Углеволокно для усиления конструкций авто
Карбон на авто (углеволокно)
Я уже давно болен карбоном, уж очень мне нравится как он на солнышке переливается 🙂 В общем, картинки сами всё скажут за себя…
1) Крышка багажника:
2) Накладки на двери:
3) Накладка вокруг тахометра и вставка в руль:
4) плафон освещения салона (делал сам):
5) Ручник + алькантаровый подлокотник с красной строчкой:
6) Вставка в кресло:
7) Откидывание сидений (делал сам):
8) Капппоооот, самая крутая деталь:
11) Ручки дверей + окантовки окон:
12) Стойка двери + окантовка окна:
13) Лезвие спойлера:
14) Лючек бензобака:
Собственно всё 🙂 Может быть, а может и ещё чего сделаю))) Спасибо за внимание!
Honda Civic Type R 2009, двигатель бензиновый 2.0 л., 199 л. с., передний привод, механическая коробка передач — тюнинг
Машины в продаже
Комментарии 62
Карбон, углеродное волокно, кованый карбон.
Истинные поклонники тюнинга, для которых внешний вид автомобиля не на последнем месте, хорошо знают о материалах применяемых для внешнего и внутреннего стайлинга.
Один из самых интересных и известных эффектных материалов 21 века, применяемый в тюнинге, является углеволокно или другим словом карбон.
На сайте представлено большое множество различных обзоров проектов от мировых тюнинг-ателье, в которых применяется данный материал. BMW 8 серии от AC Schnitzer, Mercedes-AMG G63 от LUMMA Design, Maserati Levante от Larte Design.
Итак, что же такое карбон? Давайте разбираться!
Что такое углеродное волокно и карбон?
Слово «карбон» пришло в русский язык из-за рубежа. Оно происходит от английского слова carbon, по-русски – сажа, углерод и технического термина carbon fiber, в переводе – углеродное волокно.
Углеродное волокно — это материал, состоящий из тончайших нитей диаметром от 5 до 15 микрометров, образованных преимущественно атомами углерода. Сами атомы углерода объединены в микрокристаллы, выровненные параллельно друг другу. Такая схема придает волокну высокую прочность на растяжение и маленький вес.
Карбон – это общее наименование группы композитных материалов, получаемых путём запекания углеродного волокна при высокой температуре в матрице из полимерных смол. В процессе полимеризации синтетические смолы, армированные высокопрочными углеродными нитями, превращаются в материалы, обладающие уникальными техническими характеристиками и эксплуатационными свойствами.
В мире существует несколько крупных заводов, производящие карбон. Венгерский Zoltek, американский Cytek, немецкий Hexcel и три японских завода – Toray, Mitsubishi и Toho. В 2015 году открыли завод по производству углеродного волокна и в России, в городе Елабуга. Строительство такого завода стало важным шагом в реализации программы импортозамещения.
Благодаря появившимся на рынке материалов российских производителей, помимо аэрокосмической отрасли и военных предприятий, карбоном заинтересовались и другие отрасли промышленности. Карбон стали активно использовать в автомобилестроении, дизайне интерьеров, производстве спортивного инвентаря и других сферах.
История карбона в автоспорте.
В автоспорт карбон пришёл в 1976 году. Британская компания McLaren стала использовать углеволоконный композит на своих спортивных автомобилях, делая отдельные детали для них. В 1981 году на трассу вышел McLaren MP4, ставший первым в истории Формулы 1 с полностью карбоновым монококом. Однако в те года технологи из автоспорта не имели малейшего понятия, как сделать самим такой монокок. Поэтому не разрушаемую капсулу для McLaren произвела американская компания Hercules Aerospace, обладающая богатым опытом военно-космических разработок. В сегодняшние дни практически все ведущие команды Формулы-1 имеют собственное производство деталей из карбона.
Карбон или стекловолокно: применение конструкционных шпатлевок
Любая шпатлевка состоит из наполнителя, обеспечивающего заполнение неровностей и прочность, связующего вещества, которое отвечает за адгезию и усадку, а также пигмента и добавок (стабилизаторов, пластификаторов). Назначение таких составов — восстановить поверхность, которая повреждена ржавчиной или механическим воздействием. При верном выборе и использовании эти продукты значительно упрощают работу по заделыванию сквозных отверстий и выравниванию поверхностей во время ремонта авто.
Разновидности конструкционных шпатлевок
Конструкционные шпатлевки применяются при ремонте вибронагруженных частей автомобиля: порогов, разного рода стоек, частей несущей конструкции кузова. При их выравнивании выполняются два вида работ: заполнение глубоких неровностей и сквозных отверстий, доводка. Поэтому используются сначала наполняющие (основные, грубые), затем доводочные (тонкие, отделочные, финишные) автошпатлевки. Первые крупнозернистые, не пригодны для создания гладкой поверхности без пор. Вторые мелкозернистые, эластичные, легко шлифуются. Могут применяться как самостоятельно (если дефекты мелкие) так для доводки после крупнозернистых материалов.
Наполняющие автошпатлевки со стекловолокном
Благодаря свойству армирования автошпатлевки со стекловолокном можно использовать для обработки значительных деформаций после механического воздействия. Стекловолокно обеспечивает прочность соединения деталей даже при сквозных повреждениях с разрывом металла. Заполнение дефекта обеспечивают волокна различной длины, влагостойкость — эпоксидная смола.
Преимущества шпатлевок со стекловолокном:
Несмотря на высокую прочность автошпатлевок со стекловолокном не желательно их нанесение на повреждения с большой площадью. При высоком уровне вибраций существует риск образования трещин.
Другие минусы материала:
Из-за этих особенностей после нанесения шпатлевки со стекловолокном требуется покрытие финишным составом. При его выборе важно учесть, что на стекловолокно сильно влияют колебания температуры: расширяясь и сжимаясь, покрытие «тянет» за собой металл, образуя неровности.
Автошпатлевки с карбоном (углеволокном)
Карбон придает шпатлевке высокую эластичность, поэтому нет ограничений по толщине наносимого слоя. Волокнистая структура дает возможность работать со сложными повреждениями, в том числе сквозными отверстиями. Шпатлевка с карбоном подходит для обработки элементов автомобиля, которые при езде подвергаются высокому уровню вибраций.
Преимущества карбона в шпатлевке:
Если слой карбоновой шпатлевки будет слишком толстым, при механическом воздействии существует риск его разрушения.
Однозначно ответить, какой из двух материалов лучше в качестве наполнителя, невозможно. Отличия между ними существенны, поэтому и сравнение не будет корректным. В конечном итоге все зависит от вида повреждений и материала обрабатываемых узлов. Для крыши лучше выбрать материал с карбоном, для порогов и арок — со стекловолокном. Наличие карбона облегчает обработку, так как отпадает необходимость в нанесении финишного состава. Подробнее о свойствах обоих видов шпатлевок рассказано в видео на нашем YouTube-канале:
Обратите внимание, что при любом выборе не стоит ориентироваться на низкую стоимость — качественный продукт не может быть дешевым!
углеволокно, карбон, что это?! давайте разбираться вместе)))
Всем привет, наткнулся на интересную статью, тут на драйве 2, ну и решил ее откопировать себе, думаю многим будет интересно почитать, ибо самим как правило оень «по-Google-ть»)))
За статью спасибо говорим rules26 у него много чего интересного в блоге)
Сегодня мы поможем разобраться в одном из самых интересных материалов 21 века. Начнем с военных технологий, закончим тюнингом.
Углеродное волокно — материал, состоящий из тонких нитей диаметром от 3 до 15 микрон, образованных преимущественно атомами углерода. Атомы углерода объединены в микроскопические кристаллы, выровненные параллельно друг другу. Выравнивание кристаллов придает волокну большую прочность на растяжение. Углеродные волокна характеризуются высокой силой натяжения, низким удельным весом, низким коэффициентом температурного расширения и химической инертностью.
Углеродное волокно является основой для производства углепластиков (или карбона, карбонопластиков, от «carbon», «carbone» — углерод). Углепластики — полимерные композиционные материалы из переплетенных нитей углеродного волокна, расположенных в матрице из полимерных (чаще эпоксидных) смол.
Углеродные композиционные материалы отличаются высокой прочностью, жесткостью и малой массой, часто прочнее стали, но гораздо легче.
Что такое карбон?
Слово «карбон» — своего рода профессиональный жаргонизм, точнее сокращение от английского Carbon Fiber (углеродное волокно), под эгидой которого, в общем понимании, объединилось огромное количество самых разных материалов. Примерно, как тысячи различных веществ с отличающимися физическими, химическими и техническими свойствами носят название «пластмасса». В случае с карбоном, общим для материалов стал углеволоконный наполнитель, но не связующее вещество, которое может быть разным. Даже полиэтиленовая пленка с впаянными в нее угольными нитями с полным правом может носить это гордое имя. Просто сложившейся классификации углепластиков еще нет.
Большинство современных материалов, применяемых в технике и, особенно, в автомобильной области, доходят до рядового потребителя по схожему сценарию. Новшества появляются в научных лабораториях обычно для нужд «оборонки». Затем, исполнив почетную обязанность по защите Отечества, они прокладывают себе дорогу через спорт и, как следствие, тюнинг к конвейеру. Так произошло и в случае с углеродными материалами.
Какое применение для карбона?
В последние годы проникновение карбона в конструкцию затюнингованных энтузиастами «аппаратов» приняло лавинообразный характер. Кроме того, углепластик все чаще и чаще упоминается в описаниях серийных машин. Этот материал, имеющий военно-космическую и спортивную предысторию, становится все популярнее. Прочность и легкость материалов ценятся конструкторами автомобилей уже давно, примерно с 50-х годов прошлого века. Сегодняшний прогресс технологий производства увеличивает соблазн применять больше композитов в новых разработках. Для владельца машины подобные детали ценны не только декоративностью рисунка углеродной ткани и завораживающей «переливчатостью» отраженного волокнами света, но и сохраняющейся аурой эксклюзивности. Со стороны производителя предложение карбоновых элементов в отделке — показатель технологической «продвинутости» фирмы.
Краткий курс истории.
Не нарушая сложившихся традиций, после «службы в армии» углепластик «занялся» спортом. Лыжники, велосипедисты, гребцы, хоккеисты и многие другие спортсмены по достоинству оценили легкий и прочный инвентарь. В автоспорте карбоновая эра началась в 1976 году. Сначала на машинах McLaren появились отдельные детали из диковинного черно-переливчатого материала, а в 1981 на трассу вышел McLaren MP4 с монококом, полностью изготовленным из углеволоконного композита. Так идея главного конструктора команды Lotus Колина Чепмена, создавшего в 1960-х несущую основу гоночного кузова, получила качественное развитие. Однако в то время новый материал был еще неведом технологам от автоспорта, потому неразрушаемую капсулу для McLaren изготовила американская компания Hercules Aerospace, обладающая опытом военно-космических разработок. Сейчас же в активе практически всех ведущих команд Формулы-1 есть собственное оборудование для выпуска карбоновых монококов, рычагов подвески, антикрыльев, спойлеров, сидений пилотов, рулей и даже тормозных дисков.
Что же такое КАРБОН или углеродное волокно?
Углеродное волокно состоит из множества тончайших нитей углерода. Прочность нитей на разрыв, сравнимая с прочностью легированной стали, при массе, меньшей, чем у алюминия, обуславливает высокие механические характеристики карбонов. Интересно, что наиболее распространенная технология получения столь прочного материала основана на методе «обугливания» волокон, по изначальным свойствам близким к шерсти. Исходный полимер белого цвета с мудреным названием полиакрилонитрил подвергается нескольким циклам нагрева в среде инертных газов. Сначала под воздействием высокой температуры (около 260 C) на молекулярном уровне изменяется внутренняя структура вещества. Затем при температурах повыше (около 700 C) атомы углерода «сбрасывают» водород. После нескольких «поджариваний» водород удаляется полностью. Теперь удерживавшие его силы направлены на упрочнение связей между оставшимися элементами. На шерсть материал уже не похож, однако его прочность еще далека от идеала. И процесс под названием графитизация продолжается. Повторяющиеся операции нагрева до 1300 C «очищают» почерневшее волокно уже от азота. Полностью избавиться от последнего не удается, однако его количество уменьшается. Каждый «шаг» делает содержание в веществе атомов углерода все больше, а их связь все крепче. Механизм упрочнения такой же, как и при «изгнании» водорода. Самая прочная продукция проходит несколько ступеней графитизации при температуре до 3000 C и обозначается аббревиатурой UHM.
Почему так дорого?
Большие затраты энергии — основная причина высокой себестоимости углеродного волокна. Впрочем, это с лихвой компенсируется впечатляющим результатом. Даже не верится, что все начиналось с «мягкого и пушистого» материала, содержащегося в довольно прозаических вещах и известных не только сотрудникам химических лабораторий. Белые волокна — так называемые сополимеры полиакрилонитрила — широко используются в текстильной промышленности. Они входят в состав плательных, костюмных и трикотажных тканей, ковров, брезента, обивочных и фильтрующих материалов. Иными словами, сополимеры полиакрилонитрила присутствуют везде, где на прилагающейся этикетке упомянуто акриловое волокно. Некоторые из них «несут службу» в качестве пластмасс. Наиболее распространенный среди таковых — АБС-пластик. Вот и получается, что «двоюродных родственников» у карбона полным-полно.
Угольная нить имеет впечатляющие показатели по усилию на разрыв, но ее способность «держать удар» на изгиб «подкачала». Поэтому, для равной прочности изделий, предпочтительнее использовать ткань. Организованные в определенном порядке волокна «помогают» друг другу справиться с нагрузкой. Однонаправленные ленты лишены такого преимущества. Однако, задавая различную ориентацию слоев, можно добиться искомой прочности в нужном направлении, значительно сэкономить на массе детали и излишне не усиливать непринципиальные места.
Что такое карбоновая ткань?
Сохранить в Альбом
plain
Для изготовления карбоновых деталей применяется как просто углеродное волокно с хаотично расположенными и заполняющими весь объем материала нитями, так и ткань (Carbon Fabric). Существуют десятки видов плетений. Наиболее распространены Plain, Twill, Satin. Иногда плетение условно — лента из продольно расположенных волокон «прихвачена» редкими поперечными стежками только для того, чтобы не рассыпаться.
Плотность ткани, или удельная масса, выраженная в г/м2, помимо типа плетения зависит от толщины волокна, которая определяется количеством угленитей. Данная характеристика кратна тысячи. Так, аббревиатура 1К означает тысячу нитей в волокне. Чаще всего в автоспорте и тюнинге применяются ткани плетения Plain и Twill плотностью 150–600 г/м2, с толщиной волокон 1K, 2.5K, 3К, 6K, 12K и 24К. Ткань 12К широко используется и в изделиях военного назначения (корпуса и головки баллистических ракет, лопасти винтов вертолетов и подводных лодок, и пр.), то есть там, где детали испытывают колоссальные нагрузки.
Сохранить в Альбом
satin
Бывает ли цветной карбон? Желтый карбон бывает?
Часто от производителей тюнинговых деталей и, как следствие, от заказчиков можно услышать про «серебристый» или «цветной» карбон. «Серебряный» или «алюминиевый» цвет — всего лишь краска или металлизированное покрытие на стеклоткани. И называть карбоном такой материал неуместно — это стеклопластик. Отрадно, что и в данной области продолжают появляться новые идеи, но по характеристикам стеклу с углем углеродным никак не сравниться. Цветные же ткани чаще всего выполнены из кевлара. Хотя некоторые производители и здесь применяют стекловолокно; встречается даже окрашенные вискоза и полиэтилен. При попытке сэкономить, заменив кевлар на упомянутые полимерные нити, ухудшается адгезия такого продукта со смолами. Ни о какой прочности изделий с такими тканями не может быть и речи.
Отметим, что «Кевлар», «Номекс» и «Тварон» — патентованные американские марки полимеров. Их научное название «арамиды». Это родственники нейлонов и капронов. В России есть собственные аналоги — СВМ, «Русар», «Терлон» СБ и «Армос». Но, как часто бывает, наиболее «раскрученное» название — «Кевлар» — стало именем нарицательным для всех материалов.
Сохранить в Альбом
twill2/2
Что такое кевлар и какие у него свойства?
По весовым, прочностным и температурным свойствам кевлар уступает углеволокну. Способность же кевлара воспринимать изгибающие нагрузки существенно выше. Именно с этим связано появление гибридных тканей, в которых карбон и кевлар содержатся примерно поровну. Детали с угольно-арамидными волокнами воспринимают упругую деформацию лучше, чем карбоновые изделия. Однако есть у них и минусы. Карбон-кевларовый композит менее прочен. Кроме того, он тяжелее и «боится» воды. Арамидные волокна склонны впитывать влагу, от которой страдают и они сами, и большинство смол. Дело не только в том, что «эпоксидка» постепенно разрушается водно-солевым раствором на химическом уровне. Нагреваясь и охлаждаясь, а зимой вообще замерзая, вода механически расшатывает материал детали изнутри. И еще два замечания. Кевлар разлагается под воздействием ультрафиолета, а формованный материал в смоле утрачивает часть своих замечательных качеств. Высокое сопротивление разрыву и порезам отличают кевларовую ткань только в «сухом» виде. Потому свои лучшие свойства арамиды проявляют в других областях. Маты, сшитые из нескольких слоев таких материалов, — основной компонент для производства легких бронежилетов и прочих средств безопасности. Из нитей кевлара плетут тонкие и прочные корабельные канаты, делают корд в шинах, используют в приводных ремнях механизмов и ремнях безопасности на автомобилях.
А можно обклеить деталь карбоном?
Непреодолимое желание иметь в своей машине детали в черно-черную или черно-цветную клетку привели к появлению диковинных суррогатов карбона. Тюнинговые салоны обклеивают деревянные и пластмассовые панели салонов углеродной тканью и заливают бесчисленными слоями лака, с промежуточной ошкуриванием. На каждую деталь уходят килограммы материалов и масса рабочего времени. Перед трудолюбием мастеров можно преклоняться, но такой путь никуда не ведет. Выполненные в подобной технике «украшения» порой не выдерживают температурных перепадов. Со временем появляется паутина трещин, детали расслаиваются. Новые же детали неохотно встают на штатные места из-за большой толщины лакового слоя.
Не принимайте это на свой счет, кто ищет тот найдет! Автор не претендует на истину в конечной инстанции.
Как производятся карбоновые и/или композитные изделия?
Технология производства НАСТОЯЩИХ карбоновых изделий основывается на особенностях применяемых смол. Компаундов, так правильно называют смолы, великое множество. Наиболее распространены среди изготовителей стеклопластиковых обвесов полиэфирная и эпоксидная смолы холодного отверждения, однако они не способны полностью выявить все преимущества углеволокна. Прежде всего, по причине слабой прочности этих связующих компаундов. Если же добавить к этому плохую стойкость к воздействию повышенных температур и ультрафиолетовых лучей, то перспектива применения большинства распространенных марок весьма сомнительна. Сделанный из таких материалов карбоновый капот в течение одного жаркого летнего месяца успеет пожелтеть и потерять форму. Кстати, ультрафиолет не любят и «горячие» смолы, поэтому, для сохранности, детали стоит покрывать хотя бы прозрачным автомобильным лаком.
Компаунды холодного твердения.
«Холодные» технологии мелкосерийного выпуска малоответственных деталей не позволяют развернуться, поскольку имеют и другие серьезные недостатки. Вакуумные способы изготовления композитов (смола подается в закрытую матрицу, из которой откачан воздух) требуют продолжительной подготовки оснастки. Добавим к этому и перемешивание компонентов смолы, «убивающее» массу времени, что тоже не способствует производительности. Это Россия, раслабся 😀 Метод же напыления рубленого волокна в матрицу не позволяет использовать ткани. Собственно, все идентично стеклопластиковому производству. Просто вместо стекла применяется уголь. Даже самый автоматизированный из процессов, который к тому же позволяет работать с высокотемпературными смолами (метод намотки), годится для узкого перечня деталей замкнутого сечения и требует оборудования.
Эпоксидные смолы горячего отверждения прочнее, что позволяет выявить качества карбонов в полной мере. У некоторых «горячих» смол механизм полимеризации при «комнатной» температуре запускается очень медленно. На чем, собственно, и основана так называемая технология препрегов, предполагающая нанесение готовой смолы на углеткань или углеволокно задолго до процесса формования. Приготовленные материалы просто ждут своего часа на складах.
В зависимости от марки смолы время жидкого состояния обычно длится от нескольких часов до нескольких недель. Для продления сроков жизнеспособности, приготовленные препреги, иногда хранят в холодильных камерах. Некоторые марки смол «живут» годами в готовом виде. Прежде чем добавить отвердитель, смолы разогревают до 50–60 C, после чего, перемешав, наносят посредством специального оборудования на ткань. Затем ткань прокладывают полиэтиленовой пленкой, сворачивают в рулоны и охлаждают до 20–25 C. В таком виде материал будет храниться очень долго. Причем остывшая смола высыхает и становится практически не заметной на поверхности ткани. Непосредственно при изготовлении детали нагретое связующее вещество становится жидким как вода, благодаря чему растекается, заполняя весь объем рабочей формы и процесс полимеризации ускоряется.
Компаунды горячего твердения.
«Горячих» компаундов великое множество, при этом у каждой собственные температурные и временные режимы отверждения. Обычно, чем выше требуемые показания термометра в процессе формовки, тем прочнее и устойчивее к нагреву готовое изделие. Исходя из возможностей имеющегося оборудования и требуемых характеристик конечного продукта, можно не только выбирать подходящие смолы, но делать их на заказ. Некоторые отечественные заводы-изготовители предлагают такую услугу. Естественно, не бесплатно.
Препреги как нельзя лучше подходят для производства карбона в автоклавах. Перед загрузкой в рабочую камеру нужное количество материала тщательно укладывается в матрице и накрывается вакуумным мешком на специальных распорках. Правильное расположение всех компонентов очень важно, иначе не избежать нежелательных складок, образующихся под давлением. Исправить ошибку впоследствии будет невозможно. Если бы подготовка велась с жидким связующим, то стала бы настоящим испытанием для нервной системы рабочих с неясными перспективами успеха операции.
Процессы, происходящие внутри установки, незатейливы. Высокая температура расплавляет связующее и «включает» полимеризацию, вакуумный мешок удаляет воздух и излишки смолы, а повышенное давление в камере прижимает все слои ткани к матрице. Причем происходит все одновременно.
С одной стороны, одни преимущества. Прочность такого углепластика практически максимальна, объекты самой затейливой формы делаются за один «присест». Сами матрицы не монументальны, поскольку давление распределено равномерно во всех направлениях и не нарушает геометрию оснастки. Что означает быструю подготовку новых проектов. С другой стороны, нагрев до нескольких сотен градусов и давление, порой доходящее до 20 атм., делают автоклав очень дорогостоящим сооружением. В зависимости от его габаритов цены на оборудование колеблются от нескольких сотен тысяч до нескольких миллионов долларов. Прибавим к этому нещадное потребление электроэнергии и трудоемкость производственного цикла. Результат — высокая себестоимость продукции. Есть, впрочем, технологии подороже и посложнее, чьи результаты впечатляют еще больше. Углерод-углеродные композиционные материалы (УУКМ) в тормозных дисках на болидах Формулы-1 и в соплах ракетных двигателей выдерживают чудовищные нагрузки при температурах эксплуатации, достигающих 3000 C. Эту разновидность карбона получают путем графитизации термореактивной смолы, которой пропитывают спрессованное углеродное волокно заготовки. Операция чем-то похожа на производство самого углеволокна, только происходит она при давлении 100 атмосфер. Да, большой спорт и военно-космическая сфера деятельности способны потреблять штучные вещи по «заоблачным» ценам. Для тюнинга и, тем более, для серийной продукции такое соотношение «цены-качества» неприемлемо.
Если решение найдено, оно выглядит настолько простым, что удивляешься: «Что же мешало додуматься раньше?». Тем не менее, идея разделить процессы, происходящие в автоклаве, возникла спустя годы поиска. Так появилась и стала набирать обороты технология, сделавшая горячее формование карбона похожим на штамповку. Препрег готовится в виде сэндвича. После нанесения смолы ткань с обеих сторон покрывается либо полиэтиленовой, либо более термостойкой пленкой. «Бутерброд» пропускается между двух валов, прижатых друг к другу. При этом лишняя смола и нежелательный воздух удаляются, примерно так же, как и при отжиме белья в стиральных машинах образца 1960-х годов. В матрицу препрег вдавливается пуансоном, который фиксируется резьбовыми соединениями. Далее вся конструкция помещается в термошкаф.
Сохранить в Альбом
twill4/4
Тюнинговые фирмы изготавливают матрицы из того же карбона и даже прочных марок алебастра. Гипсовые рабочие формы, правда, недолговечны, но пара-тройка изделий им вполне по силам. Более «продвинутые» матрицы делаются из металла и иногда оснащаются встроенными нагревательными элементами. В серийном производстве они оптимальны. Кстати, метод подходит и для некоторых деталей замкнутого сечения. В этом случае легкий пуансон из вспененного материала остается внутри готового изделия. Антикрыло Mitsubishi Evo — пример такого рода.
Автор статьи :Алексей Романов ( в редакции Rules26 :))
редактор журнала «ТЮНИНГ Автомобилей» имеет свой взгляд на мир карбона)))
И не изготовив пару тройку деталей судит о том что «знает» только по книжкам.
Пробуйте и дерзайте!