме Венна в науке о данных, впервые опубликованной Дрю Конвеем в его блоге в сентябре 2010 года (рис. 0.1). Междисциплинарность — ключ к ее пониманию.

Оглавление.

Предисловие.
Глава 1. IPython: за пределами обычного Python.
Глава 2. Введение в библиотеку NumPy.
Глава 3. Манипуляции над данными с помощью пакета Pandas.
Глава 4. Визуализация с помощью библиотеки Matplotlib.
Глава 5. Машинное обучение.
Об авторе.

Источник

Книга «Python для сложных задач: наука о данных и машинное обучение»

python для сложных задач наука о данных и машинное обучение вандер плас дж pdfПривет, Хаброжители! Данная книга — руководство по самым разным вычислительным и статистическим методам, без которых немыслима любая интенсивная обработка данных, научные исследования и передовые разработки. Читатели, уже имеющие опыт программирования и желающие эффективно использовать Python в сфере Data Science, найдут в этой книге ответы на всевозможные вопросы, например: как считать этот формат данных в скрипт? как преобразовать, очистить эти данные и манипулировать ими? как визуализировать данные такого типа? как при помощи этих данных разобраться в ситуации, получить ответы на вопросы, построить статистические модели или реализовать машинное обучение?

Ниже под катом обзор книги и отрывок «Гистограммы, разбиения по интервалам и плотность»

Для кого предназначена эта книга

«Как именно следует изучать Python?» — один из наиболее часто задаваемых мне (автору) вопросов на различных технологических конференциях и встречах. Задают его заинтересованные в технологиях студенты, разработчики или исследователи, часто уже со значительным опытом написания кода и использования вычислительного и цифрового инструментария. Большинству из них не нужен язык программирования Python в чистом виде, они хотели бы изучать его, чтобы применять в качестве инструмента для решения задач, требующих вычислений с обработкой больших объемов данных.

Эта книга не планировалась в качестве введения в язык Python или в программирование вообще. Я предполагаю, что читатель знаком с языком Python, включая описание функций, присваивание переменных, вызов методов объектов, управление потоком выполнения программы и решение других простейших задач. Она должна помочь пользователям языка Python научиться применять стек инструментов исследования данных языка Python — такие библиотеки, как IPython, NumPy, Pandas, Matplotlib, Scikit-Learn и соответствующие инструменты, — для эффективного хранения, манипуляции и понимания данных.

Общая структура книги

Каждая глава книги посвящена конкретному пакету или инструменту, составляющему существенную часть инструментария Python для исследования данных.

Отрывок. Гистограммы, разбиения по интервалам и плотность

Простая гистограмма может принести огромную пользу при первичном анализе набора данных. Ранее мы видели пример использования функции библиотеки Matplotlib (см. раздел «Сравнения, маски и булева логика» главы 2) для создания простой гистограммы в одну строку после выполнения всех обычных импортов (рис. 4.35):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

У функции hist() имеется множество параметров для настройки как вычисления, так и отображения. Вот пример гистограммы с детальными пользовательскими настройками (рис. 4.36):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Docstring функции plt.hist содержит более подробную информацию о других доступных возможностях пользовательской настройки. Сочетание опции histtype=’stepfilled’ с заданной прозрачностью alpha представляется мне очень удобным для сравнения гистограмм нескольких распределений (рис. 4.37):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Если же вам нужно вычислить гистограмму (то есть подсчитать количество точек в заданном интервале) и не отображать ее, к вашим услугам функция np.histogram():

Двумерные гистограммы и разбиения по интервалам

Аналогично тому, как мы создавали одномерные гистограммы, разбивая последовательность чисел по интервалам, можно создавать и двумерные гистограммы, распределяя точки по двумерным интервалам. Рассмотрим несколько способов выполнения. Начнем с описания данных массивов x и y, полученных из многомерного Гауссова распределения:

Функция plt.hist2d: двумерная гистограмма

Один из простых способов нарисовать двумерную гистограмму — воспользоваться функцией plt.hist2d библиотеки Matplotlib (рис. 4.38):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

У функции plt.hist2d, как и у функции plt.hist, имеется немало дополнительных параметров для тонкой настройки графика и разбиения по интервалам, подробно описанных в ее docstring. Аналогично тому, как у функции plt.hist есть эквивалент np.histogram, так и у функции plt.hist2d имеется эквивалент np.histogram2d, который используется следующим образом:

Для обобщения разбиения по интервалам для гистограммы на число измерений, превышающее 2, см. функцию np.histogramdd.

Функция plt.hexbin: гексагональное разбиение по интервалам

Двумерная гистограмма создает мозаичное представление квадратами вдоль координатных осей. Другая геометрическая фигура для подобного мозаичного представления — правильный шестиугольник. Для этих целей библиотека Matplotlib предоставляет функцию plt.hexbin — двумерный набор данных, разбитых по интервалам на сетке из шестиугольников (рис. 4.39):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

У функции plt.hexbin имеется множество интересных параметров, включая возможность задавать вес для каждой точки и менять выводимое значение для каждого интервала на любой сводный показатель библиотеки NumPy (среднее значение весов, стандартное отклонение весов и т. д.).

Ядерная оценка плотности распределения

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Длина сглаживания метода KDE позволяет эффективно выбирать компромисс между гладкостью и детализацией (один из примеров вездесущих компромиссов между смещением и дисперсией). Существует обширная литература, посвященная выбору подходящей длины сглаживания: в функции gaussian_kde используется эмпирическое правило для поиска квазиоптимальной длины сглаживания для входных данных.

В экосистеме SciPy имеются и другие реализации метода KDE, каждая со своими сильными и слабыми сторонами, например методы sklearn.neighbors.KernelDensity и statsmodels.nonparametric.kernel_density.KDEMultivariate. Использование библиотеки Matplotlib для основанных на методе KDE визуализаций требует написания излишнего кода. Библиотека Seaborn, которую мы будем обсуждать в разделе «Визуализация с помощью библиотеки Seaborn» данной главы, предлагает для создания таких визуализаций API с намного более сжатым синтаксисом.

Пользовательские настройки легенд на графиках

Большая понятность графика обеспечивается заданием меток для различных элементов графика. Мы ранее уже рассматривали создание простой легенды, здесь продемонстрируем возможности пользовательской настройки расположения и внешнего вида легенд в Matplotlib.
С помощью команды plt.legend() можно автоматически создать простейшую легенду для любых маркированных элементов графика (рис. 4.41):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Существует множество вариантов пользовательских настроек такого графика, которые могут нам понадобиться. Например, можно задать местоположение легенды и отключить рамку (рис. 4.42):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Можно также воспользоваться командой ncol, чтобы задать количество столбцов в легенде (рис. 4.43):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Можно использовать для легенды скругленную прямоугольную рамку (fancybox) или добавить тень, поменять прозрачность (альфа-фактор) рамки или поля около текста (рис. 4.44):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Дополнительную информацию об имеющихся настройках для легенд можно получить в docstring функции plt.legend.

Выбор элементов для легенды

По умолчанию легенда включает все маркированные элементы. Если нам этого не нужно, можно указать, какие элементы и метки должны присутствовать в легенде, воспользовавшись объектами, возвращаемыми командами построения графика. Команда plt.plot() умеет рисовать за один вызов несколько линий и возвращать список созданных экземпляров линий. Для указания, какие элементы использовать, достаточно передать какие-либо из них функции plt.legend() вместе с задаваемыми метками (рис. 4.45):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Обычно на практике мне удобнее использовать первый способ, указывая метки непосредственно для элементов, которые нужно отображать в легенде (рис. 4.46):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Обратите внимание, что по умолчанию в легенде игнорируются все элементы, для которых не установлен атрибут label.

Задание легенды для точек различного размера

Иногда возможностей легенды по умолчанию недостаточно для нашего графика. Допустим, вы используете точки различного размера для визуализации определенных признаков данных и хотели бы создать отражающую это легенду. Вот пример, в котором мы будем отражать население городов Калифорнии с помощью размера точек. Нам нужна легенда со шкалой размеров точек, и мы создадим ее путем вывода на графике маркированных данных без самих меток (рис. 4.47):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Легенда всегда относится к какому-либо находящемуся на графике объекту, поэтому, если нам нужно отобразить объект конкретного вида, необходимо сначала его нарисовать на графике. В данном случае нужных нам объектов (кругов серого цвета) на графике нет, поэтому идем на хитрость и выводим на график пустые списки. Обратите внимание, что в легенде перечислены только те элементы графика, для которых задана метка.

Мы создали посредством вывода на график пустых списков маркированные объекты, которые затем собираются в легенде. Теперь легенда дает нам полезную информацию. Эту стратегию можно использовать для создания и более сложных визуализаций.

Обратите внимание, что в случае подобных географических данных график стал бы понятнее при отображении на нем границ штата и других картографических элементов. Отличный инструмент для этой цели — дополнительный набор утилит Basemap для библиотеки Matplotlib, который мы рассмотрим в разделе «Отображение географических данных с помощью Basemap» данной главы.

Отображение нескольких легенд

Иногда при построении графика необходимо добавить на него несколько легенд для одной и той же системы координат. К сожалению, библиотека Matplotlib не сильно упрощает эту задачу: используя стандартный интерфейс legend, можно создавать только одну легенду для всего графика. Если попытаться создать вторую легенду с помощью функций plt.legend() и ax.legend(), она просто перекроет первую. Решить эту проблему можно, создав изначально для легенды новый рисователь (artist), после чего добавить вручную второй рисователь на график с помощью низкоуровневого метода ax.add_artist() (рис. 4.48):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Мы мельком рассмотрели низкоуровневые объекты рисования, из которых состоит любой график библиотеки Matplotlib. Если вы заглянете в исходный код метода ax.legend() (напомню, что сделать это можно в блокноте оболочки IPython с помощью команды legend??), то увидите, что эта функция состоит просто из логики создания подходящего рисователя Legend, сохраняемого затем в атрибуте legend_ и добавляемого к рисунку при отрисовке графика.

Пользовательские настройки шкал цветов

Легенды графика отображают соответствие дискретных меток дискретным точкам. В случае непрерывных меток, базирующихся на цвете точек, линий или областей, отлично подойдет такой инструмент, как шкала цветов. В библиотеке Matplotlib шкала цветов — отдельная система координат, предоставляющая ключ к значению цветов на графике. Поскольку эта книга напечатана в черно-белом исполнении, для данного раздела имеется дополнительное онлайн-приложение, в котором вы можете посмотреть на оригинальные графики в цвете (https://github.com/jakevdp/PythonDataScienceHandbook). Начнем с настройки блокнота для построения графиков и импорта нужных функций:

Простейшую шкалу цветов можно создать с помощью функции plt.colorbar (рис. 4.49):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Далее мы рассмотрим несколько идей по пользовательской настройке шкалы цветов и эффективному их использованию в разных ситуациях. Задать карту цветов можно с помощью аргумента cmap функции создания визуализации (рис. 4.50):

Все доступные для использования карты цветов содержатся в пространстве имен plt.cm. Вы можете получить полный список встроенных опций с помощью TAB-автодополнения в оболочке IPython:

Но возможность выбора карты цветов — лишь первый шаг, гораздо важнее выбрать среди имеющихся вариантов! Выбор оказывается гораздо более тонким, чем вы могли бы ожидать.

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Выбор карты цветов

Всестороннее рассмотрение вопроса выбора цветов в визуализации выходит за пределы данной книги, но по этому вопросу вы можете почитать статью Ten Simple Rules for Better Figures («Десять простых правил для улучшения рисунков»). Онлайн-документация библиотеки Matplotlib также содержит интересную информацию по вопросу выбора карты цветов.

Вам следует знать, что существует три различные категории карт цветов:

Продемонстрировать это можно путем преобразования шкалы цветов jet в черно-белое представление (рис. 4.51):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Отметим яркие полосы в ахроматическом изображении. Даже в полном цвете эта неравномерная яркость означает, что определенные части диапазона цветов будут притягивать внимание, что потенциально приведет к акцентированию несущественных
частей набора данных. Лучше применять такие карты цветов, как viridis (используется по умолчанию, начиная с версии 2.0 библиотеки Matplotlib), специально сконструированные для равномерного изменения яркости по диапазону. Таким образом, они не только согласуются с нашим цветовым восприятием, но и преобразуются для целей печати в оттенках серого (рис. 4.52):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Если вы предпочитаете радужные цветовые схемы, хорошим вариантом для непрерывных данных будет карта цветов cubehelix (рис. 4.53):

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

В других случаях, например для отображения положительных и отрицательных отклонений от среднего значения, могут оказаться удобны такие двуцветные карты шкалы цветов, как RdBu (сокращение от Red — Blue — «красный — синий»). Однако, как вы можете видеть на рис. 4.54, такая информация будет потеряна при переходе к оттенкам серого!

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Далее мы увидим примеры использования некоторых из этих карт цветов.
В библиотеке Matplotlib существует множество карт цветов, для просмотра их списка вы можете воспользоваться оболочкой IPython для просмотра содержимого подмодуля plt.cm. Более принципиальный подход к использованию цветов в языке Python можно найти в инструментах и документации по библиотеке Seaborn (см. раздел «Визуализация с помощью библиотеки Seaborn» этой главы).

Для Хаброжителей скидка 20% по купону — Python

Источник

Python для сложных задач. Наука о данных и машинное обучение (pdf+epub)

Посоветуйте книгу друзьям! Друзьям – скидка 10%, вам – рубли

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Эта и ещё 2 книги за 299 ₽

Отзывы 6

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

А на мой взгляд это как раз книга для начинающих разбираться в машинном обучении с использованием библиотек Python. Профессионалы из

отрасли и участники соревнований Kaggle это уже знают и применяют. Последовательно описаны оболочка IPython, библиотека NumPy для векторных вычислений, библиотека Pandas для манипуляции данными, Matplotlib для рисования графиков и, наконец, собственно библиотека алгоритмов машинного обучения Scikit-Learn. Все подробности вместить в одну книгу невозможно, поэтому впоследствии при необходимости нужно будет читать книги других авторов, посвященные конкретной библиотеке.

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

А на мой взгляд это как раз книга для начинающих разбираться в машинном обучении с использованием библиотек Python. Профессионалы из

отрасли и участники соревнований Kaggle это уже знают и применяют. Последовательно описаны оболочка IPython, библиотека NumPy для векторных вычислений, библиотека Pandas для манипуляции данными, Matplotlib для рисования графиков и, наконец, собственно библиотека алгоритмов машинного обучения Scikit-Learn. Все подробности вместить в одну книгу невозможно, поэтому впоследствии при необходимости нужно будет читать книги других авторов, посвященные конкретной библиотеке.

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Книга не для начального уровня, наиболее подойдет для профессионалов из отрасли машинного обучения, программирования и анализа. В книге подробно описаны методы, хорошо структурирована информация, полезно иметь не только электронную, но и бумажную версию.

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Книга не для начального уровня, наиболее подойдет для профессионалов из отрасли машинного обучения, программирования и анализа. В книге подробно описаны методы, хорошо структурирована информация, полезно иметь не только электронную, но и бумажную версию.

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Очень хорошая книга, вводящая в DS и дающая уверенность. Много примеров кода, датасетов, примеров визуализации, построения моделей, разбора работы с Pandas. Всё расписано от начала работы, предобработки и построения признаков и до готовой модели для самых разных задач. Очень рекомендую.

python для сложных задач наука о данных и машинное обучение вандер плас дж pdf

Очень хорошая книга, вводящая в DS и дающая уверенность. Много примеров кода, датасетов, примеров визуализации, построения моделей, разбора работы с Pandas. Всё расписано от начала работы, предобработки и построения признаков и до готовой модели для самых разных задач. Очень рекомендую.

Для тех у кого есть книга «Python и анализ данных» первые 400 страниц в принципе можно не читать. Это книга что-то вроде справочника для начинающих. По теме же самого ML очень мало написано.

Для тех у кого есть книга «Python и анализ данных» первые 400 страниц в принципе можно не читать. Это книга что-то вроде справочника для начинающих. По теме же самого ML очень мало написано.

Книга будет полезна начинающих изучать машинное обучение на Python. Рассмотрены необходимые библиотеки, теория иллюстрируется примерами, которые вместе с базами данных можно скачать по приведенной в книге ссылке.

Книга будет полезна начинающих изучать машинное обучение на Python. Рассмотрены необходимые библиотеки, теория иллюстрируется примерами, которые вместе с базами данных можно скачать по приведенной в книге ссылке.

Книга описывает работу с основными инструментами анализа данных. Не смотря на выходом новой версии pandas книга не теряет свою актуальность

Книга описывает работу с основными инструментами анализа данных. Не смотря на выходом новой версии pandas книга не теряет свою актуальность

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *