Тяговая динамичность автомобиля оценивается следующими основными показателями

Тяговая динамичность автомобиля

Вероятность совершения ДТП и тяжесть его последствия существенно зависит от скорости автомобиля.

Как видно из представленной зависимостей, тяжесть последствий ДТП возрастает с увеличением скорости. Вместе с тем, большой процент ДТП совершается не только на повышенных, но и на пониженных скоростях.

Тяговая динамичность автомобиля оценивается следующими основными показателями:

максимальное время разгона до 100км/ч.

Тяговая динамичность автомобиля определяется мощностью двигателя, передаточным числом и коэффициентом полезного действия (КПД) трансмиссии, размерами и сцепными качествами шин.

Основные механизмы влияния тяговой динамичности автомобиля на безопасность движения.

превышение скорости, безопасной для данных дорожных условий. Высокие скоростные свойства автомобиля позволяют недисциплинированным водителям превышать безопасную скорость;

«тихоход» (автомобиль с низкими характеристиками тяговой динамичности) в транспортном потоке увеличивает число обгонов и тем самым число конфликтных ситуаций и ДТП;

неоднородность характеристик тяговой динамичности автомобилей в транспортном потоке приводит к обгонам, объездам, перестроениям и увеличению числа конфликтных ситуаций и ДТП.

Тормозная динамичность автомобиля

Тормозная динамичность автомобиля определяется целым комплексом конструктивных параметров тормозных систем. Главным показателем эффективности рабочей тормозной системы являются величины тормозного пути (ST) и времени срабатывания (tср).

Тормозной путь автомобиля определяется как расстояние, пройденное им от начала до конца торможения, и состоит из участков пути, проходимых за время срабатывания и за период установившегося торможения. При этом расстоянием, проходимым автомобилем за время отпускания тормозной системы обычно пренебрегают ввиду незначительности величины.

В соответствии с ГОСТ Р 51709-2001 «Автотранспортные средства. Требования безопасности к техническому состоянию и методы проверки» в Правилах дорожного движения установлены предельные значения тормозного пути, при несоблюдении которых эксплуатация транспортных средств запрещается.

Испытания рабочей тормозной системы проводят на специальных стендах или, при их отсутствии, на горизонтальном участке дороги с ровным, сухим, чистым, цементо- или асфальтобетонным покрытием при начальной скорости 40км/ч для автомобилей и автобусов и 30км/ч – для мотоциклов, мопедов (при одновременном воздействии на ручной и ножной приводы тормозов). Результаты испытаний являются недействительными, если для сохранения прямолинейного направления в процессе торможения водитель должен исправлять траекторию движения.

Более 50% всех ДТП из-за технической неисправности автомобилей происходит вследствие неудовлетворительного состояния тормозных систем.

В таблице приведены показатели эффективности действия тормозных систем в соответствии с ГОСТ Р 51709-2001.

Нормативы эффективности торможения АТС рабочей тормозной системой при проверках в дорожных условиях

Таблица 2

АТСКатегория АТС (тягача в составе автопоезда)Усилие на органе управления Рn., H, не болееТормозной путь АТС ST, не более
Пассажирские и грузопассажирские автомобилиM1 M2, M3490 68614,7 18,3
Легковые автомобили с прицепомM149014,7
Грузовые автомобилиN1, N2, N368618,3
Грузовые автомобили с прицепомN1, N2, N368619,5

Нормативы эффективности торможения АТС рабочей тормозной системой при проверках в дорожных условиях

Таблица 3

АТСКатегория АТС (тягача в составе автопоезда)Усилие на органе управления Рn., H, не болееУстановившееся замедление jуст, м/с2, не менееВремя срабатывания тормозной системы tт, с, не более
Пассажирские и грузопассажирские автомобилиM1 M2, M3490 6865,8 5,00,6 0,8
Легковые автомобили с прицепомМ14905,80,6
Грузовые автомобилиN1, N2, N36865,00,8
Грузовые автомобили с прицепом (полуприцепом)N1, N2, N36865.00,9

Категории автотранспортных средств предоставлены в таблице 4.

Классификация автотранспортных средств, принятая в Правилах ЕЭК ООН

Таблица 4

Категория АТСТип транспортного средстваПолная масса, тПримечание
1.2.3.4.
М1АТС с двигателем, предназначенные для перевозки пассажиров и имеющие не более 8 мест для сидения (кроме места водителя)HP (не регламентируется)Легковые автомобили
М2Те же, имеющие не более 8 мест для сидения (кроме места водителя)до 5,0Автобусы
М3То жесвыше 5,0Автобусы, в том числе сочлененные
N1АТС с двигателем, предназначенные для перевозки грузовдо 3,5Грузовые автомобили, специальные автомобили
N2То жесвыше 3,5 до 12,0Грузовые автомобили, автомобили-тягачи, специальные автомобили
N3То жеСвыше 12,0То же

Остановочный путь автомобиля увеличивается (по сравнению с тормозным) на величину, проходимую автомобилем за время реакции водителя.

Устойчивость автомобиля

Тяговая динамичность автомобиля оценивается следующими основными показателями

Устойчивостью автомобиля называют свойство сохранять в движении требуемую траекторию. Различают продольную и поперечную устойчивость. Характеристики устойчивости определяются конструктивными параметрами автомобиля и зависят от его технического состояния.

Потеря устойчивости чаще всего возникает не из-за предельных условий эксплуатации автомобиля, а из-за неправильных действий водителя: резких разгонов, торможений, неправильного маневрирования рулевым колесом.

Частой предпосылкой потери устойчивости является скорость автомобиля, не соответствующая дорожным условиям. Если автомобиль движется с излишне высокой скоростью, то тяговая сила Рт приближается по величине к силе сцепления ведущих колес с дорогой Рсц, вследствие чего возможно их пробуксовывание. Скорость, при которой возникает пробуксовывание, уменьшается на участках дороги со скользким, неровным покрытием (укатанный снег, обледенелый асфальтобетон, булыжник).

Резкое нажатие на дроссельную заслонку, например, перед подъемом или при обгоне в условиях скользкой, неровной дороги также может вызвать пробуксовывание, приводящее к боковому скольжению ведущих колес. Чем выше скорость движения, тем больше вероятность потери курсовой устойчивости при наезде колеса на впадину или выступ. Водитель для сохранения курсовой устойчивости автомобиля должен избегать резких разгонов и торможений, резких маневров «подруливаний», должен управлять автомобилем плавно, тщательно выбирая скоростной режим и траекторию движения.

Продольная, и, в особенности, поперечная устойчивость автомобиля зависят не только от конструкции и скоростного режима, но и от размещения и веса перевозимого груза.

Непосредственно перед перевозкой водитель должен продумать тактику своих действий на маршруте в связи с особенностями перевозимого груза. При всяком новом виде перевозок сложившийся ранее у водителя навык может оказаться не адекватным, не соответствующим новым условиям.

Следует помнить, что вероятность опрокидывания существенно зависит от технического состояния подвески. Особенно это относится к грузовым автомобилям и автобусам.

Результаты проводимых на протяжении ряда лет обследований подвижного состава, позволяют сделать вывод о том, что при эксплуатации транспортных средств наблюдаются случаи неправомерного вмешательства персонала, в том числе водителей, в конструкцию АТС для «улучшения» их характеристик. Так, например, при переходе на эксплуатацию в осеннее-зимний период умышленно отключаются приводы тормозных систем передних осей. По мнению большинства водителей, этот прием «улучшает» показатели устойчивости автомобилей при торможении на скользком дорожном покрытии, что является ошибочным. Поэтому, при проведении занятий, необходимо четко объяснить водителям, что торможение при выключенной передней оси увеличивает вероятность заноса.

Особое внимание необходимо уделить проблеме устойчивости автопоезда при торможении в условиях низкого коэффициента сцепления. Большую помощь водителям на скользкой дороге окажет умение использовать приемы прерывистого и ступенчатого торможения. Отработка навыков выполнения этих приемов в условиях учебной площадки позволяет добиться автоматизма в их выполнении и существенно сократить тормозной путь и повысить устойчивость АТС не оборудованных антиблокировочными системами.

Устойчивость цистерн зависит, прежде всего, от формы цистерн, степени заполнения, силы удара и всплеске жидкости в цистерне, интенсивности работы рулем. При 100% заполнении существует лишь небольшая разница в пределе опрокидывания различных форм цистерн. Эллипсоидная форма цистерны с тремя перегородками против ударов от всплесков жидкости наиболее устойчива против опрокидывания даже при изменении частоты работы рулем. Это положение действительно также при 50% и 75% заполнения цистерны.

Управляемость автомобиля

Управляемость автомобиля определяется его свойством реагировать на поворот рулевого колеса.

Когда говорят, что автомобиль обладает плохой управляемостью, это означает, что его реакция на поворот руля не соответствует ожиданиям водителя. При этом водителю необходимо делать дополнительные подруливания для того, чтобы достигнуть требуемой траектории движения.

Управляемость автомобиля связана с таким его качеством, как поворачиваемость.

Поворачиваемостью называют свойство автомобиля изменять управляемость по сравнению с автомобилем на «жестких» колесах.

Тяговая динамичность автомобиля оценивается следующими основными показателями

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Тяговая динамичность автомобиля оценивается следующими основными показателями

Тяговая динамичность автомобиля оценивается следующими основными показателями

Источник

Тяговая динамичность

Тяговая динамичность автомобиля оценивается следующими основными показателями Тяговая динамичность автомобиля оценивается следующими основными показателями Тяговая динамичность автомобиля оценивается следующими основными показателями Тяговая динамичность автомобиля оценивается следующими основными показателями

Тяговая динамичность автомобиля оценивается следующими основными показателями

Тяговая динамичность автомобиля оценивается следующими основными показателями

Тяговая динамичность характеризует способность автомобиля производительно выполнять транспортные функции. Чем динамичнее автомобиль, тем он способен быстрее разгоняться и двигаться с более высокой скоростью в разнообразных условиях движения. Повышение тяговой динамичности возможно за счет увеличения удельной мощности двигателя и улучшения его приемистости, что достигается уменьшением массы автомобиля, улучшением его обтекаемости, совершенствованием конструкции двигателя, трансмиссии и ходовой части. Автомобиль, обладающий относительно более высокой тяговой динамичностью, в реальных дорожных условиях обладает большим запасом мощности, который может расходоваться на преодоление дорожных сопротивлений и на разгон.

Тяговые свойства (тяговая динамика) автомобиля определяют его способность интенсивно увеличивать скорость движения. От этих свойств во многом зависит уверенность водителя при обгоне, проезде перекрестков. Особенно важное значение тяговая динамика имеет для выхода из аварийных ситуаций, когда тормозить уже поздно, маневрировать не позволяют сложные условия, а избежать ДТП можно, только опередив события.

Так же как и в случае с тормозными силами, сила тяги на колесе не должна быть больше сцепления с дорогой, в противном случае оно начнет пробуксовывать. Предотвращает это противопробуксовочная система (ПБС). При разгоне автомобиля она подтормаживает колесо, скорость вращения которого больше, чем у остальных, а при необходимости уменьшает мощность, развиваемую двигателем.

Следует отметить, что тяговая динамичность автомобиля зависит от его конструктивных параметров и качества дороги.

Из конструктивных факторов наибольшее значение имеют:

o форма скоростной характеристики двигателя,

o передаточные числа трансмиссии,

o масса автомобиля,

o обтекаемость автомобиля.

Форма скоростной характеристики. Карбюраторный двигатель имеет более выпуклую характеристику, чем дизель, что обеспечивает ему больший запас мощности при той же скорости. Следовательно, будет больше преодолеваемое сопротивление или развиваемое ускорение.

КПД трансмиссии. КПД трансмиссии оценивает величину непроизводительных потерь энергии. Уменьшение КПД, вызванное ростом потерь энергии на трение, приводит к уменьшению силы тяги на ведущих колесах. В результате снижается максимальная скорость автомобиля и максимальный коэффициент сопротивления дороги.

Применение в холодное время года летних трансмиссионных масел, имеющих большую вязкость, приводит к увеличению крутящегося момента, особенно заметному во время трогания автомобиля с места.

Передаточные числа трансмиссии. От передаточного числа главной передачи в большой степени зависит максимальная скорость автомобиля. От передаточного числа первой передачи зависит величина максимального сопротивления дороги, преодолеваемого при равномерном движении. Передаточные числа промежуточных ступеней подбирают таким образом, чтобы обеспечить максимальную интенсивность разгона.

Увеличение числа передач в коробке улучшает тяговую динамичность автомобиля. Хотя динамические факторы на первой и последних передачах в обоих случаях одинаковы, однако, сравнивая максимальные скорости на различных дорогах, видим преимущества четырехступенчатой коробки. Так, на дороге, характеризуемой коэффициентом сопротивления максимальная скорость автомобиля характеризуемых штриховой кривой, что вызывает ухудшение динамичности и топливной экономичности автомобиля.

Масса автомобиля. Повышение массы автомобиля приводит к увеличению силы инерции и сил сопротивления качению и подъему и, как следствие, к ухудшению динамичности автомобиля.

Обтекаемость автомобиля. Для современных легковых автомобилей характерны строгие прямолинейные очертания с плавными переходами, однако нередко зарубежные фирмы в рекламных целях выпускают автомобили с кузовами вычурной формы, имеющими необычный внешний вид и создающими повышенное сопротивление воздуха.

Для уменьшения сопротивления воздуха ветровое стекло автомобиля располагают наклонно, а выступающие детали устанавливают так, чтобы они не выходили за внешние очертания кузова. У гоночных автомобилей число выступающих частей уменьшают до минимума, а заднюю часть кузова делают вытянутой, добиваясь плавного обтекания ее воздухом.

Силу сопротивления воздуха у грузовых автомобилей можно уменьшить, закрыв грузовую платформу брезентом, натянутым между крышей кабины и задним бортом, или используя специальные щитки (обтекатели), уменьшающие завихрения воздуха.

Источник

Конструктивные особенности транспортных средств, обеспечивающие безопасность дорожного движения

Послеаварийная безопасность – конструктивные, эксплуатационные свойства автомобиля, уменьшающие тяжесть последствий от дорожно-транспортного происшествия. Приращение динамического коридора в зависимости от скорости движения автотранспортного средства.

РубрикаТранспорт
Видконтрольная работа
Языкрусский
Дата добавления26.10.2016
Размер файла375,5 K

Тяговая динамичность автомобиля оценивается следующими основными показателями

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

1. Безопасность автотранспортных средств

Безопасность автотранспортных средств (АТС) определяется их конструктивными свойствами, реализованными при проектировании и изготовлении промышленностью, а также эксплуатационными свойствами, связанными с уровнем технической эксплуатации АТС.

Конструктивные и эксплуатационные свойства АТС, определяющие безопасность, подразделяют на несколько групп по различным аспектам обеспечения безопасности движения: активная, пассивная, послеаварийная и экологическая.

ПБ подразделяют на внутреннюю и внешнюю. Внутренняя ПБ направлена на предупреждение или снижение травматизма пассажиров, водителя и обеспечение сохранности грузов.

Замки дверей должны выдерживать большие перегрузки, не открываясь, чтобы предотвратить выпадение пассажира при ДТП (пассивная безопасность). Вместе с тем, они не должны заклиниваться и препятствовать эвакуации пострадавших из автомобиля (послеаварийная безопасность).

Взаимосвязь различных видов безопасности и противоречивость требований, предъявляемых к конструкции автомобиля, вынуждают конструкторов и технологов принимать компромиссные решения. При этом неизбежно ухудшаются одни свойства, менее существенные для автомобиля данного типа, и улучшаются другие, имеющие большее значение.

Далее рассмотрим основные свойства автомобиля, влияющие на безопасность движения.

Компоновочные параметры автомобиля.

К важнейшим компоновочным параметрам АТС, оказывающим влияние на активную безопасность, относят: габаритные и весовые параметры.

Габаритная длина и ширина АТС оказывают влияние на параметры транспортного потока, а, следовательно, на возникновение различных опасных дорожно-транспортных ситуаций (ДТС).

Габаритная длина крупнотоннажных грузовых автомобилей с прицепами в сочетании с более низкой по сравнению с легковыми автомобилями тяговой динамикой приводит к опасным ситуациям при обгонах. Кроме того, необходимо рассматривать длину АТС в связи с его тормозной динамикой, т.к. сочетание этих параметров определяет, так называемый, динамический габарит (по длине).

Габаритная ширина АТС оказывает наряду со скоростью определяющее влияние на ширину габаритного коридора, которым называют ширину, занимаемую АТС в движении. Во время прямолинейного движения автомобиль все время совершает небольшие рыскания относительно основной траектории. Водитель все время подруливает, выполняя задачу стабилизации траектории. В результате автомобиль движется по вытянутой синусоидальной кривой (с небольшими переменными амплитудами и относительно большими, также переменными, периодами).

Соответственно, ширина динамического коридора превышает ширину автомобиля.

На рис. 1 приведена зависимость приращения динамического коридора от скорости движения автомобиля.

Рис. 1. Приращение динамического коридора в зависимости от скорости движения автомобиля

Динамический габаритный коридор Bq определяется по формуле:

Чем больше длина автомобиля, чем больше число прицепов, тем более увеличивается динамический габарит.

Еще более динамический габарит увеличивается при прохождении поворотов и составляет 1,5-2 ширины автомобиля. Задние колеса при повороте движутся по меньшему радиусу, чем передние (рис. 2).

Рис. 2. Увеличение динамического габарита Bq при повороте

Высокие автомобили при движении имеют значительные поперечные колебания, что также может сократить зазор безопасности, например, при встречном разъезде, и привести к касательному столкновению либо задеванию столбов опор и т.д.

Вероятность совершения ДТП и тяжесть его последствия существенно зависит от скорости автомобиля. Как видно из представленных зависимостей, тяжесть последствий ДТП возрастает с увеличением скорости. Вместе с тем, большой процент ДТП совершается не только на повышенных, но и на пониженных скоростях.

Тяговая динамичность автомобиля оценивается следующими основными показателями:

— максимальное время разгона до 100 км/ч.

Тяговая динамичность автомобиля определяется мощностью двигателя, передаточным числом и коэффициентом полезного действия (КПД) трансмиссии, размерами и сцепными качествами шин.

В общем случае на автомобиль при разгоне действуют следующие силы:

Названные силы при движении автомобиля связывает соотношение баланса сил:

Р_ = Ри + Рк + Рn + Рв

То, как водитель использует скоростные качества автомобиля в конкретных дорожных условиях, определяет уровень безопасности. Вместе с тем, тяговая динамика накладывает существенные ограничения на тактику и технику управления автомобилем в зависимости от скоростных качеств автомобиля предполагает определенный стиль управления автомобилем, обеспечивающий безопасность.

Перечислим основные ситуационные механизмы влияния тяговой динамичности автомобиля на безопасность движения.

Тормозная динамичность автомобиля Тормозная динамичность автомобиля определяется целым комплексом конструктивных параметров тормозных систем. Главными показателями эффективности рабочей тормозной системы являются величины тормозного пути (Sт) и времени срабатывания (tср).

Тормозной путь автомобиля определяется как расстояние, пройденное им от начала до конца торможения, и состоит из участков пути, проходимых за время срабатывания и за период установившегося торможения. При этом расстоянием, проходимым автомобилем за время отпускания тормозной системы обычно пренебрегают ввиду незначительности величины.

В соответствии с ГОСТ Р 51709-2001 автотранспортные средства. Требования безопасности к техническому состоянию и методы проверки» в Правилах дорожного движения установлены предельные значения тормозного пути, при несоблюдении которых эксплуатация транспортных средств запрещается.

Более 50 % всех ДТП из-за технической неисправности автомобилей происходит вследствие неудовлетворительного состояния тормозных систем.

Остановочный путь автомобиля увеличивается (по сравнению с тормозным) на величину, проходимую автомобилем за время реакции водителя.

2. Устойчивость автомобиля

Устойчивостью автомобиля называют свойство сохранять в движении требуемую траекторию.

Различают продольную и поперечную устойчивость. Характеристики устойчивости определяются конструктивными параметрами автомобиля и зависят от его технического состояния.

Потеря устойчивости чаще всего возникает не из-за предельных условий эксплуатации автомобиля, а из-за неправильных действий водителя: резких разгонов, торможений, неправильного маневрирования рулевым колесом.

Частой предпосылкой потери устойчивости является скорость автомобиля, не соответствующая дорожным условиям. Если автомобиль движется с излишне высокой скоростью, то тяговая сила Рт приближается по величине к силе сцепления ведущих колес с дорогой Рсц, вследствие чего возможно их пробуксовывание. Скорость, при которой возникает пробуксовывание, уменьшается на участках дороги со скользким, неровным покрытием (укатанный снег, обледенелый асфальтобетон, булыжник).

Резкое нажатие на дроссельную заслонку, например, перед подъемом или при обгоне в условиях скользкой, неровной дороги также может вызвать пробуксовывание, приводящее к боковому скольжению ведущих колес. Чем выше скорость движения, тем больше рыскание автомобиля на неровной дороге, тем больше вероятность потери курсовой устойчивости при наезде колеса на впадину или выступ.

Водитель для сохранения курсовой устойчивости автомобиля должен избегать резких разгонов и торможений, резких маневров подруливали, должен управлять автомобилем плавно, тщательно выбирая скоростной режим и траекторию движения.

Продольная, и, в особенности, поперечная устойчивость автомобиля зависят не только от его конструкции и скоростного режима, но и от размещения и веса перевозимого груза.

Непосредственно перед перевозкой водитель должен продумать тактику своих действий на маршруте в связи с особенностями перевозимого груза. При всяком новом виде перевозок сложившийся ранее у водителя навык может оказаться не адекватным, не соответствующим новым условиям. Устойчивость автомобиля против опрокидывания уменьшается при поднятии центра масс. Чем шире колея, тем выше устойчивость автомобиля. Показатель поперечной устойчивости Ноп определяется:

Чем ниже коэффициент Ноп, тем меньше скорость движения на повороте или меньший угол поперечного уклона дороги могут вызвать опрокидывание.

Следует помнить, что вероятность опрокидывания существенно зависит от технического состояния подвески. Особенно это относится к грузовым автомобилям и автобусам.

Результаты проводимых на протяжении ряда лет обследований подвижного состава, позволяют сделать вывод о том, что при эксплуатации транспортных средств наблюдаются случаи неправомерного вмешательства персонала, в том числе водителей, в конструкцию АТС для улучшения их характеристик. Так, например, при переходе на эксплуатацию в осенне-зимний период умышленно отключаются приводы тормозных систем передних осей. По мнению большинства водителей, этот прием улучшает показатели устойчивости автомобилей при торможении на скользком дорожном покрытии, что является ошибочным. Поэтому, при проведении занятий, необходимо четко объяснить водителям, что торможение при выключенной передней оси увеличивает вероятность заноса.

Особое внимание необходимо уделить проблеме устойчивости автопоезда при торможении в условиях низкого коэффициента сцепления. Большую помощь водителям на скользкой дороге окажет умение использовать приемы прерывистого и ступенчатого торможения. Отработка навыков выполнения этих приемов в условиях учебной площадки позволяет добиться автоматизма в их выполнении и существенно сократить тормозной путь и повысить устойчивость АТС не оборудованных антиблокировочными системами.

Устойчивость цистерн зависит, прежде всего, от формы цистерн, степени заполнения, силы удара при всплеске жидкости в цистерне, интенсивности работы рулем. При 100% заполнении существует лишь небольшая разница в пределе опрокидывания различных форм цистерн. Эллипсоидная форма цистерны с тремя перегородками против ударов от всплесков жидкости наиболее устойчива против опрокидывания даже при изменении частоты работы рулем. Это положение действительно также при 50% и 75% заполнении цистерны.

3. Управляемость автомобиля

Управляемость автомобиля определяется его свойством реагировать на поворот рулевого колеса.

Когда говорят, что автомобиль обладает плохой управляемостью, это означает, что его реакция на поворот руля не соответствует ожиданиям водителя. При этом водителю необходимо делать дополнительные подруливания для того, чтобы достигнуть требуемой траектории движения.

Управляемость автомобиля связана с таким его качеством, как поворачиваемость.

Поворачиваемостью называют свойство автомобиля изменять управляемость по сравнению с автомобилем на жестких колесах. Есть две основные причины (изменения) поворачиваемости: увод колес, вызываемый поперечной эластичностью шин, и поперечный крен кузова, связанный с эластичностью подвески.

Уводом называют качение колеса под углом к своей плоскости. Увод происходит из-за того, что шина обладает эластичностью. При наличии сил, действующих на автомобиль в поперечном направлении (ветер, сила тяжести на поперечном уклоне дороги, центробежная сила на повороте и т.д.), эластичность шины приводит к тому, что автомобиль двигается по дуге большего или меньшего радиуса, чем это обусловлено поворотом рулевого колеса.

Величина увода зависит от характеристик и состояния колес. Каждой модели шины соответствует определенная характеристика сопротивления уводу.

В зависимости от характеристик и состояния шин автомобиль приобретает различные свойства шинной поворачиваемости:

— недостаточная поворачиваемость, при этом для поворота по определенному радиусу нужно повернуть управляемые колеса на угол несколько больший, чем если бы колеса не обладали эластичностью;

— излишняя поворачиваемость, при этом управляемые колеса нужно повернуть на меньший угол, чем при жестких шинах. Автомобиль с недостаточной поворачиваемостью более устойчив и лучше сохраняет направление движения, чем автомобиль с излишней поворачиваемостью.

Автомобиль с излишней поворачиваемостью более подвержен изменению направления движения.

Под воздействием боковой (поперечной) силы (например, ветра) он может значительно отклоняться от заданной траектории движения. На повороте траектория автомобиля будет несколько круче, чем это задано углом поворота рулевого колеса. Явление излишней поворачиваемости проявляется и в случае, если давление в шинах передних колес больше, чем в задних, а также если центр тяжести автомобиля расположен ближе к задней оси.

В ненагруженном состоянии большинство отечественных автомобилей имеют недостаточную поворачиваемость. При полной нагрузке, напротив, автомобили имеют излишнюю поворачиваемость.

Явление поворачиваемости необходимо учитывать при перемене водителем типа подвижного состава, замене шин, изменении условий эксплуатации.

При частичной замене шин, вышедших из строя, необходимо заменять их шинами того же размера и модели, так как шины одного и того же размера, но разных моделей могут иметь неодинаковые: типы рисунков протектора, радиусы качения, сцепные качества и другие эксплуатационные характеристики.

Запрещается: установка на одну ось, на сдвоенные колеса и оси автомобиля, прицепа и полуприцепа шин диагональной и радиальной конструкции, а также шин с различными рисунками протектора; установка шин не рекомендованных моделей и конструкций; установка шин с износом протектора больше допустимого.

Креновая поворачиваемость связана с конструкцией подвески автомобиля. По аналогии с шинной поворачиваемостью креновая поворачиваемость может быть недостаточной и излишней.

У автомобиля с излишней поворачиваемостью, на который действует поперечная сила, кривизна траектории непрерывно увеличивается, что приводит к уменьшению радиуса поворота.

Однако, креновая поворачиваемость не может увеличиваться беспредельно, т.к. максимальное значение угла поперечного крена ограничено упорами.

Креновая и шинная поворачиваемость тесно связаны и в зависимости от конструкции подвески креновая поворачиваемость либо усиливает, либо ослабляет влияние шинной поворачиваемости.

4. Особенности управления автопоездом

Управлять автопоездом значительно труднее, чем одиночным автомобилем. Это объясняется следующими причинами: увеличиваются вес и габариты автопоезда, путь разгона и торможения, затруднено маневрирование. Кроме того, во время движения прицеп периодически отклоняется от траектории движения автомобиля-тягача, что создает опасность столкновения при обгоне и разъезде со встречными транспортными средствами.

При движении автопоезда в составе тягача и прицепа (или двух прицепов) водителю приходится (при прочих равных условиях) в большей степени заниматься корректировкой его движения. Это объясняется большей величиной поперечных колебаний звеньев автопоезда, большей габаритной длиной, наличием нескольких подвижных элементов, соединенных шарнирно, и рядом других особенностей управления автопоездом. Характер движения автопоезда может значительно меняться при изменении числа его звеньев, расположении груза, давлении в шинах, величины зазора в тягово-сцепном устройстве, скорости движения, дорожных условий и т.п.

Указанные факторы влияют на величину динамического коридора автопоезда.

Наиболее существенно влияние на увеличение динамического коридора оказывают скорость движения автопоезда, величина зазора в тягово-сцепном устройстве, состояние дорожного покрытия (неровное, скользкое, булыжное). Динамический коридор увеличивается также при движении автопоезда под уклон, снижении давления в шинах. Большое влияние на величину динамического коридора автопоезда оказывает снижение давления в шинах задних колес прицепа.

При идентичных условиях прямолинейного движения разница в величинах динамического коридора для одиночного тягача и автопоезда может превышать 0,6 м.

Увеличение динамического коридора автопоезда в значительной степени зависит от расположения груза на прицепе (особенно сзади). При выполнении погрузо-разгрузочных работ необходимо располагать груз на платформе прицепа и автомобиля по возможности равномерно. Если это по какой-то причине невозможно (например, при перевозке двух контейнеров, имеющих различный вес), то целесообразно более тяжелый груз размещать в передней части платформы прицепа.

Несколько уменьшает динамический коридор автопоезда незначительное снижение давления в шинах передних колес прицепов.

Существенно возрастает динамический коридор при увеличении числа прицепов.

Маневрирование в местах погрузочно-разгрузочных работ требует от водителя специальных навыков и умений. Движение задним ходом на автопоезде сопряжено с риском непроизвольного разворота или складывания автопоезда. Складывание автопоезда может возникнуть и при резком торможении, в том случае, когда из-за неравномерности тормозных сил на различных колесах или из-за неодинакового сцепления колес с дорогой возникает боковое скольжение заднего моста полуприцепа автопоезда.

5. Особенности управления переднеприводным автомобилем

послеаварийный транспортный конструктивный

Переднеприводный автомобиль не только устроен по-другому, нежели автомобиль классической компоновки. Он отличается поведением на дороге, особенно на скользкой, и поэтому требует от водителя несколько иных навыков и специфических приемов управления. Это обусловлено наличием тягового усилия на передних колесах и приходящейся на них повышенной доли общей массы автомобиля. Прежде чем водитель сядет за руль переднеприводного автомобиля, ему необходимо усвоить особенности его поведения на дороге.

Начнем с движения по прямой. Водитель заднеприводного автомобиля знает, что в этом случае, особенно при движении по скользкой дороге с высокой скоростью или при разгоне, задние колеса пытаются то и дело уйти в сторону. Это вызвано действием случайных боковых сил, возникающих от неровностей дороги, различий покрытия или от небрежной работы рулем. Задние колеса, будучи нагружены крутящим моментом, хуже сопротивляются воздействию боковых сил. Для сохранения курсовой устойчивости водителю приходится поворотами руля препятствовать развитию заноса, а если этих корректирующих действий недостаточно, то снижать скорость.

Переднеприводный же автомобиль ведет себя по-другому. Он позволяет двигаться по скользкой дороге в прямом направлении на высокой скорости без заносов. В результате у водителя может притупиться его бдительность, что необходимо учитывать при управлении.

Размещено на Allbest.ru

Подобные документы

Обстоятельства дорожно-транспортного происшествия (ДТП). Характеристика скорости движения транспортных средств, состояние дорожного покрытия в момент аварии. Технико-эксплуатационные параметры, расчетная схема ДТП, нарушение правил дорожного движения.

контрольная работа [41,0 K], добавлен 10.12.2012

Общее определение послеаварийной безопасности автомобиля как его свойства снижать тяжесть последствий дорожно-транспортного происшествия в конечной фазе и после аварии. Конструктивные мероприятия, направленные на повышение послеаварийной безопасности.

реферат [280,3 K], добавлен 24.09.2014

Компоновочные параметры автомобиля и их влияние на безопасность дорожного движения. Расчет ширины динамического коридора и дистанции безопасности. Определение времени и пути завершенного обгона. Тормозные свойства АТС. Расчет показателей устойчивости.

курсовая работа [583,7 K], добавлен 30.04.2011

Анализ проблем безопасности движения, связанных с наездами на пешеходов. Расчет скорости движения транспортного средства перед началом торможения. Определение величины остановочного пути. Расчет своевременности принятия водителем мер к снижению скорости.

курсовая работа [128,1 K], добавлен 07.08.2013

Эксплуатационные качества автомобиля, обеспечивающие пассивную безопасность. Виды дорожно-транспортных происшествий, травмобезопасность элементов машины, выдерживаемые человеком нагрузки. Нормирование экологических качеств автотранспортной техники.

дипломная работа [3,8 M], добавлен 29.05.2015

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *