Технический углерод применение в резина авто

Из чего делают шины

Технический углерод применение в резина авто

Технический углерод применение в резина авто

ИЗ ЧЕГО ДЕЛАЮТ ШИНЫ ДЛЯ АВТОМОБИЛЯ?

ХИМИЧЕСКИЙ СОСТАВ ШИН

Главным материалом для шины является резина. Она бывает разной и может изготавливаться как из синтетического, так и из натурального каучука. Наиболее часто встречаются шины изготовленные из синтетического каучука, так как он прост в разработке и намного дешевле и по качестве не уступает натуральному каучуку.

Второй по количественным показателям элемент состава шины – углерод технический (сажа). На его долю приходится примерно 30% всей смеси. Для чего используется углерод? По сути, это скрепляющий компонент смеси, действующий на молекулярном уровне. Без использования сажи шины были бы недолговечными, непрочными и отличались бы повышенным износом.

автомобильные шины делают из одних и тех же материалов
Сегодня вместо технического углерода используется сера. Но выбор того или иного компонента – скорее, вопрос экономической целесообразности. С технологической точки зрения разница невелика.
Еще одна альтернатива техническому углероду – кремниевая кислота. Она используется в качестве замены сажи по причине, что последняя постоянно дорожает. Впрочем, это решение вызывает определенные споры в кругу профессионалов, и связаны они с тем, что кремниевая кислота при низкой прочности обладает более высокой способностью к сцеплению с мокрой поверхности дороги. То есть, теряя в износостойкости, мы обретаем лучшее сцепление.

В качестве добавок для приготовления компаундов применяются различные масла и смолы. Они выполняют смягчающую функцию, что особенно важно при производстве зимней резины.

Факт присутствия в резине кремниевой кислоты, крахмала кукурузы или других добавок, на которых делается реклама — ничего не значит. Важно изобрести, а потом и соблюсти рецепт, который бы с применением этих компонентов обеспечил превосходные характеристики авто шины. А это удается не всем производителям.

Можно подвести итог, что автомобильные шины изготавливаются либо из резины, либо из других материалов, но с добавлением каучука. У производителей шин имеется свой оптимальный химический состав, который определяет различные характеристики. Один производитель делает упор на срок службы, другой — на скоростные характеристики, а третий — на поведение шины на мокрой дороге. Эти характеристики определяют цену и качество покрышки.

Источник

Технология производства автомобильных шин

1. РАЗРАБОТКА, ПОДБОР СЫРЬЯ И РЕЦЕПТУРЫ

Над процессом создания шины работают шинные химики и конструкторы, от которых зависят секреты шинной рецептуры. Их искусство заключается в правильном анализе и выборе сырья, дозировке, комбинировании компонентов, в особенности для смеси протектора.

Все это достигается благодаря профессиональному опыту, компьютерному анализу и моделированию, усовершенствование рецептуры и технологии приготовления смесей – кропотливый труд, играющий важную роль в разработке шин, от которого зависит:

Состав резиновой смеси и ее пропорции любого производителя шин — тайна за семью печатями.
Хорошо известно около 20 основных составляющих, рецептура зависит от назначения деталей шины и может включать в себя до 10 химикатов, начиная от серы и углерода и заканчивая каучуком.

2. СЫРЬЕ

КАУЧУКИ СИНТЕТИЧЕСКИЕ И НАТУРАЛЬНЫЕ

Приблизительно половина используемого каучука – натуральное сырье состоящие из высушенного сока (латекса) вырабатываемое из каучукового дерева «Бразильской гевее», которое произрастает в странах тропического пояса в обоих полушариях земли: Латинской Америки, Африки, Юго-Восточной Азии.

Так же каучуконосный млечный сок содержится в некоторых видах сорных трав и одуванчиков. Натуральный каучук долгое время доминировал во всех смесях, различаясь при этом лишь по уровню качества, и даже после изобретения «изопрен синтетического» каучука, близкого по свойствам натуральному, современная высокопроизводительная шина, не мыслима без натурального каучука.

В пятерку крупнейших производителей натурального каучука входят:

Производимый из нефти синтетический каучук был изобретен немецкими химиками в 30-е гг. В настоящее время синтезируется несколько десятков различных синтетических каучуков. Каждый из них имеет свои характерные особенности и строгое назначение в разных деталях РТИ, как показало время и практика, единственным недостатком синтетического каучука является его дороговизна в сравнении с натуральным. На территории СССР не было возможности получать натуральный каучук из растений, а покупать его за границей приходилось за валюту. Это спровоцировало развитие богатой химии синтеза каучуков и других полимеров.

Источник

Почему шины стали чёрными и зачем в резину добавляют силику (ВИДЕО)

В резиновой смеси шин более сотни ингредиентов. Ни один производитель не расскажет точный состав и долю ингредиентов, поскольку этим воспользуются конкуренты. Но основа резиновой смеси известна: какую шины ни возьми, в ней будет каучук, технический углерод и силика. Причём повышенное содержание силики часто вспоминают в рекламных буклетах как одно из весомых преимуществ шины. В этом ролике мы рассказываем, что такое силика, откуда она взялась в шинах и зачем нужна. Если смотреть неудобно, читай текстовую версию под видео.

Присоединяйтесь к нам в Instagram, Facebook, ВКонтакте или Одноклассниках, чтобы быть в курсе новостей, конкурсов, скидок и акций. Больше интересной информации о шинах и автомобилях – на нашем YouTube-канале.

Первые опыты над формулой авторезины

В начале 20 века в резиновую смесь шин опытным путём добавили промышленный углерод, или техническую сажу. И с того времени все шины, во-первых, стали более износостойкими и более прочными, а во-вторых, приобрели чёрный цвет, к которому мы давным-давно привыкли.

Получают технический углерод путём сжигания природного газа без доступа воздуха. А поскольку запасы природного газа ограничены, стал вопрос о поиске альтернативы, некого вещества, которое, как и технический углерод, усиливало бы молекулярные связи в резиновой смеси шин, придавая им износостойкость и улучшая динамические характеристики. Причём это вещество должно было быть более доступным и распространённые в природе. Поиски привели к тому, что в резиновой смеси появилась силика, или, как её ещё называют, диоксид кремния.

Что такое силика и для чего она

Силика – это природный элемент, из которого состоит, например, песок и кварц. Фактически все горные породы состоят именно из диоксида кремния.

Технический углерод применение в резина авто

Добавление силики в резиновую смесь улучшает сцепление шин с мокрой поверхностью, поскольку этот элемент имеет естественное абсорбирующее свойство. Другими словами, он собирает влагу. Также силика усиливает молекулярные связи резиновой смеси, что позволяет ей меньше вытираться из шины. Чёрные следы на дорогах – это как раз-таки вытирающийся из резиновой смеси технический углерод. Таким образом, силика делает шины более износостойкими, а заодно и экологичными.

Современная шинная индустрия не может полностью отказаться от использования технического углерода. Однако использование силики позволило сократить долю технического углерода в шинах, сохранив при этом эксплуатационные характеристики шин, а местами даже их улучшив.

О компании «Автосеть»

Материал подготовлен компанией «Автосеть» – лидером шинного рынка Беларуси, по данным Международного агентства MASMI Research Group за 2018 год.

Адреса магазинов «Автосеть»:

Бесплатно доставляем шины и диски по всей Беларуси.

Источник

Благодаря сажи современные шины черные: оказывается она увеличивает срок службы резины

Почему автомобильная резина черная?

Технический углерод применение в резина авто

Технологии шин прошли долгий путь с тех пор, как Ford Model T впервые выкатился с завода в 1908 году. Современные шины не только отличаются по размерности, сложности и общей структуре, но также имеют совершенно другой цвет в отличие от старой резины, применяемой в автопромышленности. Напомним, что первые шины были белыми, и только после Первой мировой войны они стали черными. И вот почему.

Вы когда-нибудь видели старый автомобиль, выпущенный в начале 20 века? Например, обратите внимание на первые модели Ford T. Вы наверняка замечали, что у некоторых первых машин были белые шины. Но у некоторых старых машин колеса оснащались черной резиной, примерно такого же цвета, как мы привыкли видеть сегодня.

Технический углерод применение в резина авто

Но вот вопрос: почему много старых автомобилей имели белую резину? Мы связались с представителем компании Michelin, чтобы разгадать эту тайну.

Вот что нам рассказал представитель компании:

А все это стало возможным благодаря открытию инженера-химика Джека Кенига, который научным путем доказал, что без добавления в состав резины сажи шин хватит максимум на 8000 км. Для сравнения: благодаря саже и современным материалам ресурс сегодняшних автомобильных шин составляет от 12 000 до 30 000 км. Также за счет сажи увеличился срок службы шин по времени. Например, даже самая дешевая резина сегодня может без особых проблем служить три, четыре, пять и более лет. Вы представляете, как быстро изнашивалась резина, выпускаемая автопромышленностью в начале 21 века, по сравнению с сегодняшними покрышками?

Технический углерод применение в резина авто

В том числе представитель компании Michelin заявил, что углеродная сажа в настоящий момент составляет до 30 процентов от общего состава резины. Кроме того помимо увеличения износостойкости сажа придает шинам черный цвет. Это защищает резину от ультрафиолетовых лучей, которые могут вызывать растрескивание шин. В том числе сажа дает пластичность шинам, что улучшает сцепление с дорогой.

Кстати, о преимуществах добавления сажи в состав покрышек рассказывает и компания Whitewall, отмечая, что сажа делает шины крепче. В своем блоге об уникальном свойстве сажи, добавляемой при производстве шин, пишет и компания Goodyear, подчеркивая, что сажа улучшает устойчивость покрышек к озону, а также дает им лучшее сцепление с дорожной поверхностью. В том числе Goodyear говорит о том, что сажа помогает протектору резины переносить тепло, которое образуется от сцепления с дорогой, что увеличивает срок службы покрышек.

Так, а теперь пришло время спросить:

Что такое углеродная сажа?

Технический углерод применение в резина авто

Углеродная сажа является продуктом углеводорода, прошедшего неполное сгорание и чей «дым» содержит мелкие черные частицы, состоящие полностью из элементарного углерода.

На протяжении многих лет углеродная сажа изготавливалась различными способами. Например, раньше ее получали с помощью масляной лампы, пламя которой попадало на холодную поверхность, где и образовывалась порошкообразная сажа (летучая сажа), которую нужно было счищать. На протяжении многих веков эта сажа использовалась в качестве чернил.

Но в 1970-х годах произошел прорыв, который назвали канальным процессом. По сути, в мире появилась новая технология добычи углеродной сажи путем сжигания природного газа с применением водяного охлаждения с помощью металлических каналов. В результате этого процесса образуются углеродные отложения.

Причем эта технология позволила добывать сажу в больших промышленных масштабах, что в итоге повлияло и на производство резины. Причем этот прорывной инновационный способ получения сажи позволял добывать более мелкую фракцию углерода, которую было удобно добавлять в автомобильную резину.

В итоге благодаря новой технологии добычи углеродной сажи в автомире появилась более долговечная резина, способная проезжать более 20 000 км и служить несколько лет. Это реально был мировой прорыв.

К сожалению, этот процесс добычи сажи не был эффективным и экологически чистым. Вот фото снимок, который демонстрирует, как дым от таких производств распространялся на многие километры от места добычи сажи.

Технический углерод применение в резина авто

Сегодня основной способ добычи сажи называется «печным процессом». Нефть или газ закачивается в печь, где сгорает вместе с предварительно нагретым кислородом (см. рисунок ниже).

Высокие температуры этой реакции заставляют исходное сырье превращаться в дым, который охлаждается водой и отфильтровывается в виде крошечных кусочков сажи и газа. Далее получается тонкоизмельченный порошок, который с помощью воды и связывающих химических веществ принимает необходимую форму.

Технический углерод применение в резина авто

Порошок углеродной сажи чрезвычайно тонкий. Для того чтобы увидеть истинную форму материала, необходимо использовать электронный микроскоп, через который можно обнаружить крошечные частицы размером от 10 до 500 нм.

Технический углерод применение в резина авто

Посмотрев в такой микроскоп на сажу, вы увидите, как структура этого вещества сливается в цепи различной формы.

По словам представителя компании Birla Carbon, которая является крупнейшим в мире производителем сажи, размер частиц, а также составных «агрегатов» позволяет при смешивании с резиной давать ей сопротивление качению, прочность, черный цвет, проводимость и погодоустойчивость.

Кстати, в мире существует множество различных марок сажи, которые классифицируются в зависимости от их площади поверхности, а также скорости отверждения резины.

Дело в том, что сажа добавляется не только в шины, но и практически в любые резиновые изделия: в резиновые конвейерные ленты, подушки двигателя, приводные ремни и, конечно, в высокопроизводительные покрышки.

Как мировая война, возможно, стала причиной появления черных шин

Технический углерод применение в резина авто

История того, как шины получили свой черный цвет, сложная и увлекательная, но также и мутная. В автомире существуют разные версии, когда именно и из-за чего впервые производители шин решили использовать углерод.

Вполне возможно, что черными шины стали в результате нехватки боеприпасов во время Первой мировой войны.

Так, есть версия, что в начале 1900-х годов производители шин выяснили, что они могут добавлять к каучуку оксид магния для увеличения прочности покрышек. Но оксид магния был необходим в промышленности для производства боеприпасов во время Первой мировой войны.

Дело в том, что в те годы для изготовления боеприпасов использовали латунь и медь, которой катастрофически не хватало. В итоге производителям шин запретили при изготовлении продукции использовать не только латунь, но и оксид меди. Так что производители были вынуждены искать какие-то другие химические вещества для увеличения прочности и долговечности автомобильных покрышек. И это вещество было найдено. Им стала сажа.

Кстати, представитель компании Michelin также рассказал нам, что первые черные шины их компания выпустила в 1917 году, они назывались «Universal Tread Covers» и рекламировались как шины, построенные для «всех дорог и любых погодных условий».

Технический углерод применение в резина авто

Но компания Michelin была не первой, кто начал добавлять в шины сажу. Как мы уже сказали, многие производители покрышек это начали делать еще во время Первой мировой войны. В итоге уже к началу массового производства автомобилей многие из них уже поставлялись с черной резиной благодаря саже, которая сделала шины крепче и долговечнее. Но шины могли быть еще лучше, если бы у производителей во время Первой мировой войны был доступ к альтернативным химическим веществам, которые, также как и сажа, улучшают свойства резины.

Технический углерод применение в резина авто

В общем, факт остается фактом: именно во время Первой мировой войны сажа взяла верх над другими химическими веществами, ранее популярными у производителей автомобильных покрышек. В частности, повторим, что производители шин перестали добавлять в них оксид цинка, магния и т. д. Но мир не пожалел об этом, а также покупатели автомобилей. Шины из-за сажи не только стали выглядеть более стильно, но и стали по качеству даже лучше, чем при добавлении других химических веществ. А самое главное – шины с сажей максимально долго сохраняют свой цвет и защищают покрышки от разрушительного воздействия ультрафиолета.

Ну и, наконец, что больше всего удивляет, это то, что на протяжении стольких лет сажа используется и в современных шинах. Как ни странно, за долгие годы автопромышленность так и не изобрела более эффективную альтернативу саже для использования ее в автомобильной резине.

Так что скажите спасибо тем, кто решил применять в начале 20 века в шинах сажу. Иначе, вполне возможно, автомобильные колеса сегодня имели бы странный, некрасивый цвет.

Источник

Технический углерод: структура и воздействие

Технический углерод (ГОСТ 7885-86) – вид промышленных углеродных продуктов, используемый в основном при производстве резины как наполнитель, усиливающий ее полезные эксплуатационные свойства. В отличие от кокса и пека, состоит почти из одного углерода, по виду напоминает сажу.

Область применения технического углерода

Технический углерод применение в резина авто

Примерно 70 % выпускаемого техуглерода используют для изготовления шин, 20 % – для производства резино-технических изделий. Также углерод технический находит применение в лакокрасочном производстве и получении печатных красок, где он выполняет роль черного пигмента.

Еще одна область применения – производство пластмасс и оболочек кабелей. Здесь продукт добавляют в качестве наполнителя и придания изделиям специальных свойств. В небольших объемах применяется техуглерод и в других отраслях промышленности.

Характеристика технического углерода

Технический углерод – продукт процесса, включающего новейшие инженерные технологии и методы контроля. Благодаря своей чистоте и строго определенному набору физических и химических свойств, он не имеет ничего общего с сажей, образующейся как загрязненный побочный продукт в результате сжигания угля и мазута, или при работе неотрегулированных двигателей внутреннего сгорания. По общепринятой международной классификации техуглерод обозначается Carbon Black (черный углерод в переводе с английского языка), сажа по-английски – soot. То есть эти понятия в настоящее время, никоим образом не смешиваются. Эффект усиления за счет наполнения каучуков техуглеродом имел для развития резиновой промышленности не меньшее значение, чем открытие явления вулканизации каучука серой. В резиновых смесях углерод из большого количества при­меняемых ингредиентов по массе занимает второе место после каучука. Влияние же качественных показателей техуглерода на свойства резиновых изделий значительно больше, нежели качественных показателей основного ингредиента – каучука.

Усиливающие свойства технического углерода

Технический углерод применение в резина авто

Улучшение физических свойств материала за счет введения наполнителя называется усилением (армированием), а такие наполнители называются усилителями (техуглерод, осажденная окись кремния). Среди всех усилителей поистине уникальными характеристиками обладает углерод технический. Даже до вулканизации он связывается с каучуком, и эту смесь невозможно полностью разделить на carbon black и каучук при помощи растворителей.

Усиливающее действие техуглерода в составе полимеров во многом обусловлено его поверхностной активностью. Оценить степень изменения свойств резиновых вулканизатов, содержащих 50 % по массе технического углерода разных марок, можно на основе следующих данных (в качестве основы использован БСК — бутадиен-стирольный каучук):

Следует отметить, что кроме прекрасных физических свойств техуглерод придаёт наполненным полимерам чёрную окраску. В связи с чем, для производства пластмасс, для которых важен конечный цвет (например обувной пластикат) в качестве усиливающего наполнителя применяют т. н. «белую сажу» (аэросил) — высокодисперсный оксид кремния.

Справедливости ради следует отметить, что доля «белой сажи» возрастает и в производстве автомобильных шин, поскольку резиновые вулканизаты на её основе обладают значительно меньшими потерями на трение при качении, что приводит к экономии топлива. Однако, усиливающее действие «белой сажи» и сопротивляемость вулканизатов истиранию пока существенно хуже, чем при использовании техуглерода.

Структура технического углерода

Чистые природные углероды – это алмазы и графит. Они имеют кристаллическую структуру, значительно отличаю­щуюся одна от другой. Методом дифракции рентгеновских лучей установлено сходство в струк­туре натурального графита и искусственного материала carbon black. Атомы углерода в графи­те образуют большие слои сконденсированных ароматических кольцеобразных систем, с межатомным расстоянием 0,142 нм. Эти графитовые слои сконденсированных ароматических систем при­нято называть базисными плоскостями. Расстояние между плоскостями строго определенное и составляет 0,335 нм. Все слои расположе­ны параллельно относительно друг другу. Плотность графита составляет 2,26 г/см3.

В отличие от графита, обладающего трехмерной упорядоченностью, углерод технический характеризуется только двухмерной упорядоченностью. Состоит он из хорошо развитых графитовых плоскостей, расположенных приблизительно параллельно друг другу, но смещенным по отношению к смежным слоям – то есть, плоскости произвольно ориентированы в отношении норма­ли.

Образно структуру графита сравнивают с аккуратно сложенной коло­дой карт, а структуру техуглерода с колодой карт в которой карты сдвинуты. В нем межплоскостное расстояние больше, чем у графита и составляет 0,350-0,365 нм. Поэтому плотность техуглерода ниже плотности графита и находится в пределах 1,76-1,9 г/см3, в зависимости от марки (чаще всего 1,8 г/см3).

Окрашивание технического углерода

Пигментные (окрашивающие) марки технического углерода используются в производстве типографских красок, покрытий, пластмасс, волокон, бумаги и строительных материалов. Их классифицируют на:

Третья буква обозначает способ получения – печной (F) или канальный (С). Пример обозначения: HCF – высокоокрашивающий печной техуглерод (Hiqh Colour Furnace).

Классификация технического углерода

Технический углерод для резин по степени усиливающего эффекта подразделяют на:

В соответствии с классификацией по ГОСТ установлены 10 марок технического углерода. В зависимости от способа получения (печной, канальный, термический) маркам присвоены буквенные индексы «П», «К», «Т». Следующий за буквенным цифровой индекс характеризует средний размер частиц техуглерода в целых десятках нанометров. Два последних цифровых индекса выбирались при утверждении марки.
Основные физико-химические характеристики показатели марок техуглерода по ГОСТ приведены ниже:

Наименование классаКодМарка по
ASTM D1765
Размер
частиц, нм
Растягивающее
усилие, МПа
Сопротивление
истиранию, усл.ед.
Суперстойкий к истиранию, печнойSAFN11020—2525,21,35
ПромежуточныйISAFN22024—3323,11,25
С высокой стойкостью к истиранию, печнойHAFN33028—3622,41,00
Быстроэкструдирующийся печнойFEFN55039—5518,20,64
Высокомодульный печнойHMFN68349—7316,10,56
Полуусиливающий печнойSRFN77270—9614,70,48
Средний термическийMTN990250—3509,80,18
Каучук бутадиен-стирольный2,5
Марка по
ГОСТ 7885
Удельная поверхность,
10³м²/кг
Йодное число,
г/кг
Абсорбция масла,
10−5м³/кг
Насыпная плотность,
кг/м³
П245119121103330
П234109105101340
К354150
П3248484100340
П51443101340
П7013665420
П70237,570400
П70523110320
П8031683320
Т90014

В основе классификации по стандарту ASTM D1765 лежит способность некоторых марок техуглерода изменять скорость вулканизации резиновых смесей. В зависимости от чего маркам присвоены буквенные индексы «N» (с нормальной скоростью вулканизации) и «S» (с замедленной скоростью вулканизации, от англ. «slow» — медленный). Следующий за буквенным цифровой индекс — номер группы марок по средней удельной поверхности. Два последних цифровых индекса выбирались при утверждении марки.
Стандартом описаны (по состоянию на 2006 год) 43 марки техуглерода, из которых индекс «S» имеют 2.
Основные физико-химические характеристики показатели типичных марок техуглерода по ASTM приведены ниже:

Марка по
ASTM D1765
Удельная поверхность,
10³м²/кг
Йодное число,
г/кг
Абсорбция масла,
10−5м³/кг
Насыпная плотность,
кг/м³
N110127145113345
N220114121114355
S3158979425
N3307882102380
N5504043121360
N6833635133355
N772323065520
N990843640

Производство технического углерода

Различают три технологии получения промышленного техуглерода, в которых используется цикл неполного сжигания углеводородов: печной; канальный; ламповый; плазменный. Также существует термический метод, при котором при высоких температурах происходит разложение ацетилена или природного газа.

Многочисленные марки, получаемые за счет различных технологий, обладают разнообразными характеристиками.

Способы получения технического углерода

Существует несколько промышленных способов получения технического углерода. В основе всех лежит термическое (пиролиз) или термоокислительное разложение жидких или газообразных углеводородов. Взависимости от применяемого сырья и метода его разложения различают:

Технология изготовления технического углерода

Теоретически возможно получение технического углерода всеми перечисленными способами, однако более 96 % производимого продукта получают печным спо­собом из жидкого сырья. Метод позволяет получать разнообразные марки техуглерода с определенным набором свойств. Например, на Омском заводе технического углерода по данной технологии производится более 20 марок техуглерода.

Общая технология такова. В реактор, футерованный высокоогнеупорными материалами, подается природный газ и нагретый до 800 °С воздух. За счет сжигания природного газа образуются продукты полного сгорания с температурой 1820-1900 °С, содержа­щие определенное количество свободного кислорода. В высокотемпературные продукты полного сгорания впрыскивается жидкое углеводородное сырье, предварительно тщательно перемешанное и нагретое до 200-300 °С. Пиролиз сырья происходит при строго контролируемой температуре, которая в зависи­мости от марки выпускаемого техуглерода имеет различные значения от 1400 до 1750 °С.

На определенном расстоянии от места подачи сырья термоокисли­тельная реакция прекращается посредством впрыска воды. Образовавшиеся в результате пиролиза технический углерод и газы реакции поступают в воздухоподогрева­тель, в котором они отдают часть своего тепла воздуху, используемому в про­цессе, при этом температура углеродогазовой смеси понижается от 950-1000 °С до 500-600 °С.

После охлаждения до 260-280 °С за счет дополнительного впрыска воды смесь технического углерода и газов направляется в рукавный фильтр, где тех­нический углерод отделяется от газов и поступает в бункер фильтра. Выделенный технический углерод из бункера фильтра по трубопро­воду газотранспорта подается вентилятором (турбовоздуходувкой) в от­деление гранулирования.

Ведущие производители технического углерода

Мировое производство технического углерода в 2009 году составило около 10 000 000 тонн.

Воздействие технического углерода на человека

По текущим оценкам Международного агентства по исследованиям в области рака, технический углерод, возможно, является канцерогенным веществом для человека и по этой причине отнесён к группе 2B по классификации канцерогенных веществ. Кратковременное воздействие высоких концентраций пыли техуглерода может вызывать дискомфорт в верхних дыхательных путях за счёт механического раздражения.

Читайте также:

Влияние кофе на печень

Влияние пчелиного подмора на поджелудочную железу

Влияние пива на поджелудочную железу

Влияние алкоголя на печень и поджелудочную железу

Влияние антибиотиков на поджелудочную железу

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *