учение о совпадении абсолютного максимума и абсолютного минимума принадлежит
Учение о совпадении абсолютного максимума и абсолютного минимума принадлежит
Абсолютный максимум, совпадая с минимумом, понимается непостижимо.
Николай Кузанский
Nicolaus Cusanus
Об ученом незнании. (1440)
Поскольку максимум просто, больше которого абсолютно ничего не может быть, как бесконечная истина превышает всякую способность нашего понимания, мы постигаем его только через его непостижимость. Не принадлежа по природе к вещам, допускающим превышение и превышаемое, он выше всего, что мы способны себе представить: все воспринимаемые чувством, рассудком или разумом вещи так отличаются от пего и друг от друга, что между ними никогда нет точного равенства, и тем самым максимальное равенство, ни для чего не иное и ни от чего не отличное, превосходит всякое понимание.
Абсолютный максимум пребывает в полной актуальности, будучи всем, чем он может быть, и по той же причине, по какой он не может быть больше, он не может быть и меньше: ведь он есть всё то, что может существовать. Но то, меньше чего не может быть ничего, есть минимум. Значит, раз максимум таков, как сказано, он очевидным образом совпадает с минимумом.
Все это для тебя прояснится, если представишь максимум и минимум в количественном определении. Максимальное количество максимально велико, минимальное количество максимально мало; освободи теперь максимум и минимум от количества, вынеся мысленно за скобки «велико» и «мало», и ясно увидишь совпадение максимума и минимума: максимум превосходит все и минимум тоже превосходит все; абсолютное количество не более максимально, чем минимально, потому что максимум его есть через совпадение вместе и минимум.
Противоположности, притом в разной мере, свойственны только вещам, допускающим превышающее и превышаемое; абсолютному максимуму они никак не присущи, он выше всякого противоположения. И поскольку абсолютный максимум есть абсолютная актуальность всего могущего быть, причем настолько без всякого противоположения, что совпадает с минимумом, то он одинаково выше и всякого утверждения п всякого отрицания. Все, что мы о нем думаем, оп не больше есть, чем не есть, и все, что мы о нем не думаем, он не больше не есть, чем есть: он есть так же это вот, как и все, и он так же все, как и ничто; и он больше всего есть именно эта вот вещь так, что вместе ц меньше всего она. Поистине, одно и то же сказать:
«Бог, то есть сама абсолютная максимальность, есть свет» и «Бог есть так же максимальный свет, как минимальный свет». Ведь не будь абсолютная максимальность бесконечной, не будь она всеобщим пределом, ничем в мире не определяемым, она не была бы п актуальностью всего возможного, как мы по божьей милости объясним ниже.
Но это превосходит всякое наше понимание, неспособное на путях рассудка сочетать противоположности в их источнике; ведь мы движемся в свете того, что открывает нам природа, а любое природное знание далеко отпадает от бесконечной силы и связывать воедино бесконечно отстоящие друг от друга противоположности неспособно. Только непостижимо поднявшись над всякой дискурсией рассудка, мы видим, что абсолютный максимум есть бесконечность, которой ничто не противостоит и с которой совпадает минимум.
Максимум и минимум берутся в этой книжке как трансцендентные пределы с абсолютной значимостью: возвышаясь над всем определившимся в количество объема или силы, они заключают в своей абсолютной простоте все.
Учение о совпадении абсолютного максимума и абсолютного минимума принадлежит
БЕСКОНЕЧНОЕ
БЕСКОНЕЧНОЕ (бесконечность) – философское понятие, обозначающее безграничность и беспредельность как в бытийственном, так и в познавательном смысле. Вопрос о бесконечном возникает на всем протяжении истории культуры в самых разнообразных формах. Одна из самых непосредственных – проблема бесконечности (или конечности) мирового пространства, времени, количества вещей в мире. Сюда же относится и вопрос о возможности бесконечного деления континуума, выделения в нем точек. Наконец, более изощренной логической техники требует обсуждение вопроса о существовании разных «типов» бесконечного. Вопрос о логической и онтологической природе бесконечности, о ее статусе в Боге и в тварном мире получал разные решения и обоснования в философии, истории науки и теологии.
АКТУАЛЬНАЯ И ПОТЕНЦИАЛЬНАЯ БЕСКОНЕЧНОСТЬ. Русское слово «бесконечное» имеет смысл отрицания: бес-конечное есть не конечное (аналогично и лат. mfinitum). Но это отрицание можно брать двояко: или как частичное отрицание – то, что может превзойти любое конечное, или как полное отрицание – то, что актуально превосходит любое конечное. Уже в схоластике 13–14 вв. (В.Шервуд, В.Хейтесбери) это различие осознается и обозначается (как синкатегорематическая и ка-тегорематическая бесконечность соответственно). Из схоластики же (Григорий из Римини) идет и другое наименование этих двух разных подходов к бесконечному – потенциальная и актуальная бесконечность. Это различение было исходным пунктом и у создателя теории множеств Г. Кантора. Бесконечность, по Кантору, можно брать или как процесс – как увеличение, напр. натуральных чисел, удвоение длины отрезка, либо, наоборот, как уменьшение, деление данного отрезка на все более мелкие части, – или как актуально данное законченное множество (или величину). Бесконечность как процесс не является, по Кантору, бесконечностью в собственном смысле: в каждой фазе этого процесса, хотя и безграничного, мы имеем дело лишь с конечной величиной, а в целом – с переменной конечной величиной. Эта «несобственная бесконечность» и называется потенциальной бесконечностью. Если же мы берем бесконечное множество как нечто целое, актуально данное, не связанное ни с каким процессом, как, напр., в случае, если мы рассматриваем множество всех натуральных чисел или когда мы рассматриваем завершенный результат бесконечного деления отрезка на более мелкие части (как бы ни парадоксально было предположение подобного рассмотрения), в этом случае имеем дело с собственно бесконечным, или с актуальной бесконечностью. Заслугой Кантора была его критика имеющих тысячелетнюю историю аргументов против существования бесконечности, основанных нередко на смешении актуальной и потенциальной бесконечности.
Таковы были прежде всего аргументы, восходящие к Аристотелю. Так, напр., когда говорилось, что понятие бесконечности противоречиво, т.к., с одной стороны, оно должно представлять собой определенное количество, а с другой – любое количество превосходить, то, как объяснял Кантор, здесь налицо было смешение понятий актуально и потенциально бесконечного. Именно последнее, рассматриваемое как процесс, превосходит любое конечное количество. Если же мы рассматриваем актуально бесконечное множество, то вопрос о его количественной мере и его соотношении с конечными числами должен уже решаться специальным образом.
БЕСКОНЕЧНОЕ В ИСТОРИИ ФИЛОСОФИИ. Античная мысль в основном рассматривает бесконечное как неоформленное, как не ставшее и, следовательно, несовершенное. В пифагорейском списке противоположностей бесконечное стоит на стороне дурного (злого). Бытие в античной мысли связано с категорией меры и предела. Бесконечное выступает как беспредельное, безграничное, почти не существующее – μὴὄν и потому есть нечто близкое к хаосу, а иногда и отождествляется с ним. Бесконечное сближается у Платона и Аристотеля с категорией материи как бесформенным и в силу этого как бы несуществующим. Бытие вещи доставляется идеей (или формой), которая ограничивает бесконечное, осуществляя «вписывание» вещи в упорядоченное единство Космоса.
В то же время в античной философии были мыслители, которые более позитивно используют категорию бесконечного. Прежде всего к ним относится Анаксимандр, у которого главным началом космологии служит апейрон (греч. ἄπειρον – букв. без-граничное), из которого возникают и в который возвращаются все вещи (однако по известным фрагментам не совсем ясно, является ли апейрон высшим бытийственным началом или только хаотической смесью основных элементов). Кроме того, здесь нужно назвать атомистов Левкиппа и Демокрита, у которых бесконечное пустое пространство содержит бесконечное количество атомов, образующих бесконечное количество миров. Однако господствующее отношение к бесконечному в античности все же иное. В окончательном виде оно было выражено Аристотелем. Для Аристотеля бесконечное существует только потенциально как возможность безграничного изменения: «Вообще говоря, бесконечное существует таким образом, что всегда берется иное и иное, а взятое всегда бывает конечным, но всегда разным и разным. Так что бесконечное не следует брать как определенный предмет, например, как человека или дом, а в том смысле, как говорится о дне или состязании, бытие которых не есть какая-либо сущность, а всегда находится в возникновении и уничтожении, и хотя оно конечно, но всегда разное и разное» (Физика 206 а, 28–35). Не существует ни актуально бесконечного тела (конечен сам космос), ни бесконечной последовательности причин (т.к. в противном случае, по Аристотелю, отсутствовала бы первоначальная истинная причина движения). Актуально бесконечное не дано ни чувствам, ни уму. Потенциальная бесконечность реализуется у Аристотеля для чисел в направлении возрастания – натуральный ряд, а для величин – в направлении убывания: потенциально бесконечное деление данного отрезка. Античная математика тоже мыслит свои «прямые» и «плоскости» как конечные, хотя и произвольно большие отрезки или куски плоскостей (в отличие от новоевропейской математики, в которой уже с 17 в. начинают рассматривать бесконечные прямые, напр. в проективной геометрии).
В неоплатонизме не без влияния восточной мистики пробивает себе дорогу новое положительное понимание бесконечного. Переходной ступенью служили здесь философские взгляды Филона Александрийского, давшего эллинистическую транскрипцию библейского понимания Божества. Единое у Плотина, стоящее выше Ума и, следовательно, выше всякой определенности и формы, в частности числа, не может быть названо бесконечным. Но Ум Плотин уже называет бесконечным в следующих смыслах: в смысле его бесконечного могущества, его единства и его самодостаточности. Все сущее оказывается тем самым между двумя бесконечностями: актуальной бесконечностью Ума и потенциальной бесконечностью мэональной материи, лишенной границ и формы и получающей свои определения только через «отражения» совершенств высшего бытия.
Существенный перелом в отношении бесконечного происходит с утверждением в европейской культуре христианства. Не только христианский Бог в себе оказывается актуально бесконечным, но и творение, в особенности человек как «образ Божий», несет на себе (в различной мере) отпечаток совершенств Творца. Однако это понимание утверждается не сразу. У Оригена еще налицо сильнейшая зависимость от основных постулатов греческой мысли: даже Бог не сможет быть бесконечным, т.к. бесконечное не имеет формы и не мыслимо. По Оригену, высшее совершенство Бога и его конечность необходимо связаны. Но уже Августин задает вопрос: неужели Бог не может мыслить всех чисел (натуральный ряд) разом? Конечность Бога несовместима, по Августину, с божественным достоинством. В отношении же тварного мира сдвиг происходит еще позднее. У Альберта Великого и Фомы Аквинского еще полностью господствуют аристотелевские запреты: в мире не может существовать актуальная бесконечность. Даже точки континуума существуют в нем только потенциально. «Легализация» актуальной бесконечности в тварном мире исторически была связана с обсуждением природы человеческой души, сотворенной по образу Божьему. В какой степени божественные совершенства отразились в человеческой душе? Дунс Скот настаивал, что человеческая душа по своей природе превосходит ту конечность, которая характерна для всего тварного: ведь человеческая душа способна воспринимать божественную благодать, т.е. самого бесконечного Бога. Значит, ей дарована адекватная предмету восприятия бесконечная воспринимающая способность. Еще дальше идут мистики. Экхарт прямо учит, что в глубине человеческой души имеется нетварная божественная «искорка». Как соприродная Богу, эта «искорка», естественно, актуально бесконечна. Подобное понимание образа Божьего прокладывало дорогу пантеизму и не раз осуждалось Католической церковью. Кардинал Николай Кузанский развивает учение о совпадении абсолютного максимума и абсолютного минимума. В рамках этого учения бесконечное, абсолютный максимум становится «адекватной мерой» всех конечных вещей. Понимание соотношения бесконечного и конечного принципиально меняется по отношению к античному толкованию: если для последнего все конечное было актуальным, а бесконечное выступало лишь как потенциальное, то для Кузанца, наоборот, любая конечная вещь выступает как потенциальное ограничение актуально бесконечной божественной возможности – бытия (possest). Аналогично и в рамках пантеизма Спинозы оказывается, что omnis determinatio est negatio (каждое определение есть отрицание): не через предел, не через ограничение бесформенной материи получают вещи свое бытие, а именно от подлежащей бесконечной божественной субстанции, внутри которой самоопределение выступает как частичная негация. Божественная субстанция-природа имеет бесконечные атрибуты, в т.ч. протяженность и длительность. Время же, число и мера являются только конечными, или потенциально бесконечными средствами воображения. В анализе проблемы бесконечного Спиноза предвосхищает подходы к бесконечному у создателя теории множеств Г.Кантора.
Спекулятивная теология Николая Кузанского служит также основанием представлений и о бесконечности Вселенной. Бог является «основанием» мира: то, что содержится в Боге «в свернутом виде», мир «разворачивает» в пространстве и времени. Пространственная протяженность мира и время его существования не могут быть конечными, потому что они «выражают» бесконечность Бога. Хотя мир не является бесконечным в том же смысле, как и Бог, – мир не есть все, что может быть, – тем не менее его привативная бесконечность (не infinitum, a Indeterminatum) включает в себя бесконечность пространства и времени. Пересмотр Коперником геоцентрической системы и полемический талант Бруно помогают этому тезису Кузанца стать в высшей степени популярным к 18 в.
Декарт также поддерживал идею беспредельности мира: хотя и «недопустимо рассуждать о бесконечном, но следует просто считать беспредельными вещи, у которых мы не усматриваем никаких границ, – такова протяженность мира, делимость частей материи, число звезд и т.д.» (Первоначала философии, ч. I). Кроме того, по Декарту, бесконечна человеческая воля, являющаяся существенным признаком образа Божьего в человеческом существе. Именно несоответствие конечности человеческого разума и бесконечности воли служит, по Декарту, причиной ложных суждений. На фоне других философов 17 в. Лейбниц выступает как наиболее убежденный защитник существования актуальной бесконечности. Тема бесконечности обсуждалась Лейбницем в разных аспектах. Актуально бесконечно прежде всего количество субстанций – монад – в универсуме. Каждая часть материи представляет собой также актуально бесконечную совокупность монад. Устойчивость агрегатов этих монад связана с особыми принципами их подчинения и с законом предустановленной гармонии. «Всякую часть материи можно представить наподобие сада, полного растений, и пруда, полного рыб. Но каждая ветвь растения, каждый член животного, каждая капля его соков есть опять такой же сад или такой же пруд» (Монадология, 67). В свою очередь каждая монада представляет в своих восприятиях весь бесконечный универсум, бесконечный как в пространстве, так и во времени. Это понимание ведет Лейбница в психологии к формулировке концепции бесконечно-малых («подсознательных») восприятий. В математике же это приводит к особому пониманию структуры пространственного континуума и, наконец, к созданию дифференциального и интегрального исчислений. Лейбницевские идеи в отношении актуальной бесконечности остаются в высшей степени действенными и по существу непревзойденными все последующие три столетия. Несмотря на то что молодой Кант еще всецело разделял лейбницевскую точку зрения в отношении актуальной бесконечности, позже его взгляды резко меняются. В «Критике чистого разума» в силу кантовской философии математики оказываются невозможны ни бесконечное число, ни бесконечная величина. Мир же в отношении своих пространственных и временных характеристик выступает ни как конечный, ни как бесконечный, а как indefmitum – неопределенный. У Фихте, по-своему разрабатывавшего идею Экхарта о причастности человеческого духа к божественной сущности, вся природа выступает уже как бледное отражение истинной бесконечности, заключенной в абсолютном «Я». Фихте учил о становлении нового мира, точнее, целой последовательности миров, но не через катастрофический онтологический разрыв христианской теологии («Второе пришествие»), а в результате органически развивающегося процесса деятельности абсолютного «Я». В этой от века сущей потенциально бесконечной деятельности божественная природа абсолютного «Я» все яснее приходит к осознанию своей актуальной бесконечности. У Гегеля конечное и бесконечное являются лишь двумя терминами в его диалектической триаде. Простое отрицание конечного дает лишь «дурную бесконечность»: никогда не завершающийся переход от одного конечного к другому и представляет собой лишь «долженствование бесконечного». Истинная бесконечность должна диалектически снять оба соотнесенных момента, быть некоторым становлением, которое одновременно есть и самораскрытие. Истинно бесконечен у Гегеля, собственно, Абсолютный дух, который одновременно и актуально бесконечен, и осуществляет свое развитие через мир конечных духов. В 1851 вышла работа Б.Больцано «Парадоксы бесконечного», в которой делается попытка опровергнуть традиционные возражения против актуально бесконечного. В ней обсуждались понятия, ставшие в дальнейшем главными и для Кантора: различение потенциальной и актуальной бесконечности, трансфинитного и абсолютного и ряд других.
В 20 в. философские дискуссии вокруг проблем бесконечности соотносятся с теорией множеств и проблемой оснований математики. Таковы, напр., феноменологический подход к проблемам теории множеств у О.Беккера (Becker О. Mathematische Existenz. Halle, 1927); интерпретация проблем теории множеств как выражения классического конфликта между аристотелевским концептуализмом и платонистской традицией в математике у Л.Брюнсвика (Brunschvicq L. Les étapes de la philosophie mathématique. P., 1922); рассмотрение канторовской иерархии бесконечного на фоне концепции всеединства у Б.П.Вышеславцева (Вышеславцев Б.П. Этика преображенного эроса. М., 1994).
БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ И ЛОГИКЕ. Использование актуальной бесконечности в математике настойчиво стремятся легализовать со 2-й пол. 19 в. В этом процессе большую роль сыграли труды Б.Больцано, К.Вейерштрасса, Р.Дедекинда и в особенности Г.Кантора. В их работах было систематизировано употребление понятия бесконечности в европейской традиции, выделены его основные аспекты и была предложена (Кантором) беспрецедентно дерзкая конструкция «шкалы бесконечностей», ведущая от самых простых типов бесконечности до бесконечности в Боге. Несмотря на то что конструкции Кантора, ставшие основанием всей современной математики, привели к перманентному кризису этого основания, продолжавшемуся весь 20 в., теория множеств представляется зрелым плодом взаимодействия центральных философских тем европейской культурной традиции. Трагические коллизии мысли, связанные с историей т.н. парадоксов теории множеств, представляют собой своеобразное раскрытие и саморазоблачение тех титанических импульсов, которые сыграли существенную роль в становлении новоевропейской науки и цивилизации в 15–17 вв.
ТЕОРИЯ МНОЖЕСТВ КАНТОРА. Кантор развил определенную технику оперирования с актуально бесконечными множествами и построил определенный аналог понятия количества для бесконечных множеств. Основой этой техники служит понятие взаимно-однозначного соответствия между элементами двух множеств. Говорят, что элементы двух множеств можно поставить во взаимно-однозначное соответствие, если каждому элементу первого множества можно поставить в соответствие элемент второго множества, разным – разные, и при этом каждый элемент второго множества будет соответствовать какому-то элементу первого. Про такие множества говорят, что они эквивалентны, что они имеют одинаковую мощность, или одинаковое кардинальное число. Если же можно доказать, что элементы множества А можно поставить во взаимно-однозначное соответствие с элементами подмножества В 1 множества В, а элементы множества В нельзя поставить во взаимнооднозначное соответствие с элементами А, то тогда говорят, что мощность множества В больше мощности множества А.Эти определения применимы и к конечным множествам. В этом случае мощность представляет собой аналог конечных чисел. Но бесконечные множества имеют в этом смысле парадоксальные свойства. Бесконечное множество оказывается эквивалентным своей части, напр. так, как это происходит в т.н. «парадоксе Галилея»:
Эти парадоксы были известны давно, и именно они, в частности, служили препятствием для рассмотрения актуально бесконечных множеств. То, что здесь просто сказывается специфика актуально бесконечного, объяснял в «Парадоксах бесконечного» Больцано. Дедекинд считал это свойство актуально бесконечных множеств характеристическим.
Значит, переходя от некоторого бесконечного множества, напр. от множества всех натуральных чисел, имеющего мощность ℵα (обозначение Кантора) к множеству всех подмножеств этого множества, к множеству всех подмножеств этого нового множества и т.д., мы будем получать ряд множеств все более возрастающей мощности. Есть ли какой-то предел этому возрастанию? Ответить на этот вопрос можно, только введя в рассмотрение некоторые дополнительные понятия.
Оперировать с бесконечными множествами, лишенными всякой дополнительной структуры, вообще говоря, невозможно. Поэтому Кантор ввел в рассмотрение упорядоченные множества, т.е. множества, для любых двух элементов которых определено отношение «больше» > (или «меньше» β (парадокс Бурали – Форти, 1897). Кантор стремился обойти этот парадокс введением (с 1880-х гг.) понятия консистентноcсти. Не любая множественность (Vielheit) есть множество (Menge). Множественность называется консистентной, или множеством, если ее можно рассматривать, как законченное целое. Если же допущение «совместного бытия» всех элементов множественности ведет к противоречию, то множественность оказывается неконсистентной, и ее, собственно, нельзя рассматривать в теории множеств. Такими неконсистентными множествами оказываются, в частности, Ω – множество всех ординальных чисел и τ («тау») – множество всех кардиналов («алефов»). Тем самым мы опять возвращаемся к бесконечности как к процессу. Как пишет математик 20 в. П.Вопенка: «Теория множеств, усилия которой были направлены на актуализацию потенциальной бесконечности, оказалась неспособной потенциальность устранить, а только смогла переместить ее в более высокую сферу» (Вопенка П. Математика в альтернативной теории множеств. – «Новое в зарубежной науке. Математика», 1983, № 31, с. 124.) Это не смущало, однако, самого Кантора. Он считал, что шкала «алефов» поднимается до бесконечности самого Бога и поэтому то, что последняя оказывается математически невыразимой, было для него само сабой разумеющимся: «Я никогда не исходил из какого-либо «Genus supremum» актуальной бесконечности. Совсем наоборот, я строго доказал абсолютное несуществование «Genus supremum» для актуальной бесконечности. То, что превосходит все бесконечное и трансфинитное, не есть «Genus»; это есть единственное, в высшей степени индивидуальное единство, в которое включено все, которое включает «Абсолютное», непостижимое для человеческого понимания. Это есть «Actus Purissimus», которое многими называется Богом» (Meschkowski H. Zwei unveroffentlichte Briefe Georg Cantors. – «Der Mathematilkuntemcht», 1971, № 4, S. 30–34).
ПАРАДОКСЫ И ТРУДНОСТИ ТЕОРИИ МНОЖЕСТВ. С 90-х гг. 19 в. начинается широкое обсуждение парадоксов теории множеств. Кроме парадокса Бурали – Форти существует парадокс Рассела, вскрывающий сложную логическую природу понятия бесконечного множества. Анализируя канторовскую теорему о множестве-степени, Рассел выделил понятие «множества, которое не является элементом самого себя». Напр., множество всех множеств не будет таковым, а множество натуральных чисел – будет. Однако в отношении множества всех множеств, не являющихся элементами самого себя, мы уже не можем решить, будет ли оно обладать свойством не являться своим элементом или нет. Оба ответа ведут к противоречию. Подобные размышления привели Рассела к выделению предикативных и непредикативных свойств множеств, и построению т.н. теории типов, которую он развивал совместно с Уайтхедом. Можно привести также формулировку парадокса Банаха – Тарского, который хотя и не относится непосредственно к теории множеств, но характеризует ту математику, которая вытекает из этой теории. Парадокс формулируется так: можно разбить шар на конечное число частей, которые можно переставить так, что получатся два шара такого же размера, как и исходный шар.
Другой классической проблемой теории множеств является аксиома выбора. Она формулируется следующим образом: дано некоторое, вообще говоря, бесконечное множество множеств. Существует функция, ставящая в соответствие каждому множеству один его элемент (выбирающая из каждого множества по элементу). Несмотря на простоту формулировки аксиомы выбора, трудно представить, как бы можно было ее доказать. В то же время от этой аксиомы зависит большое множество теорем анализа, а в самой теории множеств – доказательство фундаментальной теоремы Цермело о возможности сравнения мощностей различных множеств. Благодаря работам Геделя (1939) и Коэна (1963) было установлено, что аксиома выбора независима от корпуса других аксиом теории множеств Цермело – Френкеля. Вместо аксиомы выбора были предложены альтернативные аксиомы, напр. аксиома детерминированности. При изменении аксиом теории множеств, естественно, меняется и характер математики, построенной на базе этой теории множеств.
ХРИСТИАНСКАЯ ТЕОЛОГИЯ И ТЕОРИЯ МНОЖЕСТВ. В соответствии с пониманием святых отцов христианский Бог-Троица непостижим в своей сущности, но познается в откровении в своих энергиях. Энергии открывают человеку имена Божии, которые характеризуют Его в отношении к миру. Эти имена – Всемогущий, Всеблагой, Всевидящий и т.п. – характеризуют бесконечную мощь божественных проявлений, рядом с которой все аналогичные тварные свойства оказываются, вообще говоря, конечными. В пантеистических системах божественным оказывается сам мир; различие между трансцендентной сущностью и энергиями игнорируется, и сам мир наделяется бесконечными характеристиками. Так, напр., у Спинозы протяженность и длительность как атрибуты божественной субстанции природы будут бесконечны. Создатель теории множеств Кантор пытался дать и богословское применение своим конструкциям с актуальной бесконечностью (Кантор вообще считал теорию множеств относящейся столько же к метафизике, сколько и к математике).
Он различал три типа бесконечного: бесконечное в Боге («в уме Бога») – Абсолютное, в тварном мире – Трансфинитное, в уме человека – трансфинитные числа (ординалы). Несмотря на то что в канторовской философии математики критерием научности служила лишь логическая непротиворечивость, для оправдания теории множеств, Кантор нуждался в доказательствах существования трансфинитного (бесконечного в мире). Это не только служило бы опровержению аристотелевской догмы, но и явилось опорой для его программы развертывания новых подходов в физике и химии на основе теории множеств. Кантор пытался толковать известное место из Книги Премудрости Соломона, XI, ст. 21: «Ты все расположил мерою, числом и весом» – как подтверждение существования трансфинитного в мире. «Здесь не стоит in numero finite», – писал Кантор (Meschkowski H. Aus den Briefbuchern Georg Cantor. – «Archive for History of Exact Sciences», 1965, v. 2, N 6, p. 503–519). Кантор также пытался доказать существование трансфинитного в мире как более подобающего бесконечному и всемогущему Богу. Это вызвало справедливую критику католических теологов, обвинявших Кантора в наклонности к пантеизму.
1. Фрагменты ранних греческих философов, ч. 1. М., 1989;
2. Николай Кузанский. Об ученом незнании. – Николай Кузанский. Соч. в 2 т., т. 1. М., 1979;
3. Бруно Дж. О бесконечности, вселенной и мирах. – В кн.: Он же. Диалоги. М., 1949;
4. Лейбниц Г.В. Соч. в 4 т., т. 1. М., 1982;
5. Декарт Р. Первоначала философии. – Он же. Соч. в 2 т., т. 1. М., 1989;
6. Локк Дж. Опыт о человеческом разумении. – Он же. Соч. в 3 т., т. 1. М., 1985;
8. Гегель Г.В.Ф. Наука логики, т. 1. М., 1970;
9. Больцано Б. Парадоксы бесконечного. Одесса, 1911;
10. Флоренский А. Соч. в 4 т., т. 1. М., 1994;
11. Гайденко П.П. Эволюция понятия науки, т. 1–2. М., 1980–87;
12. Кантор Г. Труды по теории множеств. М., 1985;
13. Дедекинд Р. Непрерывность и иррациональные числа. Одесса, 1923;
14. Гедель К. Совместимость аксиомы выбора и обобщенной континуум-гипотезы с аксиомами теории множеств. – «Успехи математических наук», 1948, № 1;
15. Френкель Α., Бар-Хиллел И. Основания теории множеств. М., 1966;
16. Коэн П. Теория множеств и континуум-гипотеза. М., 1969;