Тяговые электрические машины применяемые на железнодорожном транспорте применение принцип действия
Тяговые электрические машины электроподвижного состава
Содержание
Тяговые электродвигатели
Питание
Питание ТЭД осуществляется от контактной сети (ЭПС) и от находящегося на подвижном составе источника энергии (электромашинного генератора, аккумулятора). По роду тока различают ТЭД коллекторные постоянного тока (пульсация тока до 10%), коллекторные пульсирующего тока с питанием от однофазного выпрямителя, и бесколлекторные переменного тока асинхронные (однофазные, многофазные) и синхронные (вентильные) с преобразованием однофазного тока в многофазный (обычно в трехфазный). Выпрямители и преобразователи размещены на подвижном составе, что позволяет регулировать напряжение на ТЭД. При питании током постоянного напряжения от контактной сети регулировка напряжения на ТЭД до 1970-х гг. осуществлялась переключением двигателей на последовательное или параллельное соединение и включением в цепь пусковых резисторов. С нач. 70-х гг. на электровозах ВЛ80Р и в дальнейшем осуществляется обычно бесступенчатая плавная регулировка напряжения расположенными на ЭПС полупроводниковыми управляемыми выпрямителями или преобразователями.
Охлаждение
Охлаждение ТЭД производится обычно воздухом с независимой вентиляцией. На магистральных электровозах большой мощности применяется самовентиляция (на электропоездах и в вагонах метро), иногда естественное охлаждение либо жидкостное охлаждение, в т. ч. при сверхнизких температурах (опытные разработки линейных двигателей для высокоскоростного транспорта).
Режимы работы
Коллекторный электродвигатель
Индуктор, создающий магнитный поток — это стальной (литой или сварной) массивный корпус с главными и дополнительными полюсами. Якорь, вращаясь в индукторе, преобразует механическую энергию в электрическую (режим генератора). Якорь имеет стальной сердечник с обмоткой, подсоединенной к коллектору. Коллектор, набранный из отдельных пластин, необходим для изменения направления тока (коммутации) в проводнике якорной обмотки, чтобы не менялось направление вращающего момента при перемещении этого проводника под полюс другой полярности. Процесс коммутации может сопровождаться искрением под щетками; расстройство коммутации при определенных условиях приводит к возникновению на коллекторе электрической дуги (круговой огонь), повреждающей коллектор и щетки. Мощность коллекторных ТЭД ограничена условиями коммутации. ТЭД постоянного тока питаются непосредственно от контактной сети напряжением 3000 В с допустимым повышением до 4000 В (за рубежом есть линии на 1500 В), максимальная мощность до 1000 кВт (на грузовых и скоростных пассажирских электровозах). Двигатели соединяют последовательно по два и более для понижения номинального напряжения на коллекторе до 1500 В, реже до 750 В (хуже по эксплуатационным показателям; используется главным образом на моторных вагонах).
Изоляцию обмоток от корпуса рассчитывают на максимальное напряжение в контактной сети.
ТЭД пульсирующего тока
Недостатком любых конструкций коллекторных ТЭД является ненадежный в работе коллекторно-щеточный узел, ограничивающий мощность и частоту вращения (допустимая линейная скорость на поверхности коллектора 50-60 м/с) и требующий регулярного обслуживания при эксплуатации. Основные технические данные ТЭД, применяемых на ЭПС локомотивного парка России и других стран СНГ, приведены в таблице.
Характеристики ТЭД
Характеристики ТЭД делятся на электромеханические, тепловые и аэродинамические. К электромеханическим характеристикам относят зависимости частоты вращения якоря n, вращающего момента двигателя М и кпд на его валу ηд от силы тока якоря Iа, а также отношения напряжения в обмотках якоря (эдс) к частоте вращения Е/n в зависимости от силы тока возбуждения Iв. Последняя зависимость нелинейна из-за насыщения магнитной цепи машины при большом токе возбуждения (рис. 5.57).
Основные расчетные зависимости для любой электрической машины постоянного тока следующие:
Рэ = Elа= 1,028 Мэ*n; Е=с*Ф8n; U = Е + IаR; η=Р2/Р1,
Тепловые характеристики
Конструкция ТЭД должна исключать возможность случайного соприкосновения обслуживающего персонала с вращающимися частями, обеспечивать удобное техническое обслуживание и ремонт, удовлетворять требованиям пожарной безопасности. Основные показатели надежности ТЭД — вероятность безотказной работы, наработка на отказ, установленный срок службы до списания и т.д.
Бесколлекторный электродвигатель
Впервые бесколлекторный электродвигатель в качестве тягового был применен в Венгрии в 20-х гг. 20 в. на электровозах однофазно-трехфазного тока. Использовались вращающиеся преобразователи системы инженера К. Кандо; двигатели были тихоходными, с переключением полюсов. Вентильный ТЭД впервые предложен в Германии A930 г.). В начале 50-х гг. во Франции 20 электровозов были оборудованы частотно-регулируемыми асинхронными ТЭД для линии Валансьен-Тьонвиль, электрифицированной на переменном токе частотой 50 Гц, напряжением 22-25 кВ. ТЭД широко используются за рубежом (США, Австрия, Норвегия, Швейцария, Италия, Дания и др.) на ЭПС, на городском электротранспорте, а также на тепловозах.
В России разработки по применению бесколлекторных ТЭД в тяговом электроприводе начались в 60-х гг. Их использование на подвижном составе стало экономически обоснованным после появления малогабаритных полупроводниковых преобразователей напряжения и частоты. В 70—80-е гг. были построены опытные электровозы с вентильными (ВЛ80В, ВЛ83) и асинхронными (ВЛ80А, ВЛ86, ВЛ86Ф) тяговыми электродвигателями. В конце 90-х гг. начались испытания электровоза ЭП10 двойного питания с асинхронным ТЭД производства НЭВЗ с преобразователями зарубежного производства и скоростного пассажирского электровоза ЭП200 Коломенского и Новочеркасского заводов.
Синхронный (вентильный) двигатель
Асинхронный ТЭД
Асинхронный ТЭД имеет ротор с короткозамкнутой обмоткой без изоляции; обмотка статора выполнена с изоляцией. На ЭПС асинхронный ТЭД получает питание от статических преобразователей, построенных на базе автономных инверторов напряжения или тока. Регулирование режимов работы электродвигателя, осуществляемое изменением напряжения и его частоты (два независимых канала регулирования), может проводиться индивидуально для каждого электродвигателя или одновременно для нескольких. Рабочие тяговые характеристики двигателя показаны на рис. 5.58.
Линейный электродвигатель
Линейный электродвигатель является составной частью линейного электропривода и служит для непосредственного преобразования электрической энергии в энергию поступательного движения транспортного средства, т. е. без механической передачи. В линейный привод входит также аппаратура управления и регулирования скорости. Линейный электродвигатель (рис. 5.59) содержит питаемый электрическим током первичный элемент (индуктор), являющийся статором, и вторичный элемент в виде реактивной полосы, выполняющей роль ротора. Индуктор и реактивная полоса разделены воздушным зазором. Неподвижный элемент магнитной системы линейного электродвигателя разомкнут и имеет развернутую в плоскости обмотку произвольной длины, создающую бегущее магнитное поле, а подвижный элемент движется относительно неподвижного (см. рис.).
Линейный электродвигатель может быть асинхронным и синхронным. Реактивная полоса асинхронного линейного электродвигателя (наиболее распространенная схема), выполненная в виде бруска обычно прямоугольного сечения без обмоток, закрепляется вдоль путепровода, над которым перемещается электровоз, несущий подвижную часть (индуктор) двигателя. Магнитопровод индуктора выполнен с развернутыми многофазными обмотками, питаемыми от источника переменного тока. Вследствие взаимодействия магнитного поля индуктора с полем реактивной полосы возникают силы, которые заставляют перемещаться с ускорением индуктор линейного электродвигателя относительно неподвижной реактивной полосы до тех пор, пока скорости перемещения индуктора и бегущего магнитного поля реактивной полосы не уравняются. Преимуществом такой конструкции является размещение в путепроводе более простой в изготовлении, чем индуктор, реактивной полосы. Возможна схема, в которой в путепроводе размещается индуктор, при этом не требуется передачи электроэнергии на движущийся объект, нет контактного рельса на трассе и токоприемников на подвижном составе. Однако в этом случае вдоль трассы необходимо разместить большое число индукторов. Такая схема целесообразна при большой частоте следования транспортных средств или при подвижном составе большой длины. Применяется и комбинированный вариант, например, с размещением индукторов в путепроводе на участках разгона, торможения, подъема и спуска; на остальной части трассы используется индуктор, установленный на подвижном составе. Линейный электродвигатель получает питание от преобразователя или непосредственно от промышленной сети переменного тока (линейный асинхронный привод).
Управление силой тяги и скоростью движения осуществляется системой автоматического управления и регулирования путем изменения частоты напряжения и силы тока в обмотках двигателя.
Линейный электропривод обеспечивает также торможение подвижного состава, например, противовключением. Достоинствами привода являются отсутствие вращающихся частей, механической передачи, простота в эксплуатации, большой ресурс работы. К недостаткам относятся более низкие по сравнению с обычным электроприводом энергетические показатели, связанные с разомкнутостью магнитной цепи и большими рабочими зазорами, сложность и высокая стоимость изготовления и др. Линейные электродвигатели могут применяться на поездах высокоскоростного наземного транспорта, относящихся к левитирующим транспортным системам. Общий кпд таких систем с линейным электродвигателем при оптимизации его показателей не уступает кпд обычного тягового электропривода вследствие исключения промежуточных звеньев передачи силы тяги и отсутствия проскальзывания при механическом контакте между ходовой частью и путепроводом.
Тяговый электродвигатель
Тяговый электродвигатель — электрическая машина, преобразующая электрическую энергию в механическую для привода в движение колёсных пар вагонов. Тяговые двигатели используют также для торможения поезда, переводя их в генераторный режим. При этом механическая энергия движущегося поезда преобразуется в электрическую.
Содержание
Общие сведения
Развитие конструкции тяговых двигателей тесно связано с совершенствованием конструкции систем управления ими. Исторически подвижной состав всех видов электрического транспорта строился с коллекторными тяговыми двигателями. Это объясняется, в первую очередь, простотой простотой передачи энергии и управления режимами его работы. Такие двигатели обладают удобными для использования на транспорте механическими характеристиками. Однако, коллекторные двигатели имеют и ряд недостатков, связанных, в основном, с наличием коллектора. Коллектор, имеющий подвижные контакты (щетки), требует регулярного обслуживания. Для обеспечения надежной коммутации, снижения искрения усложняется конструкция электродвигателя. Кроме того, это ограничивает максимальную скорость вращения, что приводит к увеличению габаритов двигателя.
Развитие силовой полупроводниковой техники, обладающей высоким быстродействием, позволило в 1960-х — 80-х годах сначала отказаться от реостатной системы управления коллекторными тяговыми двигателями, заменив её более надежной и экономичной импульсной, а затем и перейти к выпуску вагонов с асинхронным тяговым приводом. На отечественных метрополитенах первым серийно выпускавшимся типом вагонов с импульсным регулированием стал тип 81-718/719 в 1991 году, а первым серийно выпускаемым типом вагонов с асинхронными двигателями — «Яуза» 81-720.1/721.1 в 1998 году.
Основными недостатками асинхронных двигателей являются сложность регулирования и сложность осуществления электрического торможения при использовании двигателей с короткозамкнутым ротором. Поэтому в настоящее время разрабатываются конструкции тяговых приводов, использующих синхронные двигатели с ротором на постоянных магнитах, вентильно-индукторные двигатели.
Коллекторные тяговые двигатели
В России существует единая унифицированная серия коллекторных тяговых двигателей постоянного тока, в которую вошли и двигатели электропоездов метрополитена. Все они имеют общий принцип компоновки и много унифицированных узлов и деталей. При изготовлении унифицированных тяговых двигателей можно использовать однотипное станочное оборудование, что снижает их стоимость. На вагонах метрополитена широко используют тяговые двигатели постоянного тока. Такие двигатели обладают хорошими тяговыми характеристиками, сравнительно просты по конструкции и надежны в эксплуатации. По конструкции тяговые двигатели электроподвижного состава существенно отличаются от стационарных двигателей постоянного тока, что объясняется особенностями их расположения и условиями работы. Размеры тягового двигателя, подвешенного под кузовом вагона, ограничены подвагонными габаритами. Диаметр его определяется диаметром колеса, так как должно быть выдержано определенное расстояние от нижней точки двигателя до уровня головки рельсов. Длина тягового двигателя ограничена габаритными размерами тележки. На вагонах установлены четыре тяговых двигателя: по одному на каждую колесную пару. Нумерация их идет по осям, считая от кабины управления. Тяговый двигатель работает в тяжелых условиях, так как на него попадают грязь с железнодорожного полотна, пыль от тормозных колодок, дождь и снег на открытых участках трассы. Поэтому все детали, расположенные в его корпусе, должны быть защищены. Для лучшего отвода тепла, выделяющегося при работе тягового двигателя, на валу якоря установлен вентилятор, засасывающий воздух со стороны коллектора и прогоняющий его через двигатель. В паспорте стационарных электрических машин обычно указывает их номинальную мощность продолжительного режима, то есть такую мощность, которую машина должна отдавать неограниченно долгое время, причем температура его узлов и деталей не должна превышать значений, допускаемых нормами для изоляционных материалов. Режим работы тяговых двигателей резко меняется в зависимости от профиля пути и веса поезда. Это не позволяет характеризовать работоспособность тягового двигателя только значением номинальной мощности продолжительного режима. Поэтому характеристики тяговых двигателей даны для часового и максимального режимов.
Асинхронные тяговые двигатели
Тяговые двигатели ДАТЭ-170 входят в комплект тягового привода КАТП-1, устанавливаемого на вагонах 81-720.1/721.1 и 81-740/741. Их основные параметры:
Кроме того, в эксплуатации на метрополитенах Казани, Киева, Праги находятся вагоны отечественного производства с асинхронным приводом производства фирмы «Шкода».
Конструкция тяговых двигателей
Устройство тягового двигателя постоянного тока
Все тяговые двигатели постоянного тока вагонов метрополитена имеют в основном одинаковое устройство. Двигатель состоит из остова, четырех главных и четырех добавочных полюсов, якоря, подшипниковых щитов, щеточного аппарата, вентилятора.
Остов двигателя
Он выполнен из электромагнитной стали имеет цилиндрическую форму и служит магнитопроводом. Для жесткого крепления к поперечной балке рамы тележки на остов предусмотрены три прилива-кронштейна и два предохранительных ребра. В остове имеются отверстия для крепления главных и добавочных полюсов, вентиляционные и коллекторные люки. Из остова двигателя выходят шесть кабелей. Торцовые части остова закрыты подшипниковыми щитами. В остове укреплена паспортная табличка с указанием завода-изготовителя, заводского номера, массы, тока, частоты вращения, мощности и напряжения.
Главные полюсы
Они предназначены для создания основного магнитного потока. Главный полюс состоит из сердечника и катушки. Катушки всех главных полюсов соединены последовательно и составляют обмотку возбуждения. Сердечник набран из листов электротехнической стали толщиной 1,5 мм для Уменьшения вихревых токов. Перед сборкой листы прокрашивают изоляционным лаком, сжимают прессом и скрепляют заклепками. Часть сердечника, обращенная к якорю, выполнена более широкой и называется полюсным наконечником. Эта часть служит для поддержания катушки, а также для лучшего распределения магнитного потока в воздушном зазоре. В тяговых двигателях ДК-108А, установленных на вагонах Е (по сравнению с ДК-104 на вагонах Д), увеличен зазор между якорем и главными полюсами, что, с одной стороны, дало возможность увеличить скорость в ходовых режимах на 26 %, а с другой стороны, уменьшилась эффективность электрического торможения (медленное возбуждение двигателей в генераторном режиме из-за недостаточного магнитного потока). Для увеличения эффективности электрического торможения в катушках главных полюсов кроме двух основных обмоток, создающих основной магнитный поток в тяговом и тормозном режимах, имеется третья — подмагничивающая, которая создает дополнительный магнитный поток при работе двигателя только в генераторном режиме. Подмагничивающая обмотка включена параллельно двум основным и получает питание от высоковольтной цепи через автоматический выключатель, предохранитель и контактор. Изоляция катушек главных полюсов кремнийорганическая. Главный полюс крепится к остову двумя болтами, которые ввертывают в квадратный стержень, расположенный в теле сердечника.
Добавочные полюсы
Они предназначены для создания дополнительного магнитного потока, который улучшает коммутацию и уменьшает реакцию якоря в зоне между главными полюсами. По размерам они меньше главных полюсов и расположены между ними. Добавочный полюс состоит из сердечника и катушки. Сердечник выполнен монолитным, так как вихревые токи в его наконечнике не возникают из-за небольшой индукции под добавочным полюсом. Крепится сердечник к остову двумя болтами. Между остовом и сердечником для меньшего рассеяния магнитного потока установлена диамагнитная латунная прокладка. Катушки добавочных полюсов соединены последовательно одна с другой и с обмоткой якоря.
Якорь
Машина постоянного тока имеет якорь, состоящий из сердечника, обмотки, коллектора и вала. Сердечник якоря представляет собой цилиндр, набранный из штампованных листов электротехнической стали толщиной 0,5 мм. Для уменьшения потерь от вихревых токов, возникающих при пересечении якорем магнитного поля, листы изолируют один от другого лаком. В каждом листе имеется отверстие со шпоночной канавкой для насадки на вал, вентиляционные отверстия и пазы для укладки обмотки якоря. В верхней части пазы имеют форму ласточкиного хвоста. Листы насаживают на вал и фиксируют шпонкой. Собранные листы прессуются между двумя нажимными шайбами. Обмотка якоря состоит из секций, которые укладывают в пазы сердечника и пропитывают асфальтовым и бакелитовым лаками. Чтобы обмотка не выпадала из пазов, в пазовую часть забивают текстолитовые клинья, а переднюю и заднюю части обмотки укрепляют проволочными бандажами, которые после намотки пропаивают оловом. Назначение коллектора машины постоянного тока в различных режимах работы неодинаково. Так, в генераторном режиме коллектор служит для преобразования переменной электродвижущей силы (э.д.с), индуцируемой в обмотке якоря, в постоянную э.д.с. на щетках генератора, в двигательном — для изменения направления тока в проводниках обмотки якоря, чтобы якорь двигателя вращался в какую-либо определенную сторону. Коллектор состоит из втулки, коллекторных медных пластин, нажимного конуса. Коллекторные пластины изолированы друг от друга миканитовыми пластинами, от втулки и нажимного конуса — изоляционными манжетами. Рабочую часть коллектора, имеющую контакт со щетками, протачивают на станке и шлифуют. Чтобы при работе щетки не касались миканитовых пластин, коллектор подвергают «продорожке». При этом миканитовые пластины становятся ниже коллекторных примерно на 1 мм. Со стороны сердечника в коллекторных пластинах предусмотрены выступы с прорезью для впаивания проводников обмотки якоря. Коллекторные пластины имеют клинообразное сечение, а для удобства крепления — форму «ласточкин хвост». Коллектор насаживают на вал якоря прессовой посадкой и фиксируют шпонкой. Вал якоря имеет разные посадочные диаметры. Кроме якоря и коллектора, на вал напрессована стальная втулка вентилятора. Внутренние кольца подшипников и подшипниковые втулки насажены на вал в горячем состоянии.
Подшипниковые щиты
В щитах установлены шариковые или роликовые подшипники — надежные и не требующие большого ухода. Со стороны коллектора стоит упорный подшипник; его наружное кольцо упирается в прилив подшипникового щита. Со стороны тяговой передачи установлен свободный подшипник, который позволяет валу якоря удлиняться при нагреве. Для подшипников применяют густую консистентную смазку. Чтобы смазка при работе двигателей не выбрасывалась из смазочных камер, предусмотрено гидравлическое (лабиринтное) уплотнение. Вязкая смазка, попав в небольшой зазор между канавками-лабич рингами, проточенными в щите, и втулкой, насаженной на вал, под действием центробежной силы отбрасывается к стенкам лабиринта, где самой смазкой создаются гидравлические перегородки. Подшипниковые щиты крепят к обеим сторонам остова.
Щеточный аппарат
Для соединения коллектора двигателя с силовой цепью вагона используют электрографитные щетки марки ЭГ-2А, которые обладают хорошими коммутирующими свойствами, высокой механической прочностью и способны выдерживать большие перегрузки. Щетки представляют собой прямоугольные призмы размером 16 х 32 х 40 мм. Рабочую поверхность щеток пришлифовывают к коллектору для обеспечения надежного контакта. Щетки устанавливают в обоймы, называемые щеткодержателями, и соединяют с ними гибкими медными шунтами: в каждом щеткодержателе по две щетки, число щеткодержателей — четыре. Нажим на щетку осуществляется пружиной, упирающейся одним концом через палец в щетку, другим — в щеткодержатель. Нажатие на щетку должно быть отрегулировано в строго определенных пределах, так как чрезмерный нажим вызывает быстрый износ щетки и нагрев коллектора, а недостаточный не обеспечивает надежного контакта между щеткой и коллектором, вследствие чего возникает искрение под щеткой. Нажатие не должно превышать 25Н (2,5 кгс) и быть менее 15Н (1,5 кгс). Щеткодержатель укрепляют на кронштейне и с помощью двух шпилек, запрессованных в кронштейн, крепят непосредственно к подшипниковому щиту. Кронштейн от щеткодержателя и подшипникового шита изолируют фарфоровыми изоляторами. Для осмотра коллектора и щеткодержателей в остове двигателя имеются люки с крышками, обеспечивающими достаточную защиту от проникновения воды и грязи.
Вентилятор
В процессе работы необходимо охлаждать двигатель, так как с повышением температуры его обмоток снижается мощность двигателя. Вентилятор состоит из стальной втулки и силуминовой крыльчатки, скрепленных восемью заклепками. Лопатки крыльчатки расположены радиально для выброса воздуха в одном направлении. Вентилятор вращается вместе с якорем двигателя, создавая в нем разрежение. Потоки воздуха засасываются внутрь двигателя через отверстия со стороны коллектора. Часть воздушного потока омывает якорь, главные и добавочные полюса, другая проходит внутри коллектора и якоря по вентиляционным каналам. Воздух выталкивается наружу со стороны вентилятора через люк остова.
Устройство асинхронного двигателя с короткозамкнутым ротором
Асинхронный двигатель состоит из двух основных узлов: статора и ротора. На статоре размещают трехфазную обмотку, создающую вращающееся магнитное поле. Скорость вращения магнитного поля определяется частотой питающего двигатель тока и числом пар полюсов.
Обмотку ротора выполняют в виде так называемой «беличьей клетки». Она является короткозамкнутой и не имеет выводов. Беличья клетка состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора, набранного из листов электротехнической стали, без какой-либо изоляции. По торцам ротора устанавливают лопасти, образующие центробежный вентилятор. Ток в роторе наводится движущимся относительно него полем статора. Таким образом, для работы двигателя необходима разность скоростей вращения ротора и поля статора, что и отражено в его названии.
Характеристики тяговых двигателей
В таблице приведены технические характеристики коллекторных тяговых двигателей вагонов метрополитена:
Тип двигателя | ДПМ-151 | ДК-102А…Г | SL-104n | USL-421 | ДК-104А | ДК-104Г, Д | ДК-108А | ДК-108А1 | ДК-108Г | ДК-108Д | ДК-112А | ДК-115Г | ДК-116А | ДК-117А | ДК-117ДМ | ДК-120АМ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Тип вагонов | А | Г | В2 | В3 | В1 | Д | Е | Е | Еж | И | Еж3 | 81-717/714 | 81-717.5/714.5 | 81-720/721 | ||
Год начала производства | 1935 | 1940 | 1930 | 1930 | 1948 | 1949 | 1959 | 1959 | 1970 | 1973 | 1973 | 1975 | 1987 | 1991 | ||
Часовая мощность, кВт | 153 | 83 | 100 | 70 | 80 | 73 | 64 | 68 | 66 | 66 | 68 | 90 | 72 | 110 | 112-114 | 115 |
Номинальное напряжение, В | 750 | 375 | 750 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | 375 | ||
Рабочее ослабление поля, % | 65 | 44,5 | 40 | 40 | 35 | 28 | ||||||||||
Часовой ток, А | 225 | 248 | 220 | 220 | 195 | 210 | 202 | 205 | 210 | 270 | 218 | 330 | 330-340 | 345 | ||
Часовая частота вращения, об/мин | 950 / 968 | 1160 | 1300 | 1355 | 1530 | 1450 | 1510 | 1600 | 1600 | 1600 | 1360 | 1480 | 1480 | 1500 | ||
Длительный ток, А | 173 | 205 | 185 | 175 | 182 | 178 | 178 | 185 | 230 | 185 | 295 | 290 | 295 | |||
Длительная частота вращения, об/мин | 1075 | 1320 | 1455 | 1580 | 1600 | 1740 | 1220 | |||||||||
Наибольший ток, А | 450 | 500 | 440 | 420 | 420 | 440 | ||||||||||
Масса, кг | 2340 | 1490 | 700 | 615 | 630 | 630 | 625 | 625 | 765 | 760 | 770 | |||||
Число пар полюсов | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |||
Число коллекторных пластин | 185 | 238 | 141 | 175 | 175 | 175 | 175 | 175 | 175 | 210 | 210 | |||||
Возбуждение | Посл. | Посл. | Посл. | Посл. с подм. | Посл. с подм. | Посл. | Посл. с подм. | Посл. | Посл. | Посл. | ||||||
Число витков обмотки ГП | 38 | 16+16 | 33 | 30С+530Ш | 30С | 30 | 40 | 40 | 32 | 26 | 26 | |||||
Сопротвиление обмотки якоря, Ом | 0,066 | 0,041 | 0,068 | 0,086 | 0,078 | 0,092 | 0,092 | 0,092 | 0,066 | 0,034 | 0,0285 | |||||
Сопротивление обмотки возбуждения, Ом | 0,0615 | 0,0269 | 0,064 | 0,062+165 | 0,067+? | 0,067 | 0,108 | 0,098 | 0,044 | 0,048 | 0,0312 | |||||
Сопротивление добавочных полюсов, Ом | 0,0338 | 0,0215 | 0,028 | 0,035 | 0,034 | 0,037 | 0,049 | 0,049 | 0,022 | 0,015 | 0,0103 | |||||
Воздушный зазр под центром/краем полюса, мм | 5 / 9 | 2,2 / 5 | 1,5 / 5,7 | 3,25 / 9 | 2,9 | 2,5 | 4 / 9 |
Конструкция используемых в настоящее время коллекторных тяговых двигателей ДК-117 и ДК-120 регламентируется техническими условиями ТУ 3355-029-05758196-02.
Характеристики коллекторных электродвигателей, применяемых на наземном городском транспорте: