Уравнение движения автомобиля по дороге
Уравнение движения автомобиля
Уравнение движения автомобиля выражает связь между движущими силами и силами сопротивления движению и позволяет определить режим движения автомобиля в любой момент.
Для вывода уравнения движения используется схема движения автомобиля на подъем и рассматривается разгон автомобиля на подъеме (рис. 4.1).
Рисунок 4.1 – Схема сил, действующих на автомобиль на подъеме
Проекция всех сил, действующие на автомобиль на поверхность дороги:
| (4.1) |
Принимая во внимание, что силы сопротивления качению Рк и подъему Рп в совокупности представляют силу сопротивления дороги Рд, получим:
| (4.2) |
При установившемся (равномерном) движении, когда нет разгона и Ри = 0:
| (4.3) |
Из уравнения (4.3) следует, что безостановочное движение автомобиля возможно только при условии:
| (4.4) |
Данное неравенство связывает конструктивные параметры автомобиля с эксплуатационными факторами, обусловливающими сопротивление движению, и не гарантирует отсутствия буксования ведущих колес. Безостановочное движение автомобиля без буксования ведущих колес возможно лишь при соблюдении условия:
| (4.5) |
Условие равномерного движения при отсутствии буксования ведущих колес записывается в виде:
Устройство автомобилей
Уравнение движения автомобиля
Силовой баланс при прямолинейном движении автомобиля
Спроектировав все силы на плоскость опорной поверхности автомобиля, получим уравнение динамики прямолинейного движения:
Сила тяги по сцеплению
Сила тяги образуется касательными реакциями дороги. Эти реакции представляют собой силы трения и силы зацепления, при этом силы зацепления возникают на деформируемых грунтах. Сила тяги ведущего колеса, которую можно реализовать для движения автомобиля на данном дорожном покрытии или грунте, имеет предел, зависящий от сцепных свойств шины.
Рассмотрим влияние каждого из этих факторов на силу тяги по сцеплению.
Сцепная нагрузка
При увеличении нагрузки на колесо увеличивается сила трения и сила зацепления. Сила тяги по сцеплению прямо пропорциональна сцепной нагрузке Gφ или нормальным реакциям на ведущих колесах:
где φx – коэффициент продольного сцепления колеса с опорной поверхностью.
где Rx max – максимально возможная продольная реакция по сцеплению.
Коэффициент φx определяется экспериментальным путем чаще всего при скольжении колеса в тормозном режиме, т. е. при протаскивании полностью заторможенного колеса:
Дорожное покрытие
Удельное давление на дорогу
Удельное давление шины на дорогу определяется площадью опорной поверхности шины и весом автомобиля, приходящимся на данное колесо. Регулировать удельное давление шины на дорогу можно изменением давления в шине – при снижении давления увеличивается площадь опорной поверхности и удельное давление снижается, и наоборот – при увеличении давления воздуха в шине уменьшается площадь опорной поверхности, что приводит к увеличению удельного давления колеса на дорогу.
Очевидно, что увеличение опорной поверхности шины с дорогой приводит к увеличению силы сцепления, особенно, на грунтовых дорогах, поскольку в зацеплении участвует большее количество грунтозацепов протектора покрышки.
При движении по влажным дорожным покрытиям повышенное удельное давление (давление в шинах) может благотворно сказаться на сцеплении шин с дорогой из-за выдавливания влаги из-под колес.
Удельное давление, оказываемое колесом на опорную поверхность, в некоторой степени зависит и от размеров шины – от ее диаметра и ширины. При увеличении диаметра колеса сегмент дуги, по которой осуществляется контакт шины с дорогой, имеет бȯльшую длину, чем опорный сегмент маленького колеса. Широкая шина создает колесу опору большей площади, чем узкая.
Влияние на сцепные свойства типа трансмиссии
Многочисленные опыты показали, что применение бесступенчатых трансмиссий обеспечивает повышение силы тяги по сцеплению. Главную роль здесь играет возможность плавного изменения величины тяговых моментов на ведущих колесах, без рывков и резких толчков.
В трансмиссиях, оснащенных ступенчатыми коробками передач, потеря сцепления колес с опорной поверхностью чаще всего имеет место во время переключения передач, сопровождающихся резким изменением величины крутящего момента на колесах.
Влияние конструкции шин
Важную роль в повышении сцепления колеса с дорогой играют рисунок протектора, а для шин повышенной проходимости размеры (особенно, высота) грунтозацепов протектора. Протектор шин легковых автомобилей обычной проходимости, как правило, имеет мелкий рисунок, обеспечивающий хорошее сцепление с твердым покрытием.
Наименьший коэффициент сцепления при прочих равных условиях у шин с изношенным рисунком протектора. Поэтому использование автомобилей с такими шинами запрещено.
Недостаточная величина коэффициента сцепления является причиной многих дорожно-транспортных происшествий. Для обеспечения безопасности дорожного движения его величина не должна быть меньше 0,4.
Не менее вредное влияние на сцепную тягу автомобиля и его устойчивость на дороге оказывает скольжение заторможенных колес по твердому дорожному покрытию (блокировка колес). В этом случае изношенные частицы шины, попадая на опорную поверхность колеса и дороги, вызывают эффект «смазки», существенно снижая сцепные свойства шины. Это явление явилось причиной появления тормозных систем с антиблокировочными устройствами (АБС).
Условия возможности движения автомобиля
Согласно уравнению силового баланса (1) равномерное безостановочное движение автомобиля возможно лишь при условии
Выполнение этого условия для безостановочного движения автомобиля необходимо, но недостаточно, поскольку оно возможно лишь при отсутствии буксования ведущих колес.
Учитывая формулу (2) условие безостановочного движения можно выразить так:
Если суммарная сила сопротивления движению больше силы тяги, то двигатель автомобиля заглохнет. Если сила тяги превысит силу сцепления, ведущие колеса начнут пробуксовывать.
Мощностной баланс автомобиля
Иногда вместо силового баланса, характеризуя возможность движения автомобиля, пользуются мощностным балансом. Мощность силы определяется ее модульной величиной и скоростью v движения тела под действием этой силы. Если умножить все члены уравнения силового баланса (1) на v /1000, получим уравнение мощностного баланса:
где Nт – тяговая мощность:
Nт = Ртv/ 1000 = Мкiтрηтрv/ 1000 r = Nеηтр
(здесь Nе – эффективная мощность двигателя, ηтр – КПД трансмиссии, iтр – передаточное число трансмиссии);
Nα – мощность, затрачиваемая на преодоление подъема:
Nf – мощность, затрачиваемая на преодоление сопротивления качению:
Nj – мощность, затрачиваемая на преодоление сопротивления разгону:
Nψ – мощность, затрачиваемая на преодоление сопротивления дороги:
Уравнение мощностного баланса устанавливает соотношения между мощностью, подводимой к ведущим колесам автомобиля и мощностью, необходимой для преодоления сопротивления движению автомобиля.
Используя уравнение мощностного баланса строят графики мощностного баланса для движения автомобиля на каждой из передач. Такие графики удобно использовать при сравнительной оценке тяговых свойств автомобиля графическими методами.
Устройство автомобилей
Силовой баланс автомобиля
Силы, действующие на автомобиль при прямолинейном движении
Прямолинейным движением автомобиля будем считать его равномерное или ускоренное движение по горизонтальной или наклонной прямой дороге (без виражей и поворотов). В этом случае на автомобиль действуют следующие силы:
На рисунке 1 представлены все эти силы с учетом их направления по отношению к направлению движения автомобиля.
Для дальнейших теоретических выкладок примем следующие условия (допущения):
Сила тяги Рт подробно рассмотрена в предыдущей статье. При принятых выше условиях не имеет значения, сколько колес автомобиля являются ведущими и сколько ведомыми.
Сила сопротивления качению
Силой сопротивления качению автомобиля Pj называется сумма сил сопротивления качению всех его колес. В реальных условиях сопротивление качению отдельных колес автомобиля не бывает одинаковым даже при движении автомобиля по дороге с твердым покрытием.
На деформируемых грунтах любое сопротивление качению задних колес, движущихся по уже уплотненному грунту, значительно меньше, чем для передних. Для решения теоретических задач сопротивление качению определяется для автомобиля в целом.
На сопротивление качению влияют:
Нормальная нагрузка обусловлена полным весом автомобиля и влияет на сопротивление качению непосредственно, поскольку реакции дорожного покрытия или грунта можно считать пропорциональными нормальной нагрузке.
Потери, связанные с деформацией резины в шине (гистерезисные потери) зависят от радиальной деформации шины. Эти потери возрастают при увеличении нагрузки.
Кроме того, рост нормальной нагрузки приводит к увеличению удельного давления, а следовательно, и сопротивлению качения.
Дорожное покрытие оказывает существенное влияние на силу сопротивления качению колес Pf в случае, если оно не является твердым. Величина этой силы определяется работой прессования и выдавливанием в стороны грунта при погружении в него колес.
Удельное давление на грунт – это нормальная нагрузка на единицу площади опорного участка шины и может быть определено по формуле:
где cq – коэффициент, определяемый жесткостью каркаса шины, cq = 1 + p0 ;
p0 – давление воздуха в шинах.
Большое значение имеют конструкция и состояние шин, их число и диаметр, а также рисунок протектора, форма и расположение грунтозацепов.
При изношенном протекторе уменьшается сопротивление качению, но при этом резко ухудшаются сцепные качества шины с дорогой.
Для эксплуатационных расчетов принимаются два допущения:
Тогда сила сопротивления качению может быть выражена через нормальную нагрузку (или равную ей реакцию грунта Rz ) и коэффициент пропорциональности, называемый коэффициентом сопротивления качению f :
Коэффициент сопротивления качению f зависит от характера и состояния дорожного покрытия. Так, для асфальта, бетона или асфальтобетона он равен 0,1…0,3, для укатанной сухой грунтовой дороги – 0,02…0,03, для разбитой мокрой грунтовой дороги – 0,1…0,25, для обледенелой дороги – 0,01…0,03 и т. д.
Влияние скорости движения на коэффициент f сопротивления качению учитывает эмпирическая формула:
где f0 – коэффициент сопротивления качению при движении автомобиля со скоростью менее 15 м/с;
v – скорость автомобиля.
Сила тяжести и сопротивление движению
Масса снаряженного автомобиля – масса автомобиля без груза, полностью заправленного топливом, смазочными материалами и охлаждающей жидкостью, с запасным колесом, инструментом и оборудованием.
Полная масса автомобиля включает в себя еще массу водителя и груза по номинальной грузоподъемности (для грузового автомобиля) или по номинальной пассажировместимости (для автобусов и легковых автомобилей).
В расчетах обычно принимается полная масса.
Положение центра масс определяется у двухосного автомобиля расстояниями l1 и l2 до геометрических осей вращения колес соответственно переднего и заднего мостов. У трехосного автомобиля l2 – расстояние от центра масс до оси балансира задней тележки.
Расстояние L = l1 + l2 называют базой автомобиля.
При движении автомобиля по наклонному участку дороги с углом подъема α сила тяжести раскладывается на две составляющие:
Сила сопротивления качению и сила сопротивления подъему зависят от дорожных условий, так как коэффициент сопротивления качению f и угол подъема дороги α в совокупности определяют качество дороги, поэтому можно ввести такое понятие, как сила сопротивления дороги:
При движении автомобиля по наклонной дороге сила сопротивления качению определится из соотношения:
Получим следующую формулу для вычисления силы сопротивления дороги:
Выражение в скобках называется коэффициентом сопротивления дороги и обозначается ψ :
Тогда сила сопротивления дороги:
Сила инерции
Сила инерции (или сила сопротивления разгону) при поступательном движении автомобиля может быть определена из соотношения:
где j – ускорение автомобиля, m – масса автомобиля.
С учетом коэффициента δвр уравнение (1) будет иметь вид:
Значение коэффициента δвр определяется по формуле:
где jм – момент инерции маховика; ηтр – КПД трансмиссии; iтр – передаточное число трансмиссии; jк – суммарный момент инерции всех колес автомобиля; m – масса автомобиля; r – радиус колеса.
Энергия, затрачиваемая на разгон деталей двигателя на прямой передаче, в два-три раза, а на низших передачах в восемь-десять раз больше энергии, расходуемой на разгон колес.
В случае, если точное значение моментов инерции маховика и колес неизвестно, то коэффициент учета вращающихся масс δвр определяют по эмпирической формуле:
где δ1 ≈ δ2 от 0,03 до 0,05; mа – масса автомобиля с полной нагрузкой; m – фактическая масса автомобиля.
При движении автомобиля с отключенной от двигателя трансмиссией коэффициент учета вращающихся масс может быть приближенно определен по формуле:
Сила сопротивления воздуха
Как и всякое тело, перемещающееся в воздушной среде, автомобиль со стороны атмосферного воздуха испытывает сопротивление движению, которое обуславливается двумя факторами: трением, возникающим в пограничных с поверхностью автомобиля слоях воздуха, и вихреобразованием в окружающих его потоках.
Движущийся автомобиль увлекает за собой непосредственно прилегающий к нему слой воздуха, который взаимодействует на соседний с ним слой и т. д., увлекая его за собой. Скорость каждого последующего слоя воздуха меньше, чем предыдущего, что и вызывает силы трения между слоями. Чем выше скорость движения автомобиля, тем большие массы воздуха будут увлекаться в движение, и тем больше суммарная сила трения, возникающая между слоями и поверхностью автомобиля.
Однако при скоростях, с которыми передвигаются автомобили, сопротивление, вызываемое трением в пограничных с автомобилем слоях очень мало, и им можно пренебречь в большинстве расчетов.
Образование вихревых потоков можно представить, предположив, что на неподвижный автомобиль направлен с достаточной скоростью поток воздуха. Ударяясь о лобовую поверхность кабины и кузова автомобиля, струи воздуха изменяют направление своего движения (рис. 1). При этом чем менее обтекаемую форму имеет автомобиль, тем интенсивнее и объемнее будут вызываемые им завихрения воздушных струй.
В результате вихреобразования возникает разрежение воздуха сзади автомобиля, тогда как перед ним воздух уплотняется, вследствие чего создается разность давлений воздуха впереди и сзади автомобиля.
Сопротивление воздуха при вихреобразовании зависит от площади поперечного сечения автомобиля (лобовой проекции), и особенно от его формы.
Усилению вихреобразования способствует наличие выступающих частей, прямых углов и резких переходов в профильной проекции автомобиля. Обтекаемые формы современных легковых, и особенно – гоночных автомобилей, существенно снижают сопротивление воздуха, вызываемое вихреобразованием.
Сопротивление воздуха при проектировании кузовов автомобилей определяют чаще всего опытным путем с помощью аэродинамической трубы, которая позволяет получить равномерный прямолинейный установившийся воздушный поток заданной скорости и даже температуры. В аэродинамической трубе можно не только исследовать обтекаемость автомобиля, но и определить эффективность очистки ветрового стекла и ряд других параметров, связанных с воздействием воздушного потока на автомобиль.
Для расчета силы сопротивления воздуха Pω аналитическими методами можно использовать формулу, полученную опытным путем (эмпирическая зависимость), которая справедлива для всех скоростей автомобиля, кроме самых малых:
где ρ – плотность воздуха;
c – коэффициент сопротивления воздуха, зависящий от формы автомобиля;
F – площадь лобового сопротивления, т. е. площадь проекции автомобиля на плоскость, перпендикулярную направлению движения;
v – скорость автомобиля.
Считая, что плотность ρ воздуха в реальных условиях движения автомобиля величина относительно постоянная, вводят понятие коэффициента kω обтекаемости автомобиля, который тоже можно считать постоянной величиной:
Тогда формула (3) примет вид:
Значения коэффициента обтекаемости зависят от формы кузова. Так, например, для автобусов капотной компоновки он равен 0,45…0,55, для автобусов вагонной компоновки – 0,35…0,45, для легковых автомобилей – 0,2…0,35, для гоночных автомобилей – 0,15…0,2 и т. д.
Площадь лобового сопротивления с достаточной степенью точности (погрешность не более 10%) можно определить по следующим зависимостям:
При расчетах силы сопротивления воздуха Pω важно определить место приложения данной силы, так называемый центр парусности.
Точное положение центра парусности автомобиля определяется опытным путем в аэродинамической трубе. Для приблизительных расчетов принимают высоту положения центра парусности равной половине высоты автомобиля, а его расположение по горизонтали – на оси симметрии лобовой проекции автомобиля.
При скоростях выше 100…120 км/ч со стороны воздушных потоков на автомобиль начинает действовать так называемая подъемная сила, имеющая аэродинамическую природу, направленная вертикально вверх и стремящаяся оторвать автомобиль от поверхности дороги.
Это негативное явление приводит к потере устойчивости и управляемости автомобиля, и связано с тем, что под днищем автомобиля, благодаря его плоской форме, скорость потока воздуха ниже, а давление в воздушном потоке выше, чем над автомобилем, где, благодаря ускорению воздушных масс из-за криволинейной формы кузова автомобиля, давление снижается. В результате на автомобиль начинает действовать подъемная сила, аналогичная подъемной силе, действующей на крыло самолета.
У спортивных автомобилей благодаря специальной форме кузова и использованию аэроэлементов (антикрыло) эту силу направляют вниз, увеличивая сцепление колес с дорогой.
Силы, возникающие при буксировке прицепов
Сила сопротивления воздуха для прицепа в приближенных расчетах не учитывается, так как она прилагается к центру парусности тягача. Кроме того, автопоезда не передвигаются на больших скоростях, когда сила сопротивления воздуха достигает существенных значений.
Нормальная реакция дороги
Нормальная реакция дороги Rz не совершает ни полезной работы, ни работы сопротивления движению, поскольку направлена перпендикулярно направлению движения автомобиля. Однако при изучении тягово-скоростных свойств автомобиля их необходимо учитывать, поскольку Rz определяет силы сопротивления качению и сцепление колес с опорной поверхностью (дорогой).
Нормальные реакции необходимы при оценке таких эксплуатационных свойств автомобиля, как торможение, управляемость, устойчивость и проходимость, а также при расчетах мостов.
Сила тяжести G автомобиля распределяется по всем его колесам, и со стороны дороги действуют соответствующие нормальные реакции на каждое колесо. При этом равномерное распределение массы автомобиля на его колеса хотя и могут иметь место, но в порядке исключения. Поэтому на разные колеса автомобиля действуют разные по величине нормальные реакции, в соответствии с распределением нагрузки на оси и мости, а также на каждое колесо.
где L – расстояние между осями автомобиля.
Во время движения нормальные реакции дороги изменяются под действием различных сил и моментов. На рис. 2,б показана схема сил, действующих на автомобиль при его разгоне и на подъеме. Расчетным путем можно доказать, что нормальнее реакции дороги на передние колеса уменьшаются, а на задние увеличиваются с ростом крутизны подъема, интенсивности разгона, а также с увеличением силы сопротивления воздуха движению автомобиля.
Во время разгона автомобиля предельные значения коэффициентов составляют:
mp1 от 0,55 до 0,7; mp2 от 1,2 до 1,35, т. е. во время разгона нагрузка на передний мост уменьшается, а на задний увеличивается по сравнению с нагрузками в статическом положении.
При торможении автомобиля наблюдается обратное явление. Это объясняется тем, что при разгоне автомобиль как бы «приседает» на задние колеса, а при торможении испытывает «кивок» вперед.
8 Уравнение движения автомобиля
7.1 Силы сопротивления движению и мощности, затрачиваемые на их преодоление
7. 2. Уравнение движения автомобиля
7. 1 Силы сопротивления движению и мощности, затрачиваемые на их преодоление
Силами сопротивления называются силы, препятствующие Движению автомобиля. Эти силы направлены против его движения.
При движении на подъеме, характеризуемом высотой Нп, длиной проекции Вп на горизонтальную плоскость и углом подъема дороги а, на автомобиль действуют следующие силы сопротивления (рис. 7.1): сила сопротивления качению Рк, равная сумме сил сопротивления качению передних (РК1) и задних (РК2) колес, сила сопротивления подъему Рп, сила сопротивления воздуха Рв и сила сопротивления разгону Ри. Силы сопротивления качению и подъему связаны с особенностями дороги. Сумма этих сил называется силой сопротивления дороги Рд.
Рис. 7.1. Силы сопротивления движению автомобиля
Сила сопротивления качению
Возникновение силы сопротивления качению при движении обусловлено потерями энергии на внутреннее трение в шинах, поверхностное трение шин о дорогу и образование колеи (на деформируемых дорогах).
Рекомендуемые файлы
О потерях энергии на внутреннее трение в шине можно судить по рис. 7.2, на котором приведена зависимость между вертикальной нагрузкой на колесо и деформацией шины — ее прогибом fш.
При движении колеса по неровной поверхности шина, испытывая действие переменной нагрузки, деформируется. Линия Оа, которая соответствует возрастанию нагрузки, деформирующей шину, не совпадает с линией аО, отвечающей снятию нагрузки. Площадь области, заключенной между указанными кривыми, характеризует потери энергии на внутреннее трение между отдельными частями шины (протектор, каркас, слои корда и др.).
Потери энергии на трение в шине называются гистерезисом, а линия ОаО — петлей гистерезиса.
Потери на трение в шине необратимы, так как при деформации она нагревается и из нее выделяется теплота, которая рассеивается в окружающую среду. Энергия, затрачиваемая на деформацию шины, не возвращается полностью при последующем восстановлении ее формы.
Сила сопротивления качению Рк достигает наибольшего значения при движении по горизонтальной дороге. В этом случае
Рк =fG, где G — вес автомобиля, Н; f — коэффициент сопротивления качению.
Рис. 7.2. Потери энергии на внутреннее трение в шине:
а — точка, соответствующая максимальным значениям нагрузки и прогиба шины
Рис. 7.3. Зависимости силы сопротивления качению Рк и мощности NK, необходимой для преодоления этого сопротивления, от скорости автомобиля
При движении на подъеме и спуске сила сопротивления качению уменьшается по сравнению с Рк на горизонтальной дороге, и тем значительнее, чем они круче. Для этого случая движения сила сопротивления качению
где а — угол подъема, °.
Зная силу сопротивления качению, можно определить мощность, кВт, затрачиваемую на преодоление этого сопротивления:
где v — скорость автомобиля, м/с. Для горизонтальной дороги cos 0° = 1 и
Зависимости силы сопротивления качению Рк и мощности NK от скорости автомобиля v показаны на рис. 7.3.
Коэффициент сопротивления качению
Рис 7.4. Зависимости коэффициента сопротивления качению от
скорости движения (а), давления воздуха в шине (б) и момента,
передаваемого через колесо (в)
Рассмотрим влияние различных факторов на коэффициент сопротивления качению.
Скорость движения. При изменении скорости движения в интервале 0. 50 км/ч коэффициент сопротивления качению изменяется незначительно и его можно считать постоянным в указанном диапазоне скоростей.
При повышении скорости движения за пределами указанного интервала коэффициент сопротивления качению существенно увеличивается (рис. 7.4, а) вследствие возрастания потерь энергии в шине на трение.
Коэффициент сопротивления качению в зависимости от скорости движения можно приближенно рассчитать по формуле
где v — скорость автомобиля, км/ч.
Тип и состояние покрытия дороги. На дорогах с твердым покрытием сопротивление качению обусловлено главным образом деформациями шины.
При увеличении числа дорожных неровностей коэффициент сопротивления качению возрастает.
На деформируемых дорогах коэффициент сопротивления качению определяется деформациями шины и дороги. В этом случае он зависит не только от типа шины, но и от глубины образующейся колеи и состояния грунта.
Значения коэффициента сопротивления качению при рекомендуемых уровнях давления воздуха и нагрузки на шину и средней скорости движения на различных дорогах приведены ниже:
Асфальто- и цементобетонное шоссе:
в хорошем состоянии. 0,007. 0,015
в удовлетворительном состоянии. 0,015. 0,02
Гравийная дорога в хорошем состоянии. 0,02. 0,025
Булыжная дорога в хорошем состоянии. 0,025. 0,03
Грунтовая дорога сухая, укатанная. 0,025. 0,03
Обледенелая дорога, лед. 0,015. 0,03
Укатанная снежная дорога. 0,03. 0,05
Тип шины. Коэффициент сопротивления качению во многом зависит от рисунка протектора, его износа, конструкции каркаса и качества материала шины. Изношенность протектора, уменьшение числа слоев корда и улучшение качества материала приводят к падению коэффициента сопротивления качению вследствие снижения потерь энергии в шине.
Давление воздуха в шине. На дорогах с твердым покрытием при уменьшении давления воздуха в шине коэффициент сопротивления качению повышается (рис. 7.4, б). На деформируемых дорогах при снижении давления воздуха в шине уменьшается глубина колеи, но возрастают потери на внутреннее трение в шине. Поэтому для каждого типа дороги рекомендуется определенное давление воздуха в шине, при котором коэффициент сопротивления качению имеет минимальное значение.
Нагрузка на колесо. При увеличении вертикальной нагрузки на колесо коэффициент сопротивления качению существенно возрастает на деформируемых дорогах и незначительно — на дорогах с твердым покрытием.
Момент, передаваемый через колесо. При передаче момента через колесо коэффициент сопротивления качению возрастает (рис. 7.4, в) вследствие потерь на проскальзывание шины в месте ее контакта с дорогой. Для ведущих колес значение коэффициента сопротивления качению на 10. 15 % больше, чем для ведомых.
Коэффициент сопротивления качению оказывает существенное влияние на расход топлива и, следовательно, на топливную экономичность автомобиля. Исследования показали, что даже небольшое уменьшение этого коэффициента обеспечивает ощутимую экономию топлива. Поэтому неслучайно стремление конструкторов и исследователей создать такие шины, при использовании которых коэффициент сопротивления качению будет незначительным, но это весьма сложная проблема.
Сила сопротивления подъему
Вес автомобиля, который движется на подъеме, можно разложить на две составляющие (см. рис. 7.1): параллельную и перпендикулярную поверхности дороги. Составляющая силы тяжести, параллельная поверхности дороги, представляет собой силу сопротивления подъему, Н:
где G — вес автомобиля, Н; a — угол подъема, °.
Рис. 7.5. Зависимости силы сопротивления подъему Рп и мощности Nп, необходимой для его преодоления, от скорости автомобиля
В качестве характеристики крутизны подъема наряду с углом α используют величину i, называемую уклоном и равную i = H/Bn, где Нп — высота подъема; Bn — длина его проекции на горизонтальную плоскость. Сила сопротивления подъему может быть направлена как в сторону движения, так и против него. В процессе подъема она действует в направлении, противоположном движению, и является силой сопротивления движению. При спуске эта сила, направленная в сторону движения, становится движущей.
Зная силу сопротивления подъему, можно определить мощность, кВт, необходимую для преодоления этого сопротивления:
где v — скорость автомобиля, м/с.
Зависимости силы сопротивления подъему Рп „ и мощности Nn, необходимой для преодоления этого сопротивления, от скорости автомобиля v приведены на рис. 7.5.
Сила сопротивления дороги
Сила сопротивления дороги представляет собой сумму сил сопротивления качению и сопротивления подъему:
Выражение в скобках, характеризующее дорогу в общем случае, называется коэффициентом сопротивления дороги:
При малых углах подъема (не превышающих 5°), характерных для большинства автомобильных дорог с твердым покрытием, коэффициент сопротивления дороги
Сила сопротивления дороги в этом случае
Зная силу сопротивления дороги, можно определить мощность, кВт, необходимую для его преодоления:
где скорость автомобиля v выражена в м/с, вес G — в Н, мощность NД — в кВт.
Зависимости силы сопротивления дороги Рв и мощности NД, затрачиваемой на его преодоление, от скорости автомобиля v представлены на рис. 7.6.
Сила сопротивления воздуха
При движении действие силы сопротивления воздуха обусловлено перемещением частиц воздуха и их трением о поверхность автомобиля. Если он движется при отсутствии ветра, то сила сопротивления воздуха, Н:
тогда как при наличии ветра
где kв — коэффициент сопротивления воздуха (коэффициент обтекаемости), Н-с 2 /м 4 ; Fa — лобовая площадь автомобиля, м 2 ; v — скорость автомобиля, м/с; vB — скорость ветра, м/с (знак «+» соответствует встречному ветру, знак «-» — попутному).
Коэффициент сопротивления воздуха, зависящий от формы и качества поверхности автомобиля, определяется экспериментально при продувке в аэродинамической трубе.
Рис. 7.7. Площади лобового сопротивления легкового (а) и грузового
FA = ВНа — для грузовых автомобилей и автобусов;
где В — колея колес автомобиля, м; На — наибольшая высота автомобиля, м; Bа — наибольшая ширина автомобиля, м.
Мощность, кВт, затрачиваемая на преодоление сопротивления воздуха:
— при отсутствии ветра;
— при наличии ветра.
Зависимости силы сопротивления воздуха Рв и мощности NB, необходимой для преодоления этого сопротивления, от скорости автомобиля v приведены на рис. 7.8.
Рис. 7.8. Зависимости силы сопротивления воздуха Рв и мощности Nb, необходимой для преодоления этого сопротивления, от скорости автомобиля
Сила сопротивления разгону
Сила сопротивления разгону возникает вследствие затрат энергии на раскручивание вращающихся частей двигателя и трансмиссии, а также колес при движении автомобиля с ускорением.
Сила сопротивления разгону, Н:
=
Мощность, кВт, затрачиваемая на разгон:
Зависимости силы сопротивления разгону Ри и мощности NK, необходимой для преодоления этого сопротивления, от скорости автомобиля v представлены на рис. 7.9.
Рис. 7.9. Зависимости силы сопротивления разгону Ря и мощности /Уи, необходимой для преодоления этого сопротивления, от скорости автомобиля
Коэффициент учета вращающихся масс
Этот коэффициент учитывает дополнительное сопротивление разгону автомобиля, вызванное раскручиванием вращающихся частей двигателя, трансмиссии и колес.
Коэффициент учета вращающихся масс показывает, во сколько раз мощность, затрачиваемая на разгон автомобиля, больше мощности, необходимой для установившегося движения:
где JM — момент инерции маховика; uТ, Чтр — передаточное число и КПД трансмиссии; Jсум — суммарный момент инерции всех колес автомобиля.
Коэффициент учета вращающихся масс для автомобиля с полной нагрузкой можно приближенно рассчитать по формуле
где ик, ид — передаточные числа основной и дополнительной коробок передач.
7.2. Уравнение движения автомобиля
Для вывода уравнения движения рассмотрим разгон автомобиля на подъеме (рис. 7.10).
Спроецируем все силы, действующие на автомобиль, на поверхность дороги:
(7.1)
или
(7.2)
Уравнение движения автомобиля выражает связь между движущими силами и силами сопротивления движению. Оно позволяет определить режим движения автомобиля в любой момент.
Так, например, при установившемся (равномерном) движении
Из уравнения (7.2) следует, что безостановочное движение автомобиля возможно только при условии
Ещё посмотрите лекцию «18 Дизайн молекул лекарств» по этой теме.
Рис. 7.10. Схема сил, действующих на автомобиль на подъеме
данное неравенство связывает конструктивные параметры автомобиля с эксплуатационными факторами, обусловливающими сопротивление движению. Однако оно не гарантирует отсутствия буксования ведущих колес. Безостановочное движение автомобиля без буксования ведущих колес возможно лишь при соблюдении условия
Рсц РТ
РД + РВ.
Условие равномерного движения при отсутствии буксования ведущих колес записывается в виде
Рсц РТ = РД + РВ