Тепловая машина это в физике определение
Тепловая машина это в физике определение
Тепловой машиной называется периодический действующий двигатель, совершающий работу за счет получаемого извне тепла.
Любая тепловая машина работает по принципу кругового (циклического) процесса, т.е. возвращается в исходное состояние (рис. 5.1). Но чтобы при этом была совершена полезная работа, возврат должен быть произведен с наименьшими затратами.
Полезная работа равна разности работ расширения и сжатия, т.е. равна площади, ограниченной замкнутой кривой.
Обязательными частями тепловой машины являются нагреватель (источник энергии), холодильник, рабочее тело (газ, пар).
Зачем холодильник? Так как в тепловой машине реализуется круговой процесс, то вернуться в исходное состояние можно с меньшими затратами, если отдать часть тепла. Или если охладить пар, то его легче сжать, следовательно работа сжатия будет меньше работы расширения. Поэтому в тепловых машинах используется холодильник.
Рис. 5.3
Прямой цикл используется в тепловом двигателе – периодически действующей тепловой машине, совершающей работу за счет полученной извне теплоты. Рассмотрим схему теплового двигателя (рис. 5.3). От термостата с более высокой температурой Т1, называемого нагревателем, за цикл отнимается количество теплоты Q1, а термостату с более низкой температурой Т2, называемому холодильником, за цикл передается количество теплоты Q2 и совершается работа A:
Рис. 5.4
Доступны следующие дополнительные демонстрации: 1. Гидравлическая машина. 2. Гидростатическое давление.
ТЕПЛОВАЯ МАШИНА
Смотреть что такое «ТЕПЛОВАЯ МАШИНА» в других словарях:
ТЕПЛОВАЯ МАШИНА — машина (тепловой двигатель, тепловой насос и др.), в которой внутренняя энергия топлива преобразуется в механическую энергию, которая далее может превращаться в электрическую и любые др. виды энергии, а также машина, преобразующая работу в… … Большая политехническая энциклопедия
ТЕПЛОВАЯ МАШИНА — машина (тепловой двигатель, тепловой насос и др.), в которой осуществляется преобразование теплоты в работу или работы в теплоту. В основе действия тепловой машины лежит круговой процесс (цикл термодинамический), совершаемый рабочим телом (газом … Большой Энциклопедический словарь
Тепловая машина — Тепловая машина устройство, преобразующее тепловую энергию в механическую работу (тепловой двигатель) или механическую работу в тепло (холодильник). Преобразование осуществляется за счёт изменения внутренней энергии рабочего тела на… … Википедия
тепловая машина — машина (тепловой двигатель, тепловой насос и др.), в которой осуществляется преобразование теплоты в работу или работы в теплоту. В основе действия тепловой машины лежит круговой процесс (цикл термодинамический), совершаемый рабочим телом (газом … Энциклопедический словарь
тепловая машина — šiluminė mašina statusas T sritis fizika atitikmenys: angl. heat engine vok. Wärmekraftmaschine, f rus. тепловая машина, f pranc. machine thermique, f … Fizikos terminų žodynas
Тепловая машина специальной обработки техники — комплект специального оборудования, смонтированного на шасси автомобиля повышенной проходимости. Ее специальное оборудование состоит из следующих основных систем и агрегатов: турбореактивного двигателя, поворотного устройства, кабины оператора,… … Словарь черезвычайных ситуаций
тепловая машина специальной обработки — šiluminė specialiojo švarinimo mašina statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Specialiojo švarinimo įrenginys, kuriame naudojamas aviacinis reaktyvinis variklis; švarinama dujų ir lašų arba tiktai dujų srautu. Gali būti… … Apsaugos nuo naikinimo priemonių enciklopedinis žodynas
Тепловая машина Карно — … Википедия
Тепловая машина карно — … Википедия
Идеальная тепловая машина — Тепловая машина устройство, преобразующее тепловую энергию в механическую работу (тепловой двигатель) или механическую работу в тепло (холодильник). Преобразование осуществляется за счет изменения внутренней энергии рабочего тела на практике… … Википедия
Тепловые машины и второе начало термодинамики
теория по физике 🧲 термодинамика
Тепловые машины — устройства, в которых за счет внутренней энергии топлива совершается механическая работа. Чтобы тепловая машина работала циклически, необходимо, чтобы часть энергии, полученной от нагревателя, она отдавала холодильнику.
Второе начало термодинамики
В циклически действующем тепловом двигателе невозможно преобразовать все количество теплоты, полученное от нагревателя, в механическую работу.
В тепловых машинах тепловые процессы замыкаются в цикле Карно. Так называют цикл, или идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов. В цикле Карно термодинамическая система выполняет механическую работу за счет обмена теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры.
На графике цикл Карно представляется как две адиабаты и две изотермы:
КПД тепловой машины
Максимальный КПД соответствует циклу Карно.
Второе начало термодинамики
Преобразовывая формулу, получим:
Важно! Температуру следует выражать только в кельвинах (К) и КПД не бывает больше 100%.
Алгоритм решения задач на определение КПД теплового процесса
Рассмотрим решение на примере конкретной задачи:
На p-V-диаграмме изображен цикл, проводимый с одноатомным идеальным газом. Определите КПД этого цикла.
Если тепловой процесс представлен в осях (p, V), то можно определить работу, вычислив площадь фигуры, ограниченной замкнутым циклом:
Если тепловой процесс представлен в других осях координат, то сначала следует его перестроить в осях (p, V) и только потом определять работу.
1–2: V = const, давление увеличивается, температура увеличивается.
2–3: p = const, объем увеличивается, температура увеличивается.
3–4: V = const, давление понижается, температура понижается.
4–1: p = const, объем уменьшается, температура уменьшается.
Отсюда следует, что газ получает энергию только на первом и втором этапах.
Δ U 23 = Q 23 − A 23 ;
A 23 = p Δ V = 2 p 0 V 0
Q 23 = 3 p 0 V 0 + 2 p 0 V 0 = 5 p 0 V 0
Общее количество теплоты:
За цикл, показанный на рисунке, газ получает от нагревателя количество теплоты Qнагр = 5,1кДж. КПД цикла равен 4/17. Масса газа постоянна. На участке 1–2 газ совершает работу
Тепловые машины
Процесс, который можно рассматривать как диффузию в пространстве импульсов, называется вязкостью, или внутренним трением.
Переносимой физической величиной является импульс частицы, который мы обозначим как – (m·u). В импульсе (m·u) «u»есть направленная скорость частиц в отличие от тепловой скорости. Поток импульса будет равен: , где коэффициент пропорциональности между потоком и скоростью изменения скорости частиц в направлении оси ОХ называется коэффициентом вязкости среды –
Термодинамика, как наука, развилась в начале XIX века из необходимости объяснить работу тепловых машин.
Тепловой машиной называется устройство, использующее тепловую энергию для совершения механической работы (в этом смысле и паровой двигатель, и атомный реактор эквивалентны).
Тепловая машина состоит из нагревателя, рабочего тела (например, пар или горючая смесь в ДВС) и охладителя рабочего тела. Охладителем, в конечном счете, служит окружающая среда.
Тепловая машина работает по принципу замкнутого цикла, совершая круговой процесс (схема слева!).
В ходе прямого цикла рабочее тело получив от нагревателя количество тепла Q1, расширяется от объема V1до объема V3.
Согласно первому закону термодинамики, это тепло расходуется на нагревание рабочего тела и на совершение механической работы Q1 = (E2 E1) + A13. Здесь (E2
E1)– это изменение внутренней энергии рабочего тела при переходе из состояния 1 в состояние 3.
При обратном цикле над газом производится работа: газ сжимается и отдает охладителю количество тепла (Q2 )= (E1
E2) + A31.
Складывая соотношения для Q1 и (Q2), получим, что
Q1 Q2 = A13 + A31 =A,
где А – полная работа, совершенная машиной за один цикл.
Отношение полезной работы, совершенной машиной, к количеству полученного тепла называется КПД тепловой машины .
Понятно, что КПД машины всегда меньше единицы (), поскольку не все количество полученного тепла переходит в полезную работу.
В реальных тепловых машинах КПД, очевидно, еще меньше, так как часть тепла теряется безвозвратно в процессе работы машины.
Для получения максимального КПД следует рассмотреть рабочий цикл, образованный обратимыми процессами.
Этому требованию отвечает цикл (см. схему), впервые рассмотренный французским ученым Карно (модель идеального газа!).
Циклом Карно называется прямой круговой процесс, состоящий из двух изотермических (dT=0) процессов <1-2,3-4>и двух адиабатических (dQ=0) процессов <2-3,4-1>. В процессе <1-2>рабочее тело получает от нагревателя тепло, в процессе <3-4>рабочее тело отдаёт тепло холодильнику.
Примечание. Достоинство цикла Карносостоит в том, что все процессы обратимы, и, следовательно, КПД такой машины будет максимальным.
Колличественные оценки происходящих процессов приводят к выражению для КПД цикла Карно:
. (1)
Из полученной формулы (1) следует, что КПД тепловой машины определяется только разностью температур нагревателя и холодильника. КПД не зависит ни от свойств рабочего тела, используемого в машине, ни от свойств самой машины.
Полученный результат показывает, что при T1 = T2КПД машины равен нулю, т. е. машина не совершает работы. Работа максимальна (η = 1) при T2 = 0.
Таким образом, машина тем выгоднее, чем ниже температура охладителя.
//Фильм: 019 «Принцип действия двигателя внутр. сгорания»//
Тепловая машина это в физике определение
Но такой однократный акт преобразования теплоты в работу не представляет интереса для техники. Реально существующие тепловые двигатели (паровые машины, двигатели внутреннего сгорания и т. д.) работают циклически. Процесс теплопередачи и преобразования полученного количества теплоты в работу периодически повторяется. Для этого рабочее тело должно совершать круговой процесс или термодинамический цикл, при котором периодически восстанавливается исходное состояние. Круговые процессы изображаются на диаграмме (p, V) газообразного рабочего тела с помощью замкнутых кривых (рис. 1). При расширении газ совершает положительную работу A1, равную площади под кривой abc, при сжатии газ совершает отрицательную работу A2, равную по модулю площади под кривой cda. Полная работа за цикл A = A1 + A2 на диаграмме (p, V) равна площади цикла. Работа A положительна, если цикл обходится по часовой стрелке, и A отрицательна, если цикл обходится в противоположном направлении.
Рисунок 1.
Круговой процесс на диаграмме (p, V).
abc – кривая расширения, cda – кривая сжатия.
Работа A в круговом процессе равна площади
фигуры abcd.
Общее свойство всех круговых процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой – холодильником. Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты Q1 > 0 и отдает холодильнику количество теплоты Q2
В применяемых в технике двигателях используются различные круговые процессы. На рис. изображены циклы, используемые в бензиновом карбюраторном двигателе и в дизельном двигателе. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30%, у дизельного двигателя – порядка 40 %.
Рисунок 3 Циклы карбюраторного двигателя внутреннего сгорания (1) и дизельного двигателя (2).
В 1824 году французский инженер С. Карно рассмотрел круговой процесс, состоящий из двух изотерм и двух адиабат. Этот круговой процесс сыграл важную роль в развитии учения о тепловых процессах. Он называется циклом Карно (рис. 4).
Рисунок 4. Цикл Карно
Цикл Карно совершает газ, находящийся в цилиндре под поршнем. На изотермическом участке (1–2) газ приводится в тепловой контакт с горячим тепловым резервуаром (нагревателем), имеющим температуру T1. Газ изотермически расширяется, совершая работу A12, при этом к газу подводится некоторое количество теплоты Q1 = A12. Далее на адиабатическом участке (2–3) газ помещается в адиабатическую оболочку и продолжает расширяться в отсутствие теплообмена. На этом участке газ совершает работу A23 > 0. Температура газа при адиабатическом расширении падает до значения T2. На следующем изотермическом участке (3–4) газ приводится в тепловой контакт с холодным тепловым резервуаром (холодильником) при температуре T2
Цикл Карно замечателен тем, что на всех его участках отсутствует соприкосновение тел с различными температурами. Любое состояние рабочего тела (газа) на цикле является квазиравновесным, т. е. бесконечно близким к состоянию теплового равновесия с окружающими телами (тепловыми резервуарами или термостатами). Цикл Карно исключает теплообмен при конечной разности температур рабочего тела и окружающей среды (термостатов), когда тепло может передаваться без совершения работы. Поэтому цикл Карно – наиболее эффективный круговой процесс из всех возможных при заданных температурах нагревателя и холодильника: η Карно = ηmax.
Любой участок цикла Карно и весь цикл в целом может быть пройден в обоих направлениях. Обход цикла по часовой стрелке соответствует тепловому двигателю, когда полученное рабочим телом тепло частично превращается в полезную работу. Обход против часовой стрелки соответствует холодильной машине, когда некоторое количество теплоты отбирается от холодного резервуара и передается горячему резервуару за счет совершения внешней работы. Поэтому идеальное устройство, работающее по циклу Карно, называют обратимой тепловой машиной.
В реальных холодильных машинах используются различные циклические процессы. Все холодильные циклы на диаграмме (p, V) обходятся против часовой стрелки. Энергетическая схема холодильной машины представлена на рис. 5.
Рисунок 5. Энергетическая схема холодильной машины. Q1 0, T1 > T2.
Устройство, работающее по холодильному циклу, может иметь двоякое предназначение. Если полезным эффектом является отбор некоторого количества тепла |Q2| от охлаждаемых тел (например, от продуктов в камере холодильника), то такое устройство является обычным холодильником. Эффективность работы холодильника можно охарактеризовать отношением
т. е. эффективность работы холодильника – это количество тепла, отбираемого от охлаждаемых тел на 1 джоуль затраченной работы.