Термореле для авто своими руками
Поделки своими руками для автолюбителей
Автоэлектрика. Терморегулятор для автовентилятора
Терморегулятор от вентилятора есть возможность приспособить и на автомобиль. Такая система будет надежной, простой, она доступна, что доказывалось неоднократно. Состоит устройство из трех составляющих – термистора рассчитанного на 10 кОм, силового транзистора и подстраиваемого резистора.
Автоэлектрика. Терморегулятор для автомобильного вентилятора
Нам необходим транзистор большой мощности, который будет играть роль силовой составляющей регулятора и при подключении мощного вентилятора, по нему пойдут большие токи. Роль датчика температуры отдана термистору. Так же потребуется многооборотный подстраиваемый резистор 10-ти кОм, он позволит выполнить настройки приспособления точнее.
Чтобы отрегулировать необходимую нам температуру воспользуемся резистором переменным. Термистор, в сущности, является резистором переменным, сопротивление его зависит от температуры, то есть чем температура выше – тем меньшим будет у термистора сопротивление. Поэтому в момент увеличения температуры, увеличится частота вращения куллера.
Термистор в нашем случае представляет собою некий терма датчик, его следует закрепить на двигательном блоке либо на радиаторе автомобиля.
Описываемая система прекрасно подходит для авто советского образца, ведь у них работа вентилятора не зависит от того какую температуру имеет жидкость охлаждения. При желании автолюбителя может быть заменен штатный транзистор, транзистором мощнее, к примеру (IRFZ40, IRFZ46, IRFZ48, IRF3205, IRZF44, IRL3705). К слову мощность рассеивания транзистора типа IRF3205 довольно велика – двести Ватт.
Транзистор должен быть закреплен на теплоотводе. При не больших нагрузках до 50 Ватт отвод тепла не нужен, транзистор просто должен быть зафиксирован на автомобильном кузове при помощи изолирующих пластинок и в обязательном порядке шайбы.
Далее медленными оборотами резистора переменного, нужно установить необходимую температуру срабатывания системы.
Существует два вида термисторов, у одних температурный коэффициент положительный, у других отрицательный. Из чего следует уменьшение сопротивления, если температура понизится и наоборот увеличение сопротивления, если температура повысится. В нашем случае термистор имеет положительный коэффициент температуры.
При разогреве термистора и достижении ним определенной температуры, тока подача к затвору ключа силового прекратится, по причине резкого увеличения сопротивления. Полевой ключ благодаря этому закроется, прекратится нагрев, уменьшится сопротивление термистора (в проводимом нами эксперименте, 220-230 Ом, температура в помещении 19С). Возобновление к затвору ключа подачи тока приведет к его открытию, и вентилятор снова окажется под напряжением.
Установка реле автомобильного вместо нагрузки, даст возможность подключить автомобильный вентилятор охлаждения. При выводе резистора переменного в удобное для нас место кабины авто, мы сможем выполнять регулировку порогового значения включения и отключения вентилятора при движении машины.
Использование такой незамысловатой схемы дает возможность сконструировать чувствительный температурный датчик, ему можно найти достойное применение и в быту. Использование очень точных (многооборотных) переменных резисторов, с большой вероятностью позволит включить либо отключить разного рода устройства даже от температуры тела человека.
При подключении взамен вентилятора, электромагнитного реле с определенным током и напряжением, мы сможем управлять мощными нагрузками сети. В качестве примера послужит нам выключение и включение обогревателя в автоматическом режиме, при изменении комнатной температуры.
При использовании биполярных транзисторов можно создать подобное устройство, если терма датчики заменить германиевыми диодами.
Автоматическое термореле для охлаждения двигателя в автомобиле
У многих, даже у большинства, легковых автомобилей в системе охлаждения двигателя работает электрический вентилятор, периодически обдувающий воздухом радиатор системы охлаждения двигателя. В разных автомобилях, схема управления этим вентилятором решена по-разному, в одних на радиаторе установлен датчик-термовыключатель, который уже на заводе-изготовителе настроен на определенную температуру, и при её достижении, замыкает контакты, подающие ток на обмотку реле включения электромотора электровентилятора.
В других, используется общий датчик датчик температуры двигателя, представляющий собой терморезистор, а решение включать электроветилятор или не включать принимает ЭБУ (электронный блок управления)автомобиля.
У современных автомобилей, у которых решение о включении вентилятора принимает ЭБУ на основе сопротивления датчика температуры, проблему можно решить внесением изменений в прошивку ЭБУ, но это дорого и не всегда возможно. У автомобилей с термовыключателем есть возможность один термовыключатель заменить другим, на другую температуру, но это процесс трудоемкий и не всегда можно найти подходящий датчик.
А ведь, хотелось бы, просто иметь возможность подкрутить отверткой некий подстречный винтик, и им отрегулировать необходимую (или желаемую) температуру включения вентилятора системы охлаждения. Понятно, что решить вопрос можно обыкновенной схемой терморегулятора, где информацию о температуре можно будет брать с датчика температуры. Это может быть тот самый датчик, который взаимодействует с ЭБУ, либо датчик на стрелочный индикатор температуры, все зависит от конкретного автомобиля, вернее, его схемы.
Схема термореле
Схем терморегуляторов в радиолюбительской литературе описано великое множество, поэтому, ни сколько не претендуя на оригинальность, привожу ту схему, которую собрал лично для своего автомобиля. Как уже сказал выше, схема практически типовая. Состоит она из компаратора на операционном усилителе и двух цепей, задающих напряжение на его входах.
Напряжение на неинвертирующем входе устанавливается подстроечным резистором R2, а напряжение на инвертирующем входе берется с датчика температуры двигателя, который представляет собой терморезистор, образующий, вместе с другими деталями схемы автомобиля, термозависимый делитель напряжения.
Рис. 1. Принципиальная схема термореле для включения охлаждения двигателя в авто.
На выходе схемы есть ключ на транзисторе VT1, его коллектор подключают к обмотке реле, управляющего электровентилятором. А питание на схему подают с выхода замка зажигания автомобиля, так, чтобы питание на схему поступало только при включенном зажигании. Это нужно потому, что при выключенном зажигании напряжение на цепь датчика температуры обычно не поступает, соответственно, напряжение на датчике температуры падает до нуля, независимо от величины температуры.
Работа схемы
Подстроечным резистором R2 устанавливается некоторое напряжение на выводе 3, которому соответствует температура включения вентилятора.
Когда температура охлаждающей жидкости ниже заданной, сопротивление датчика температуры высоко, и напряжение на нем существенно выше напряжения на выводе 3 А1. Поэтому, на выходе операционного усилителя А1, работающего как компаратор, будет низкое напряжение. Транзистор VT1 будет закрыт, и ток через него на обмотку реле включения вентилятора поступать не будет.
Так как в качестве компаратора здесь используется обычный операционный усилитель типаКР140УД608, минимальное напряжение на его выходе несколько отлично от нуля, поэтому, чтобы улучшить закрывание транзистора VT1 в цепь его эмиттера включены два диода типа 1N4004. Если при налаживании этого окажется недостаточно, количество этих диодов нужно увеличить.
Терморегулятор для вентилятора автомобиля, автоэлектрика
Терморегулятор для вентилятора, с уверенностью можно использовать для автомобиля, в помощь приходит автоэлектрика. Подобная система, неоднократно доказала свою доступность, простоту и надёжность. Основу устройства, составляют всего лишь три компонента – подстроечный резистор, силовой транзистор и термистор на 10 килоОМ. Терморегулятор – сделай сам!
Потребуется мощный транзистор, поскольку он будет являться, силовой частью регулятора и во время подключения вентиляторов повышенной мощности, именно через него, протекает большой ток. В качестве датчика температуры, будет использоваться термистор. Для более точной настройки устройства, подстроечный резистор, на 10 килоОМ, лучше взять многооборотный.
Установку нужной температуры, также как и чувствительность к температуре, регулируют путём вращения переменного резистора. Термистор, по сути, является переменным резистором, его сопротивление, напрямую зависит от температуры, чем она выше – тем меньше сопротивление у термистора. Куллер, следовательно, будет увеличивать вращения, именно при больших температурах.
Термистор, играет роль термодатчика и крепится либо на радиатор, либо на блок двигателя.
Подобная система, буквально создана, для старых, отечественных марок автомобилей, в которых вентилятор работает, не зависимо от того, какая температура воды в двигателе. При желании, можно заменить полевой транзистор более мощным, например IRF3205, IRZF44, IRL3705, IRFZ40, IRFZ48, IRFZ46. Кстати, IRF3205 является достаточно сильным, его рассеивающая мощность составляет 200 ватт. Вне зависимости от вашего выбора, транзистор необходимо укрепить на теплоотвод (но при маломощных нагрузках, до 50, теплоотвод не потребуется), его просто прикрепляют на кузов автомобиля, через изолирующие пластинки и обязательно, шайбы.
Следом, необходимо добиться нужной степени температурного срабатывания системы. Этого можно добиться, медленно вращая переменный резистор.
Известно, что термисторы делятся на два вида, с отрицательным и положительным температурным коэффициентом. И, как следствие, при понижении температуры, сопротивление уменьшается, а с повышением, соответственно увеличивается. В рассмотренном опыте, был использован термистор с положительным коэффициентом температуры.
Когда термистор разогревается и достигает определённой температуры, то его сопротивление резко увеличивается и на затвор силового ключа, прекращается подача тока. Благодаря этому, закрывается полевой ключ и при прекращении нагрева, уменьшается сопротивление термистора (в данном опыте, 220 – 230 Ом при температуре в комнате 19 градусов). На затвор ключа, возобновляется подача тока, благодаря чему он открывается и подаёт напряжение на вентилятор.
Если поставить вместо нагрузки (маленького вентилятора) автомобильное реле, то с лёгкостью можно подсоединить автомобильный вентилятор включения охлаждения, то есть карлсона))), а если ещё и переменный резистор вывести на панель приборов или просто в салон авто, то можно будет регулировать порог срабатывания вентилятора прямо на ходу.
Используя эту простейшую схему, можно соорудить довольно чувствительный датчик температуры, который с успехом можно применить в быту. А если использовать более точные переменные резисторы (многооборотные), вполне реально добиться, срабатывания и отключения разного устройства от температуры человеческого тела.
Управлять мощными сетевыми нагрузками, становится, возможно, подключив вместо вентилятора, электромагнитное реле на необходимое напряжение и ток. Автоматическое включение и выключение обогревателя, когда температура в комнате выше или ниже нормы, может служить тому примером.
Также, схожее устройство, можно соорудить, используя биполярные транзисторы, применяя германиевые диоды, вместо термодатчиков.
И ещё хочу отметить один момент, если у вас произошла неприятность или вы просто решили починить кузов своего автомобиля, то есть отличный центр, который занимается именно кузовным ремонтом машины. Доверьтесь профессионалам и ваш кузов снова будет как новенький.
Терморегулятор для автомобиля
В общем, это устройство, схема которого показана на рисунке 1, разрабатывалось по просьбе и представляет собой термостат для поддержания определенной температуры в салоне автомобиля.
Основой схемы является микроконтроллер PIC16F628A. Индикации реальной температуры в схеме нет, что еще больше упрощает и так простенькую схему. Индицируется только температура, которую надо поддерживать и не в цифровом виде, а с помощью светодиодов, каждый из которых соответствует определенной температуре термостатирования. Дискретность изменения равна двум градусам и устанавливается при помощи двух кнопок SB1 и SB2. К сожалению, мне не сообщили не вид нагрузки, т.е. чем будет управлять данный термостат, ни коммутируемую мощность. Поэтому транзистор КТ829 можно заменить на более мощный КТ827А или поставить в качестве ключа полевой переключательный транзистор. Например, IRL2505 или подобрать другой, подходящий этой же фирмы «International Rectifier». Смотрим таблицу. Лучше выбирать транзисторы, имеющие в своем обозначении букву L, такие транзисторы рассчитаны на управление логическими уровнями.
Как я уже писал, температуру в салоне устанавливают при помощи двух кнопок. Для увеличения поддерживаемой температуры нажимаем на кнопку SB2. Если на кнопку нажимать кратковременно, то переключение на нужную температуру будет происходить пошагово на следующий уровень, если кнопку удерживать, то переключение будет автоматическим, через каждые полсекунды. Точно также работает кнопка на уменьшение температуры. Алгоритм работы программы контроллера следующий, если температура в салоне автомобиля ниже установленной, то на выходе RA0, вывод 17 микроконтроллера, будет присутствовать напряжение близкое к напряжению питания, примерно 4,5 вольта, если температура в салоне автомобиля выше установленной, то напряжение будет равно почти нулю. Чтобы исключить беспорядочные переключения нагрузки вблизи порога равенства реальной и установленной температуры, в программу введен гистерезис равный одному градусу. Например, если установлена температура 22?С, то смена уровня на выводе 17 произойдет при температуре в салоне равном 23?С.
Микросхема стабилизатора напряжения для питания процессора и его «окружения» установлена на небольшой теплоотвод. Величина радиатора для управляющего транзистора зависит от мощности нагрузки. Например, для транзистора IRL2505, у которого сопротивление открытого канала равно всего 0,008Ом, при токе стока равному 10А, радиатор вообще не нужен. Потому что выделяемая на нем мощность в данном случае будет всего Р = IxIx R = 10x10x0,008 = 0,8Вт.
В схеме не предусмотрена защита мощного транзистора по току, поэтому предохранитель обязателен. Для уменьшения тока потребления данной схемой можно обычные светодиоды заменить цветными сверхъяркими и подобрать для них другие номиналы резисторов. При одной и той же яркости свечения эти светодиоды потребляют намного меньший ток.
В «железе» я данный термостат не пробовал. Схема и программа были промоделированы в протеусе.
Рисунок печатной платы, проект в протеусе и коды программы можно скачать здесь.
Простой терморегулятор своими руками
Огромное количество электрических приборов, используемых в быту и промышленности, основывают свою работу на определении уровня температуры окружающей среды. Измерительный элемент в них представляет собой датчик температуры, срабатывающий при нагревании или охлаждении до установленного уровня. Их можно приобрести в большинстве магазинов, ими комплектуются духовки, контроллеры и прочие устройства, но гораздо интереснее изготовить терморегулятор своими руками.
Пример простого терморегулятора
Далее мы рассмотрим принцип действия и варианты изготовления такой самоделки.
Немного теории
Любой терморегулятор конструктивно включает в себя три основных блока:
Теоретически температурный датчик можно представить набором из четырех сопротивлений, среди которых три резистора будут представлены элементами с постоянными электрическими параметрами, а четвертый переменным. Они собираются в схему измерительного полуплеча, приведенную на рисунке 1 ниже:
Рис. 1. Датчик из полуплеча резисторов
На схеме показан принцип соединения резисторов для получения температурного датчика. Как видите, сопротивление R2 является переменным и меняет физическую величину в соответствии с изменениями температуры окружающей среды. При подаче одного и того напряжения питания в терморегуляторе, при изменении сопротивления в плече будет возрастать ток в цепи.
На основании изменений происходит анализ температурных колебаний в результате которого рабочий орган вызывает срабатывание терморегулятора и последующее отключение или включение оборудования.
Для измерения сопротивления резисторов в качестве логического элемента устанавливается микросхема, работающая в режиме компаратора. Ее задача сравнить электрические сигналы в двух плечах. Пример схемы регулятора температуры приведен на рисунке:
Рис. 2. Принципиальная схема терморегулятора
Здесь блок микросхемы U1A принимает сигналы от измерителя температуры на входы 2 и 3. При достижении температуры срабатывания, в плечах начнет протекать разный ток, и компаратор выдаст на управляющий элемент электронного терморегулятора сигнал о включении.
При остывании датчика термометра ток в плечах терморегулятора уравняется, и электронный блок выдаст управляющий сигнал на отключение. Приведенная электронная схема работает в двух устойчивых состояниях – отключенном и включенном, чередование рабочих режимов происходит в соответствии с заданной логикой.
Эта схема терморегулятора используется в работе куллера персонального компьютера, получая электроснабжение от блока питания, происходит сравнение тока в плечах. Когда блок питания перегреется, терморегулятор переведет транзистор в противоположное состояние и вентилятор запустится.
Такой принцип может применяться не только в вентиляторах, но и в ряде других устройств:
Сфера применения терморегулятора ничем не ограничена, везде, где вы хотите получить контроль уровня температуры в автоматическом режиме с управлением питания, такое устройство станет отличным помощником.
Обзор схем
В зависимости от типа элементов, входящих в состав терморегулятора, различают механические и цифровые терморегуляторы. Работа первых основана на срабатывании реле, вторые имеют электронный блок, управляющий процессами. Примеры работы нескольких схем рассмотрим далее.
Рис. 3. Схема терморегулятора №1
На приведенной схеме измерение происходит за счет резисторов R1 и R2, при температурных колебаниях переменный резистор R2 изменит величину падения напряжения. После чего через усилитель терморегулятора, представленный парой транзисторов, начнется протекание электротока через катушку реле K1.
Когда величина тока в соленоиде создаст магнитный поток достаточной силы, сердечник притянется и переключит контакты в другое положение. Недостатком такого терморегулятора является наличие магнитопроводящих частей, которые из-за гистерезиса вносят дополнительную поправку на температуру помимо измерительного органа.
Рис. 4. Схема терморегулятора №2
Данный терморегулятор, в отличии от механического термостата, не использует подключение реле, поэтому является более точным. Его применение оправдано в тех ситуациях, когда несколько градусов могут сыграть весомую роль, к примеру, при контроле температуры нагрева двигателя или в инкубаторе.
Здесь изменение температурного режима фиксируется резистором R5, благодаря которому терморегулятор изменяет электрические параметры работы. Для сравнения и усиления разницы поступающего с полуплеч электрического параметра применяется микросхема К140УД7.
Для контроля нагрузки в схеме устанавливается тиристор VS1, в данном примере терморегулятора ограничение составляет 150Вт, но при желании может подбираться и другой параметр. Но следует учитывать, что эксплуатация тиристора в качестве ключа приводит к его нагреванию, поэтому с увеличением мощности необходимо установить радиатор для лучшей теплоотдачи.
Создаем простой терморегулятор
При ремонте бытовой электротехники вы могли сталкиваться с ситуацией, когда со строя выходил терморегулятор. Хоть это и небольшая микросхема, устанавливаемая для контроля величины нагрева или охлаждения чего-либо.
Увы, стоимость такого элемента заводского изготовления довольно высока, поэтому куда выгоднее собрать терморегулятор самому. Схема достаточно простого самодельного терморегулятора приведена на рисунке ниже.
Рис. 5. Схема простейшего терморегулятора
Для его изготовления вам понадобится:
Процесс изготовления состоит из таких этапов:
В данном случае клеммник взят со старого прибора, располагавшегося в корпусе.
После сборки терморегулятора его можно установить в любое место, к примеру, для обогрева и подключить в цепь питания электрического котла. В случае, когда радиаторы отопления нагреют помещение до установленной температуры, контакты реле разорвут цепь и прекратят электроснабжение. При остывании цифрового термометра, снова произойдет включение отопления и снова пойдет нагрев. Если вас не устраивает температурный режим, его можно изменить настройкой датчика.