учение о фотосинтезе создал
Краткая история учения о фотосинтезе
Ищем педагогов в команду «Инфоурок»
Краткая история учения о фотосинтезе
Впервые мысль о воздушном питании растений высказал в 1761 году М.В. Ломоносов. Образование кислорода при фотосинтезе было открыто английским химиком Джозефом Пристли в 1780 г. Он обнаружил, что растения могут “очищать воздух, который был испорчен горящей свечой”. Пристли поместил побег мяты в перевернутую стеклянную банку, погруженную в сосуд с водой, и через несколько дней обнаружил, что “воздух в банке не гасил свечу, а когда поместил в банку мышь, не причинял ей вреда”.
Важный вклад в изучение фотосинтеза внес датчанин, придворный медик австрийской императрицы Ян Ингенхауз, который в конце 18 века открыл роль света в фотосинтезе: “Этот удивительный процесс обусловливается не ростом растения, а влиянием на него солнечного света”.
В суммарном уравнении фотосинтеза:
долгое время предполагалось, что углеводы образуются из воды и углерода, а кислород выделяется из углекислоты.
Экспериментальные доказательства происхождения выделяемого при фотосинтезе кислорода из воды были получены в 1941 году А.П. Виноградовым и Р.В. Тейс. Работы В.М. Кутюрина (1967,1970 годы) с использованием высокочувствительного метода масс-спектроскопии показали, что вода – единственный источник кислорода, выделяемого в процессе фотосинтеза, и что именно она служит непосредственно субстратом окисления.
Представления об исключительной роли хлорофилла и фотосинтеза в возникновении и существовании современных форм жизни на нашей планете развиты в многочисленных исследованиях А.Л. Курсанова, А.И. Опарина, А.А. Красновского, А.А. Ничипоровича, А.Т. Мокроносова, Б.А. Рубина, А.Б. Рубина, В.Е. Семененко, И.А. Тарчевского и др.
История открытия и изучения фотосинтеза
Фотосинтез — один из важнейших биологических процессов, протекающих в природе, ведь именно благодаря ему происходит образование органических веществ из углекислого газа и воды под действием света, а главное — выделяется кислород.
История изучения фотосинтеза началась в 1600 г., когда бельгийский ученый Ян Ван Гельмонт провел несложный эксперимент — поместил веточку ивы (предварительно измерив ее вес) в мешок с 80 кг земли и на протяжении пяти лет поливал дождевой водой. За это время вес ивы увеличился на 65 кг, при том что масса земли уменьшилась всего на 50 г. Откуда взялась столь внушительная прибавка в весе, для ученого осталось загадкой.
Следующий шаг к открытию фотосинтеза был сделан Джозефом Пристли в 1771 г. Он поместил мышь под колпак и через пять дней увидел, что та умерла. Тогда он посадил под колпак еще одну мышь, но рядом с ней положил веточку мяты — и в итоге мышь осталась живой. Это навело ученого на мысль, что существует некий процесс, противоположный дыханию, и что зеленые растения способны очищать и восстанавливать воздух, «испорченный» животными. Через несколько лет после этого открытия Пристли опытным путем узнал о существовании кислорода и понял — первая мышь умерла от его отсутствия, а вторая выжила благодаря веточке мяты, которая выделяла этот важный элемент.
В 1782 г. швейцарский ученый Ж. Сенебье доказал, что углекислый газ (СО2) под воздействием света разлагается в зеленых органоидах растений — хлоропластах. А пять лет спустя французский ученый Ж. Буссенго обнаружил, что растения поглощают воду не только при разложении, но и при синтезе органических веществ.
Тем не менее исследователи второй половины XIX — начала ХХ в. рассматривали фотосинтез как одноактный процесс разложения углекислого газа посредством хлорофилла — сложного органического соединения, которое придает листьям зеленую окраску и поглощает солнечный свет. В 1864 г. немецкому ботанику Ю. Саксу удалось рассчитать пропорцию потребляемого углекислого газа и выделяемого кислорода — 1:1. Таким образом, была выведена общая формула этого процесса: вода + углекислый газ + свет → углеводы + кислород (6СО2 + 6Н2О → С6Н12О6 + 6О2).
В 1871 г. К. Тимирязев высказал идею о том, что в ходе фотосинтеза хлорофилл подвергается обратимым окислительно-восстановительным превращениям. В 1905 г. английский физиолог растений Фредерик Блэкман установил основные этапы фотосинтеза, показав, что процесс начинается при слабом освещении и с увеличением светового потока скорость реакций возрастает, однако на определенном этапе дальнейшее усиление освещения уже не приводит к повышению активности фотосинтеза; что повышение темпера-туры при слабом освещении не влияет на скорость фотосинтеза, но при одновременном повышении температуры и усилении освещения скорость процесса растет гораздо заметнее, чем при одном лишь усилении освещения. На основании этих экспериментов Блэкман заключил, что происходят два процесса: первый зависит от уровня освещения, а не от температуры, тогда как второй определяется температурой независимо от яркости света. Позже два процесса получили название «световой» и «темновой» фаз, что не вполне корректно: хотя реакции «темновой» фазы идут и при отсутствии света, но для них необходимы продукты «световой» фазы.
В 1945 г. А. Виноградова и Р. В. Тейс обнаружили совпадение изотопного состава кислорода природной воды и синтезированной из водорода и кислорода, выделяемого зеленым листом на свету (фотосинтетического). С. Рубен и М. Камен применили в исследованиях иной принцип. Сначала они дали водорослям воду, обогащенную 18О, ― и растения выделили кислород с очень высокой концентрацией этого изотопа. Затем ученые «подкормили» водоросли углекислым газом, также обогащенным 18О, ― однако на выделенном кислороде это не сказалось. Тогда-то и стало ясно, что основная масса кислорода, выделяемого при фотосинтезе, принадлежит воде, то есть место имеет не разложение СО2, а распад молекулы воды, вызываемый энергией света.
Собственно, расщепление воды происходит в первой, «световой» фазе фотосинтеза. Еще в 1930-х это показал К. Б. ван Ниль в ходе изучения пурпурной серобактерии, которой для фотосинтеза нужен сероводород (H2S). Как оказалось, в качестве побочного продукта жизнедеятельности бактерия выделяет атомарную серу, а уравнение ее фотосинтеза выглядит так: СО2 + Н2S + свет → углевод + 2S.
Поскольку у серобактерий, в чьем метаболизме роль кислорода играет сера, фотосинтез возвращает эту серу, ван Ниль предположил, что в любом фотосинтезе источником кислорода является не углекислый газ, а вода. Последующие исследования подтвердили: первой стадией процесса является расщепление молекулы воды. Само улавливание энергии состоит из двух этапов и осуществляется в раздельных кластерах молекул — фотосистеме I и фотосистеме II. Номера кластеров отражают порядок, в котором эти процессы были открыты, однако реакции происходят сначала в фотосистеме II и лишь затем — в фотосистеме I.
Итак, процесс запускается в фотосистеме II, когда излучаемые солнцем фотоны попадают в молекулы хлорофилла, содержащиеся в мембранах клеточных органелл хлоропластов. Фотон сталкивается с 250—400 молекулами фотосистемы II, и энергия, резко возрастая, передается молекуле хлорофилла. В результате молекула хлорофилла теряет два электрона (которые принимает другая молекула — акцептор электронов), а молекула воды распадается, и электроны ее атомов водорода возмещают электроны, потерянные хлорофиллом.
После этого выстроенные цепочкой молекулы-переносчики быстро перебрасывают электроны на более высокий уровень, и часть выделенной энергии идет на образование аденозинтрифосфата (АТФ) — одного из основных аккумуляторов энергии в клетке. Тем временем молекула хлорофилла фотосистемы I поглощает фотон и отдает электрон другой молекуле-акцептору, а на место утерянной заряженной частицы встает электрон, прибывший по цепи переносчиков из фотосистемы II. Энергия электрона фотосистемы I и ионы водорода, образовавшиеся при расщеплении воды, идут на образование НАДФ-Н — еще одного источника энергии.
После того как солнечная энергия поглощена и запасена, наступает черед образования глюкозы. Основной механизм синтеза сахаров в растениях был открыт Мелвином Калвином, который в 1940-х вырастил водоросль в присутствии углекислого газа, содержащего радиоактивный углерод-14. Прерывая фотосинтез на разных стадиях, ученый установил химические реакции «темновой» фазы и открыл так называемый цикл Калвина — процесс превращения солнечной энергии в глюкозу.Сначала молекулы углекислого газа соединяются с «помощником» — пятиуглеродным сахаром рибулозодифосфатом (РДФ). Затем за счет энергии солнечного света, запасенной в АТФ и НАДФ-H, происходит шестиуровневая цепочка реакций связывания углерода с образованием глюкозы, выделением кислорода и воссозданием РДФ.
Очевидно, что обеспечение кислородом земной атмосферы — далеко не единственная цель фотосинтеза. Этот биологический процесс необходим не только людям и животным, но и самим растениям, основу жизнедеятельности которых составляют органические вещества, образующиеся в ходе фотосинтеза.
Что такое фотосинтез? История открытия процесса, фазы фотосинтеза и его значение.
Оглянитесь вокруг! Пожалуй, в каждом доме есть хотя бы одно зеленое растение, а за окном несколько деревьев или кустарников. Благодаря сложному химическом процессу происходящего в них фотосинтеза стало возможно зарождение жизни на Земле и существование человека. Разберем историю его открытия, суть процесса и реакции, которые протекают в разных фазах.
История открытия фотосинтеза
В настоящее время школьники впервые знакомятся со сложными процессами фотосинтеза уже в 6 классе.
Но еще 300-400 лет назад ответ на вопрос «откуда растения берут питательные вещества для строительства своих клеток?» занимал умы ученых во всем мире.
Первым и очевидным ответом было предположение, что из земли. Однако, в далеком 1600 году фламандский ученый Ян Батист ван Гельмонт решил проверить влияние почвы на рост растений и провел уникальный в своей простоте опыт. Естествоиспытатель взял веточку ивы и бочку с почвой. Предварительно их взвесил. А затем посадил отросток ивы в бочку с почвой.
Долгие пять лет ван Гельмонт поливал молодое деревце лишь дождевой водой. А через пять лет выкопал деревце, и вновь взвесил отдельно деревце и отдельно почву. Каково же было его удивление, когда весы показали, что деревце увеличило свой вес практически в тридцать раз, и совсем не походило на тот скромный прутик, что был посажен в кадку. А вес почвы уменьшился всего на 56 граммов.
Ученый сделал вывод. что почва практически не дает строительного материала растениям, а все необходимые вещества растение получает из воды.
После ван Гельмонта различные ученые повторили его опыт, и сложилась так называемая «водная теория питания растений».
Одним из тех, кто попытался возразить этой теории был М.В. Ломоносов. И строил он свои возражения на том, что на пустых, скудных северных землях с редкими дождями растут высокие, мощные деревья. Михаил Васильевич предположил, что часть питательных веществ растения впитывают через листья, но доказать свою теорию экспериментально он не смог.
И как часто бывает в науке, помог его величество случай.
Однажды нерадивая мышь, решившая поживиться церковными запасами, случайно перевернула банку и оказалась в ловушке. И через некоторое время погибла. К нашей удаче, эту мышь в банке обнаружил Джозеф Пристли, который был не просто священником, а по совместительству ученым-химиком, и очень интересовался химией газов и способами очистки испорченного воздуха. И тут церковным мышам не повезло. Они стали участницами различных опытов английского ученого.
Джозеф Пристли ставил под одну банку горящую свечу, а в другую сажал мышь. Свеча тухла, грызун погибал.
В наше время его самого зоозащитники посадили бы в банку, но в далеком 1771 году ученому никто не помешал продолжить свои опыты. Пристли посадил мышь в банку, где до этого потухла свеча. Животное погибло еще быстрее.
И тогда Пристли сделал вывод, что раз все живое на Земле до сих пор не погибло, Бог (мы же помним, что Пристли был священником), придумал некий процесс, чтобы воздух вновь был пригоден для жизни. И скорее всего, основная роль в нем принадлежит растениям.
Чтобы доказать это, ученый взял воздух из банки где погибла мышь, и разделил его на две части. В одну банку он поставил мяту в горшочке. А другая банка ждала своего часа. Через 8 дней растение не только не погибло, а даже выпустило несколько новых побегов. И он опять посадил грызунов в банки. В той, где росла мята — мышь была бодра и закусывала листиками. А в той, где мяты не было — практически моментально лежала дохлая мышиная тушка.
Опыты Пристли вдохновили ученых, и во всем мире начали отлавливать мелких грызунов и пытаться повторить его эксперименты.
Но мы же помним, что Пристли был священником и весь день, до вечерней службы мог заниматься исследованиями.
А Карл Шееле, аптекарь из Швейцарии, экспериментировал в домашней лаборатории в свободное от работы время, т.е. по ночам, и мыши дохли у него независимо от присутствия мяты в банке. В результате его экспериментов получалось, что растения не улучшают воздух, а делают его непригодным для жизни. И Шееле обвинил Пристли в обмане научной общественности. Пристли не уступил, и в результате противостояния ученых было установлено, что для восстановления воздуха растениям необходим солнечный свет.
Именно эти опыты положили начало изучению фотосинтеза.
Исследование фотосинтеза стремительно продолжалось. Уже в 1782 году, спустя всего лишь 11 лет после исследований Пристли, швейцарский ботаник Жан Сенебье доказал, что органоиды растений разлагают углекислый газ в присутствии солнечного света. И практически еще сто лет провальных и удачных экспериментов понадобилась ученым разных специальностей, чтобы в 1864 году немецкий ученый Юлиус Сакс смог доказать, что растения потребляют углекислый газ и выделяют кислород в соотношении 1:1.
Значение фотосинтеза для жизни на Земле
И теперь становится понятна важность процесса фотосинтеза для жизни на земле. Именно благодаря этому сложному химическом процессу стало возможно зарождение жизни на земле и существование человека.
Кто-то может возразить, что на Земле есть места, где не растут ни деревья ни кустарники, например, пустыни или Арктические льды. Ученые доказали, что доля кислорода, выделяемого зеленой массой лесов, кустарников и трав — т. е. растений, что обитают на поверхности суши, составляет всего около 20% газообмена, а 80% кислорода приходится на мельчайшие морские и океанские водоросли, которые потоками воздуха переносятся по всей планете, позволяя дышать животным в экстремальных, практически лишенных растительности регионах нашей удивительной планеты.
Благодаря фотосинтезу вокруг нашей планеты сформировался защитный озоновый экран, защищающий все живое на земле от космической и солнечной радиации, и живые организмы смогли выйти на сушу из глубин океана.
Подробнее о «великой кислородной революции» можно прочитать в учебнике «Биология 10-11 классы» под редакцией А.А. Каменского на портале LECTA.
К сожалению, в настоящее время кислород потребляют не только живые существа, но и промышленность. Уничтожаются тропические леса, загрязняются океаны, что приводит к снижению газообмена и увеличению дефицита кислорода.
Определение и формула фотосинтеза
Определение и формула фотосинтеза
Слово фотосинтез состоит из двух частей: фото — «свет» и синтез — «соединение», «создание». Если подходить к определению упрощенно, то фотосинтез — это превращение энергии света в энергию сложных химических связей органических веществ при участии фотосинтетических пигментов. У зеленых растений фотосинтез происходит в хлоропластах.
Схема фотосинтеза, на первый взгляд, проста:
Вода + квант света + углекислый газ → кислород + углевод
или (на языке формул):
Если копнуть поглубже и посмотреть на лист в электронный микроскоп, выяснится удивительная вещь: вода и углекислый газ ни в одной из структурных частей листа непосредственно друг с другом не взаимодействуют.
Фазы фотосинтеза
К фотосинтезу способны не только растения, но и многие одноклеточные животные благодаря специальным органоидам, которые называются хлоропласты.
Хлоропласты — это пластиды зеленого цвета фотосинтезирующих эукариот. В состав хлоропластов входят:
Сложный процесс фотосинтеза состоит из двух фаз: световой и темновой. Как понятно из названия, световая (светозависимая) фаза происходит с участием квантов света. Название темновая фаза вовсе не означает, что процесс происходит в темноте. Более точное определение — светонезависимая. Т.е. для реакций, происходящих в этой этой фазе, свет не нужен, а протекает она одновременно со световой, только в других отделах хлоропласта.
Многие делают ошибку, говоря, что в процессе фотосинтеза происходит производство растениями такого необходимого человечеству кислорода. На самом деле фотосинтез — это синтез углеводов (например, глюкозы), а кислород — лишь побочный продукт реакции.
Световая фаза фотосинтеза
Световая фаза фотосинтеза происходит на мембранах тилакоидов. Фотон света, попадая на хлорофилл, возбуждает его и происходит выделение электронов и скопление отрицательно заряженных электронов на мембране. После того, как хлорофилл потерял все свои электроны, квант света продолжает воздействовать на воду, вызывая фотолиз Н2О.
Положительно заряженные протоны водорода накапливаются на внутренней мембране тилакоида.
Получается такой бутерброд: с одной стороны отрицательно заряженные электроны хлорофилла, с другой – положительно заряженные протоны водорода, а между ними – внутренняя мембрана тилакоида.
Гидроксильные ионы идут на производство кислорода:
Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик — АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму, где их подхватывает специальный переносчик никотинамиддинуклеотидфосфат или сокращенно НАДФ. НАДФ — специфический переносчик протонов водорода в реакциях углеводов.
Прохождение протонов водорода через АТФ-синтазу сопровождается синтезом молекул АТФ из АДФ и фосфата или фотофосфорилированием, в отличие от окислительного фосфорилирования.
На этом световая фаза фотосинтеза заканчивается, а НАДФН+ и АТФ переходят в темновую фазу.
Повторим ключевые процессы световой фазы фотосинтеза:
У некоторых растений фотосинтез идет по упрощенному варианту, который называется «циклическое фосфорилирование» и разбирается этот процесс в учебнике «Биология 10-11 классы» под редакцией А. А. Каменского на портале LECTA.
Учебник | Фотосинтез
История открытия фотосинтеза
В начале XVII в. фламандский врач Ван Гельмонт вырастил в кадке с землёй дерево, которое он поливал только дождевой водой. Он заметил, что спустя пять лет, дерево выросло до больших размеров, хотя количество земли в кадке практически не уменьшилось. Ван Гельмонт, естественно, сделал вывод, что материал, из которого образовалось дерево произошел из воды, использованной для полива.
В 1777 английский ботаник Стивен Хейлс опубликовал книгу, в которой сообщалось, что в качестве питательного вещества, необходимого для роста, растения используют главным образом воздух. В тот же период знаменитый английский химик Джозеф Пристли (он был одним из первооткрывателей кислорода) провел серию опытов по горению и дыханию и пришел к выводу о том, что зелёные растения способны совершать все те дыхательные процессы, которые были обнаружены в тканях животных. Пристли сжигал свечу в замкнутом объёме воздуха, и обнаруживал, что получавшийся при этом воздух уже не может поддерживать горение. Мышь, помещенная в такой сосуд, умирала. Однако веточка мяты продолжала жить в воздухе неделями.
В заключение Пристли обнаружил, что в воздухе, восстановленном веточкой мяты, вновь стала гореть свеча, могла дышать мышь. Теперь мы знаем, что свеча, сгорая, потребляла кислород из замкнутого объема воздуха, но затем воздух снова насыщался кислородом благодаря фотосинтезу, происходившему в оставленной веточке мяты. Спустя несколько лет голландский врач Ингенхауз обнаружил, что растения окисляют кислород лишь на солнечном свету и что только их зелёные части обеспечивают выделение кислорода. В 1817 г. два французских химика, Пельтье и Каванту, выделили из листьев зелёное вещество и назвали его хлорофиллом. Следующей важной вехой в истории изучения фотосинтеза было сделанное в 1845 г. немецким физиком Робертом Майером утверждение о том, что зеленые растения преобразуют энергию, солнечного света в химическую энергию.
Лимитирующие факторы
Скорость фотосинтеза возрастает линейно, или прямо пропорционально увеличению интенсивности света. По мере дальнейшего увеличения интенсивности света нарастание фотосинтеза становится все менее и менее выраженным, и, наконец, прекращается, когда освещенность достигает определенного уровня 10000 люкс. Дальнейшее увеличение интенсивности света уже не влияет на скорость фотосинтеза. Область стабильной скорости фотосинтеза называется областью светонасыщения. Если нужно увеличить скорость фотосинтеза в этой области, следует изменять не интенсивность света, а какие-либо другие факторы. Интенсивность солнечного света, попадающего в ясный летний день на поверхность земли, во многих местах нашей планеты составляет примерно 100000 люкс. Следовательно, растениям, за исключением тех, которые растут в густых лесах и в тени, падающего солнечного света бывает достаточно для насыщения их фотосинтетической активности (энергия квантов, соответствующих крайним участкам видимого диапазона – фиолетового и красного, различается всего лишь в два раза, и все фотоны этого диапазона в принципе способны осуществить запуск фотосинтеза).
Средняя концентрация углекислоты в атмосфере составляет от 0,03%. Поэтому в обычных условиях растениям не хватает СО2 для того, чтобы с максимальной эффективностью использовать попадающий на них солнечный свет. Если помещенное в замкнутый объем растение освещать светом насыщающей интенсивности, то концентрация СО2 в объеме воздуха будет постепенно уменьшаться и достигнет постоянного уровня, известного под названием «СO2 компенсационного пункта». В этой точке появление СО2 при фотосинтезе уравновешивается выделением О2 в результате дыхания (темнового и светового). У растений разных видов положения компенсационных пунктов различны.
Световые и темновые реакции
Еще в 1905 г. английский физиолог растений Ф. Ф. Блекмэн, интерпретируя форму кривой светового насыщения фотосинтеза, высказал предположение, что фотосинтез представляет собой двухстадийный процесс, включающий фотохимическую, т.е. светочувствительную реакцию и нефотохимическую, т. е. темновую, реакцию. Темновая реакция, будучи ферментативной, протекает медленнее, чем световая реакция, и поэтому при высоких интенсивностях света скорость фотосинтеза полностью определяется скоростью темновой реакции. Световая реакция либо вообще не зависит от температуры, либо зависимость эта выражена очень слабо, тогда темновая реакция, как и все ферментативные процессы, зависит от температуры в довольно значительно и степени.
Следует ясно представлять себе, что реакция, называемая темновой, может протекать как в темноте, так и на свету. Световую и темновую реакции можно разделить, используя вспышки света, длящиеся краткие доли секунды. Вспышки света длительностью меньше одной миллисекунды (10-3 с) можно получить либо с помощью механического приспособления, поставив на пути пучка постоянного света вращающийся диск со щелью, либо электрически, заряжая конденсатор и разряжая его через вакуумную или газоразрядную лампу. В качестве источников света пользуются также рубиновыми лазерами с длиной волны излучения 694 нм. В 1932 г. Эмерсон и Арнольд освещали суспензию клеток вспышками света от газоразрядной лампы с длительностью около 10-3с. Они измеряли скорость выделения кислорода в зависимости от энергии вспышек, длительности темнового промежутка между вспышками и температуры суспензии клеток. При увеличении интенсивности вспышек насыщение фотосинтеза в нормальных клетках наступало, когда выделялась одна молекула O2 на 2500 молекул хлорофилла. Эмерсон и Арнольд сделали вывод, что максимальный выход фотосинтеза определяется не числом молекул хлорофилла, поглощающих свет, а числом молекул фермента, катализирующего темновую реакцию.
Они также обнаружили, что при увеличении темновых интервалов между последовательными вспышками за пределы 0,06 с выход кислорода в расчете на одну вспышку уже не зависел от длительности темнового интервала, тогда как при более коротких промежутках он возрастал с увеличением длительности темнового интервала (от 0 до 0,06 с). Таким образом, темновая реакция, которая определяет уровень насыщения фотосинтеза, завершается примерно за 0,06 с. На основе этих данных было рассчитано, что среднее время, характеризующее скорость реакции, составило около 0,02 с при 25°С.