Уравнение силового баланса автомобиля
Силовой баланс автомобиля
Из уравнения движения автомобиля (см. формулу 4.3) следует, что при прямолинейном движении автомобиля на подъем тяговая сила на ведущих колесах автомобиля расходуется на преодоление сил сопротивления дороги, воздуха и на его разгон:
| (4.7) |
Такая форма записи называется уравнением силового баланса автомобиля и выражает соотношение между тяговой силой на ведущих колесах и силами сопротивления движению.
На основании уравнения (4.7) строится график силового баланса (рис.4.2), позволяющий оценивать тягово-скоростные свойства автомобиля.
При построении графика силового баланса сначала строится тяговая характеристика автомобиля. Затем наносят зависимость силы сопротивления дороги от скорости. Если коэффициент сопротивления дороги – постоянная величина, то указанная зависимость представляет собой прямую линию, параллельную оси абсцисс, а при непостоянном коэффициенте сопротивления дороги – кривую параболической формы.
После этого от кривой, характеризующей силу сопротивления дороги, откладывают вверх значения силы сопротивления воздуха при различных скоростях движения.
Р ‘ тI – тяговая сила на I передаче при уменьшенной подаче топлива;
v1— одно из возможных значений скорости автомобиля.
Рисунок 4.2 – График силового баланса автомобиля
Кривая суммарного сопротивления дороги и воздуха Pд + Рв определяет тяговую силу Pт, необходимую для движения автомобиля с постоянной скоростью. При любой скорости движения отрезок Pз, заключенный между кривыми Pт и (Pд + Рв ), характеризует запас силы по тяге. Этот запас может быть использован при данной скорости для разгона, преодоления дополнительного дорожного сопротивления (например, подъема) или перевозки дополнительного груза (буксировка прицепа).
Запас силы по тяге на низших передачах больше, чем на высших. Именно поэтому движение в тяжелых дорожных условиях осуществляется на низших передачах.
С помощью графика силового баланса можно решать различные задачи по оценке тягово-скоростных свойств автомобиля: определение максимальной скорости, определение максимальной силы сопротивления дороги, определение максимального преодолеваемого подъема, определение ускорения движения, определение возможности буксования ведущих колес.
Максимальная скорость vmax движения автомобиля определяется точкой пересечения кривой тяговой силы Ρт на высшей передаче и суммарной кривой сил сопротивления Рд + Рв. В этой точке запас силы по тяге и ускорение автомобиля j равны нулю, а скорость движения максимальна, так как ее дальнейшее увеличение невозможно.
Максимальная сила сопротивления дороги, преодолеваемая автомобилем при движении равномерно с любой скоростью, определяется как: Pд max = Pт – Рв = Pд + Pз.
Для нахождения максимального подъема, преодолеваемого автомобилем при постоянной скорости на любой передаче, необходимо нанести на график суммарную кривую сил сопротивления качению и воздуха Рк + Pв и определить максимальную силу сопротивления подъему: Рп max=Pт – (Рк +Pв).
Зная эту силу, можно найти максимальный угол подъема αmax.
Для нахождения ускорения, которое может развить автомобиль на заданной дороге при любой скорости, нужно определить силу сопротивления разгону Ри = Pт – (Рд + Pв) = Рз, а затем можно найти ускорение, которое способен развить автомобиль при выбранной скорости движения
Для оценки возможности буксования находят силу сцепления Рсц колес с дорогой при известном коэффициенте φх и значение силы сцепления откладывают на оси ординат, а на этом уровне проводят горизонталь.
При Рсц Рт (область ниже Рсц) выполняется условие отсутствия буксования. Следовательно, при полной нагрузке двигателя безостановочное движение автомобиля без пробуксовки ведущих колес невозможно лишь на I передаче. Для движения без буксования на I передаче необходимо уменьшить подачу топлива, т.е. – тяговую силу на ведущих колесах.
Силовой баланс автомобиля.
Сила тяги на ведущих колесах расходуется на преодоление сил сопротивления дороги, воздуха и инерции.
Уравнение движения автомобиля решают, приближенно используя графоаналитические методы. Наибольшее распространение получили методы
силового баланса, мощностного баланса и динамической характеристики.
Уравнение силового баланса имеет вид:
где Pт – тяговая сила на ведущих колесах автомобиля, Н;
Рд – сила сопротивления дороги, Н;
Pв – сила сопротивления воздуха, Н;
Pи – приведенная сила инерции, Н.
Сила сопротивления дороги
где ψ – коэффициент сопротивления дороги;
Ga – вес автомобиля Н.
Коэффициент сопротивления дороги характеризует дорогу в общем случае:
При малых углах подъема (не превышающих 5 º ), характерных для большинства автомобильных дорог с твердым покрытием, коэффициент сопротивления дороги
где f – коэффициент сопротивления качению колес;
Коэффициент f сопротивления качению колес растет с увеличением скорости движения автомобиля, его определяют как
(2.8)
V – скорость автомобиля,м/с.
На практике лобовую площадь определяют по эмпирическим формулам, дающим небольшую погрешность:
Приведенная к колесам автомобиля сила инерции (Ри).
При установившемся прямолинейном движении автомобиля j=0.
Следовательно Pи = 0.
Суммарное сопротивление движению автомобиля: PΣ = Pд + Рв.
Подставляя в (2.8) и (2.10) значения скорости V, рассчитывают Pд, Рв и PΣ (таблица 2.4).
Таблица 2.2 Расчетные значения Pд, Рв и PΣ. | |
V | м/с |
км/ч | |
Pд,H | |
Pв,H | |
PΣ, H |
Пo полученным значениям Pд, Pв и PΣ на тяговой характеристике Pт(V) строится зависимость Pд (V), Рв (V), PΣ(V) (рисунок 2.1).
В нижней части графика наносят кривую Рд построенную для одного значения коэффициента сопротивления дороги ψ.
При помощи полученного графика силового баланса можно определить основные показатели динамичности автомобиля при движении.
График РΣ(V) определяет величину тяговой силы необходимой для равномерного движения автомобиля в заданных дорожных условиях.
Рис.2.1 Тяговый баланс автомобиля
Если кривая Pт проходит выше кривой Pд + Рв то отрезки, заключенные между этими кривыми, представляют собой нереализованную часть («запас») Pз силы тяги, которую можно использовать для преодоления повышенного сопротивления дороги или для разгона автомобиля. Если Pт
Возможность движения автомобиля может быть ограничена буксованием ведущих колес. Автомобиль движется без буксования, если сила тяги на ведущих колесах меньше, чем сила их сцепления с дорогой, т.е.:
Рт Рсц, ведущие колеса будут пробуксовывать.
Силу Pсц сцепления ведущих колес при движении автомобиля по горизонтальной дороге можно определить как
φ- коэффициент продольного сцепления колеса с дорогой.
По изученному материалу и полученным данным составить отчет, который должен содержать:
1.Дату выполнения работы;
2.Тему и цель работы;
3. Ф.И.О. студента и группа;
4. Необходимые исходные данные согласно варианту задания;
5. Краткие теоретические положения и пояснения к расчетам;
Устройство автомобилей
Силовой баланс автомобиля
Силы, действующие на автомобиль при прямолинейном движении
Прямолинейным движением автомобиля будем считать его равномерное или ускоренное движение по горизонтальной или наклонной прямой дороге (без виражей и поворотов). В этом случае на автомобиль действуют следующие силы:
На рисунке 1 представлены все эти силы с учетом их направления по отношению к направлению движения автомобиля.
Для дальнейших теоретических выкладок примем следующие условия (допущения):
Сила тяги Рт подробно рассмотрена в предыдущей статье. При принятых выше условиях не имеет значения, сколько колес автомобиля являются ведущими и сколько ведомыми.
Сила сопротивления качению
Силой сопротивления качению автомобиля Pj называется сумма сил сопротивления качению всех его колес. В реальных условиях сопротивление качению отдельных колес автомобиля не бывает одинаковым даже при движении автомобиля по дороге с твердым покрытием.
На деформируемых грунтах любое сопротивление качению задних колес, движущихся по уже уплотненному грунту, значительно меньше, чем для передних. Для решения теоретических задач сопротивление качению определяется для автомобиля в целом.
На сопротивление качению влияют:
Нормальная нагрузка обусловлена полным весом автомобиля и влияет на сопротивление качению непосредственно, поскольку реакции дорожного покрытия или грунта можно считать пропорциональными нормальной нагрузке.
Потери, связанные с деформацией резины в шине (гистерезисные потери) зависят от радиальной деформации шины. Эти потери возрастают при увеличении нагрузки.
Кроме того, рост нормальной нагрузки приводит к увеличению удельного давления, а следовательно, и сопротивлению качения.
Дорожное покрытие оказывает существенное влияние на силу сопротивления качению колес Pf в случае, если оно не является твердым. Величина этой силы определяется работой прессования и выдавливанием в стороны грунта при погружении в него колес.
Удельное давление на грунт – это нормальная нагрузка на единицу площади опорного участка шины и может быть определено по формуле:
где cq – коэффициент, определяемый жесткостью каркаса шины, cq = 1 + p0 ;
p0 – давление воздуха в шинах.
Большое значение имеют конструкция и состояние шин, их число и диаметр, а также рисунок протектора, форма и расположение грунтозацепов.
При изношенном протекторе уменьшается сопротивление качению, но при этом резко ухудшаются сцепные качества шины с дорогой.
Для эксплуатационных расчетов принимаются два допущения:
Тогда сила сопротивления качению может быть выражена через нормальную нагрузку (или равную ей реакцию грунта Rz ) и коэффициент пропорциональности, называемый коэффициентом сопротивления качению f :
Коэффициент сопротивления качению f зависит от характера и состояния дорожного покрытия. Так, для асфальта, бетона или асфальтобетона он равен 0,1…0,3, для укатанной сухой грунтовой дороги – 0,02…0,03, для разбитой мокрой грунтовой дороги – 0,1…0,25, для обледенелой дороги – 0,01…0,03 и т. д.
Влияние скорости движения на коэффициент f сопротивления качению учитывает эмпирическая формула:
где f0 – коэффициент сопротивления качению при движении автомобиля со скоростью менее 15 м/с;
v – скорость автомобиля.
Сила тяжести и сопротивление движению
Масса снаряженного автомобиля – масса автомобиля без груза, полностью заправленного топливом, смазочными материалами и охлаждающей жидкостью, с запасным колесом, инструментом и оборудованием.
Полная масса автомобиля включает в себя еще массу водителя и груза по номинальной грузоподъемности (для грузового автомобиля) или по номинальной пассажировместимости (для автобусов и легковых автомобилей).
В расчетах обычно принимается полная масса.
Положение центра масс определяется у двухосного автомобиля расстояниями l1 и l2 до геометрических осей вращения колес соответственно переднего и заднего мостов. У трехосного автомобиля l2 – расстояние от центра масс до оси балансира задней тележки.
Расстояние L = l1 + l2 называют базой автомобиля.
При движении автомобиля по наклонному участку дороги с углом подъема α сила тяжести раскладывается на две составляющие:
Сила сопротивления качению и сила сопротивления подъему зависят от дорожных условий, так как коэффициент сопротивления качению f и угол подъема дороги α в совокупности определяют качество дороги, поэтому можно ввести такое понятие, как сила сопротивления дороги:
При движении автомобиля по наклонной дороге сила сопротивления качению определится из соотношения:
Получим следующую формулу для вычисления силы сопротивления дороги:
Выражение в скобках называется коэффициентом сопротивления дороги и обозначается ψ :
Тогда сила сопротивления дороги:
Сила инерции
Сила инерции (или сила сопротивления разгону) при поступательном движении автомобиля может быть определена из соотношения:
где j – ускорение автомобиля, m – масса автомобиля.
С учетом коэффициента δвр уравнение (1) будет иметь вид:
Значение коэффициента δвр определяется по формуле:
где jм – момент инерции маховика; ηтр – КПД трансмиссии; iтр – передаточное число трансмиссии; jк – суммарный момент инерции всех колес автомобиля; m – масса автомобиля; r – радиус колеса.
Энергия, затрачиваемая на разгон деталей двигателя на прямой передаче, в два-три раза, а на низших передачах в восемь-десять раз больше энергии, расходуемой на разгон колес.
В случае, если точное значение моментов инерции маховика и колес неизвестно, то коэффициент учета вращающихся масс δвр определяют по эмпирической формуле:
где δ1 ≈ δ2 от 0,03 до 0,05; mа – масса автомобиля с полной нагрузкой; m – фактическая масса автомобиля.
При движении автомобиля с отключенной от двигателя трансмиссией коэффициент учета вращающихся масс может быть приближенно определен по формуле:
Сила сопротивления воздуха
Как и всякое тело, перемещающееся в воздушной среде, автомобиль со стороны атмосферного воздуха испытывает сопротивление движению, которое обуславливается двумя факторами: трением, возникающим в пограничных с поверхностью автомобиля слоях воздуха, и вихреобразованием в окружающих его потоках.
Движущийся автомобиль увлекает за собой непосредственно прилегающий к нему слой воздуха, который взаимодействует на соседний с ним слой и т. д., увлекая его за собой. Скорость каждого последующего слоя воздуха меньше, чем предыдущего, что и вызывает силы трения между слоями. Чем выше скорость движения автомобиля, тем большие массы воздуха будут увлекаться в движение, и тем больше суммарная сила трения, возникающая между слоями и поверхностью автомобиля.
Однако при скоростях, с которыми передвигаются автомобили, сопротивление, вызываемое трением в пограничных с автомобилем слоях очень мало, и им можно пренебречь в большинстве расчетов.
Образование вихревых потоков можно представить, предположив, что на неподвижный автомобиль направлен с достаточной скоростью поток воздуха. Ударяясь о лобовую поверхность кабины и кузова автомобиля, струи воздуха изменяют направление своего движения (рис. 1). При этом чем менее обтекаемую форму имеет автомобиль, тем интенсивнее и объемнее будут вызываемые им завихрения воздушных струй.
В результате вихреобразования возникает разрежение воздуха сзади автомобиля, тогда как перед ним воздух уплотняется, вследствие чего создается разность давлений воздуха впереди и сзади автомобиля.
Сопротивление воздуха при вихреобразовании зависит от площади поперечного сечения автомобиля (лобовой проекции), и особенно от его формы.
Усилению вихреобразования способствует наличие выступающих частей, прямых углов и резких переходов в профильной проекции автомобиля. Обтекаемые формы современных легковых, и особенно – гоночных автомобилей, существенно снижают сопротивление воздуха, вызываемое вихреобразованием.
Сопротивление воздуха при проектировании кузовов автомобилей определяют чаще всего опытным путем с помощью аэродинамической трубы, которая позволяет получить равномерный прямолинейный установившийся воздушный поток заданной скорости и даже температуры. В аэродинамической трубе можно не только исследовать обтекаемость автомобиля, но и определить эффективность очистки ветрового стекла и ряд других параметров, связанных с воздействием воздушного потока на автомобиль.
Для расчета силы сопротивления воздуха Pω аналитическими методами можно использовать формулу, полученную опытным путем (эмпирическая зависимость), которая справедлива для всех скоростей автомобиля, кроме самых малых:
где ρ – плотность воздуха;
c – коэффициент сопротивления воздуха, зависящий от формы автомобиля;
F – площадь лобового сопротивления, т. е. площадь проекции автомобиля на плоскость, перпендикулярную направлению движения;
v – скорость автомобиля.
Считая, что плотность ρ воздуха в реальных условиях движения автомобиля величина относительно постоянная, вводят понятие коэффициента kω обтекаемости автомобиля, который тоже можно считать постоянной величиной:
Тогда формула (3) примет вид:
Значения коэффициента обтекаемости зависят от формы кузова. Так, например, для автобусов капотной компоновки он равен 0,45…0,55, для автобусов вагонной компоновки – 0,35…0,45, для легковых автомобилей – 0,2…0,35, для гоночных автомобилей – 0,15…0,2 и т. д.
Площадь лобового сопротивления с достаточной степенью точности (погрешность не более 10%) можно определить по следующим зависимостям:
При расчетах силы сопротивления воздуха Pω важно определить место приложения данной силы, так называемый центр парусности.
Точное положение центра парусности автомобиля определяется опытным путем в аэродинамической трубе. Для приблизительных расчетов принимают высоту положения центра парусности равной половине высоты автомобиля, а его расположение по горизонтали – на оси симметрии лобовой проекции автомобиля.
При скоростях выше 100…120 км/ч со стороны воздушных потоков на автомобиль начинает действовать так называемая подъемная сила, имеющая аэродинамическую природу, направленная вертикально вверх и стремящаяся оторвать автомобиль от поверхности дороги.
Это негативное явление приводит к потере устойчивости и управляемости автомобиля, и связано с тем, что под днищем автомобиля, благодаря его плоской форме, скорость потока воздуха ниже, а давление в воздушном потоке выше, чем над автомобилем, где, благодаря ускорению воздушных масс из-за криволинейной формы кузова автомобиля, давление снижается. В результате на автомобиль начинает действовать подъемная сила, аналогичная подъемной силе, действующей на крыло самолета.
У спортивных автомобилей благодаря специальной форме кузова и использованию аэроэлементов (антикрыло) эту силу направляют вниз, увеличивая сцепление колес с дорогой.
Силы, возникающие при буксировке прицепов
Сила сопротивления воздуха для прицепа в приближенных расчетах не учитывается, так как она прилагается к центру парусности тягача. Кроме того, автопоезда не передвигаются на больших скоростях, когда сила сопротивления воздуха достигает существенных значений.
Нормальная реакция дороги
Нормальная реакция дороги Rz не совершает ни полезной работы, ни работы сопротивления движению, поскольку направлена перпендикулярно направлению движения автомобиля. Однако при изучении тягово-скоростных свойств автомобиля их необходимо учитывать, поскольку Rz определяет силы сопротивления качению и сцепление колес с опорной поверхностью (дорогой).
Нормальные реакции необходимы при оценке таких эксплуатационных свойств автомобиля, как торможение, управляемость, устойчивость и проходимость, а также при расчетах мостов.
Сила тяжести G автомобиля распределяется по всем его колесам, и со стороны дороги действуют соответствующие нормальные реакции на каждое колесо. При этом равномерное распределение массы автомобиля на его колеса хотя и могут иметь место, но в порядке исключения. Поэтому на разные колеса автомобиля действуют разные по величине нормальные реакции, в соответствии с распределением нагрузки на оси и мости, а также на каждое колесо.
где L – расстояние между осями автомобиля.
Во время движения нормальные реакции дороги изменяются под действием различных сил и моментов. На рис. 2,б показана схема сил, действующих на автомобиль при его разгоне и на подъеме. Расчетным путем можно доказать, что нормальнее реакции дороги на передние колеса уменьшаются, а на задние увеличиваются с ростом крутизны подъема, интенсивности разгона, а также с увеличением силы сопротивления воздуха движению автомобиля.
Во время разгона автомобиля предельные значения коэффициентов составляют:
mp1 от 0,55 до 0,7; mp2 от 1,2 до 1,35, т. е. во время разгона нагрузка на передний мост уменьшается, а на задний увеличивается по сравнению с нагрузками в статическом положении.
При торможении автомобиля наблюдается обратное явление. Это объясняется тем, что при разгоне автомобиль как бы «приседает» на задние колеса, а при торможении испытывает «кивок» вперед.
9 Уравнение силового баланса
8.1. Силовой баланс автомобиля
8.2. Силовой баланс автомобиля при различной нагрузке
8.3. Динамические факторы автомобиля
8.4. Динамическая характеристика автомобиля
8.1. Силовой баланс автомобиля
Представим уравнение движения автомобиля в следующем виде:
Рекомендуемые файлы
В такой форме оно называется уравнением силового баланса автомобиля и выражает соотношение между тяговой силой на ведущих колесах и силами сопротивления движению.
На основании уравнения (8. 1) строится график силового баланса, позволяющий оценивать тягово-скоростные свойства автомобиля.
При построении графика силового баланса (рис. 8.1) сначала строят тяговую характеристику автомобиля. Затем наносят зависимость силы сопротивления дороги от скорости. Если коэффициент сопротивления дороги — постоянная величина, то указанная зависимость представляет собой прямую линию, параллельную оси абсцисс, а при непостоянном коэффициенте сопротивления дороги — кривую параболической формы. После этого от кривой, характеризующей силу сопротивления дороги, откладывают вверх значения силы сопротивления воздуха при различных скоростях движения. Полученная зависимость называется графиком силового баланса автомобиля.
Кривая суммарного сопротивления дороги и воздуха РД + РВ определяет тяговую силу РТ, необходимую для движения автомобиля с постоянной скоростью. При любой скорости движения отрезок Р3, заключенный между кривыми РТ (на рис. 8.1 — РтШ) и РД + РВ, характеризует запас силы по тяге. Он может быть использован при данной скорости для разгона, преодоления дополнительного дорожного сопротивления (например, подъема) или перевозки дополнительного груза (буксировка прицепа). При одной и той же скорости движения запас силы по тяге на низших передачах больше, чем на высших. Следовательно, при увеличении передаточного числа трансмиссии запас силы по тяге возрастает. Именно поэтому движение в тяжелых дорожных условиях осуществляется на низших передачах.
Рис. 8.1. График силового баланса автомобиля:
•PTI, РТII, РТIII — тяговые силы на I, II, III передачах, PTI — тяговая сила на I передаче при уменьшенной подаче топлива; v1, — одно из возможных значений скорости автомобиля
С помощью графика силового баланса можно решать различные задачи, связанные с изучением тягово-скоростных свойств автомобиля. Рассмотрим некоторые из этих задач.
Определение максимальной скорости. Максимальная скорость vmax движения автомобиля определяется точкой пересечения кривой тяговой силы РТ на высшей передаче и суммарной кривой сил сопротивления РД + РВ. В этой точке запас силы по тяге и ускорение автомобиля j равны нулю. Скорость его движения максимальна, так как ее дальнейшее увеличение невозможно.
Определение максимальной силы сопротивления дороги.
Максимальная сила сопротивления дороги, которую преодолевает автомобиль, двигаясь равномерно с любой скоростью, определяется как разность тяговой силы и силы сопротивления воздуха:
Определение максимального преодолеваемого подъема.
Для нахождения максимального подъема, который может преодолеть автомобиль при заданной постоянной скорости на любой передаче, необходимо нанести на график суммарную кривую сил сопротивления качению и воздуха РK + РВ и определить максимальную силу сопротивления подъему:
Зная эту силу, можно найти максимальный угол подъема αmах.
Определение ускорения движения. Для нахождения ускорения, которое может развить автомобиль на заданной дороге при любой скорости, нужно определить силу сопротивления разгону:
Зная значение этой силы, можно найти ускорение, которое способен развить автомобиль при выбранной скорости движения на заданной дороге.
Определение возможности буксования ведущих колес. С этой целью находят силу сцепления Рсц колес с дорогой при известном коэффициенте сцепления РТ. Следовательно, при полной нагрузке двигателя (при полной подаче топлива) безостановочное движение автомобиля без пробуксовки ведущих колес невозможно лишь на I передаче. Для движения без буксования ведущих колес на I передаче необходимо уменьшить подачу топлива и, следовательно, тяговую силу на ведущих колесах (см. кривую Р’T1 на рис. 8.1).
8.2. Силовой баланс автомобиля при различной нагрузке
Практическое применение рассмотренного выше силового баланса автомобиля затруднительно, так как для определения показателей тягово-скоростных свойств необходимо построить отдельные графики для разных значений нагрузки на автомобиль. Это связано с тем, что при изменении нагрузки сила сопротивления дороги РД и суммарная сила сопротивления дороги и воздуха РД + РВв изменяются и для их вычисления требуются дополнительные затраты времени.
Более универсальным является рассмотренный ниже метод силового баланса автомобиля при различной нагрузке. В этом случае строится только один график силового баланса для всех эксплуатационных нагрузок автомобиля.
В основу метода силового баланса автомобиля при различной нагрузке положено уравнение его движения (8.20), представленное в следующем виде:
где — свободная тяговая сила.
Безостановочное движение автомобиля возможно при выполнении условияавтомобиль движется без буксования ведущих колес в том случае, если
Для оценки тягово-скоростных свойств при различной нагрузке на автомобиль строится график его силового баланса (рис. 8.2).
Методика построения графика силового баланса такова:
• строят тяговую характеристику автомобиля
• на график тяговой характеристики наносят кривые свободной тяговой силы Рсв для различных передач;
• слева от графика тяговой характеристики автомобиля строят вспомогательный график для определения коэффициента сопротивления дороги ψ. С этой целью ось абсцисс продолжают влево и на нее в произвольном масштабе наносят шкалу коэффициента сопротивления дороги ψ;
• справа от графика тяговой характеристики автомобиля строят вспомогательный график для определения коэффициента сцепления колес с дорогой φх. Для этого ось абсцисс продолжают вправо и на нее в произвольном масштабе наносят шкалу коэффициента сцепления φх;
• из начала координат вспомогательных графиков проводят лучи, соответствующие различным значениям нагрузки на автомобиль.
Рис. 8.2. График силового баланса автомобиля при различной
Для определения углов наклона лучей нагрузки на левом вспомогательном графике задают какое-либо значение свободной тяговой силы Рсв, откладывают это значение на оси ординат и проводят горизонтальную прямую. Затем по формуле
находят значения коэффициента у для разных нагрузок (Н = 0 % при G = G0;
Н = 100 % при G = G а и т.д., где G — вес автомобиля при заданной нагрузке Н, представляющей собой долю груза, %, который может быть перевезен на данном автомобиле; G0 — вес снаряженного (порожнего) автомобиля; Gа, — вес автомобиля при полной нагрузке). Из точек, соответствующих найденным значениям коэффициента у, проводят вертикали до пересечения с горизонтальной линией, проходящей через точку, отвечающую выбранному значению свободной тяговой силы Рсв. Полученные точки пересечения соединяют с началом координат левого вспомогательного графика и у каждого луча указывают соответствующее значение нагрузки на автомобиль, % или пасс.
Для определения углов наклона лучей нагрузки на автомобиль на правом вспомогательном графике задают какое-либо значение тяговой силы РТ, откладывают это значение на оси ординат и проводят горизонтальную линию. Затем по формуле
находят значения коэффициента сцепления для разных нагрузок (Н = 0 % при — максимальная скорость автомобиля для конкретных дорожных условий
Так, например, точка Dv, соответствующая значению динамического фактора при максимальной скорости vmах, определяет коэффициент сопротивления дороги ψv, которое может преодолеть автомобиль при этой скорости, а ординаты точек максимума кривых динамического фактора представляют собой максимальные значения коэффициента сопротивления дороги, преодолеваемого на каждой передаче.
С помощью динамической характеристики можно решать различные задачи по определению тягово-скоростных свойств автомобиля. Рассмотрим некоторые из этих задач.
Определение максимальной скорости движения автомобиля при заданном коэффициенте сопротивления дороги у. На оси ординат откладываем значение коэффициента сопротивления дороги ψ, характеризующее данную дорогу, и проводим прямую, параллельную оси абсцисс, до пересечения с кривой динамического фактора D. Точка пересечения и будет соответствовать максимальной скорости, которую может развить автомобиль при заданном коэффициенте сопротивления дороги ψ.
Определение максимального подъема, преодолеваемого на дороге с заданным коэффициентом сопротивления качению f Для нахождения максимального подъема, который может преодолеть автомобиль при постоянной скорости на любой передаче на дороге с коэффициентом сопротивления качению f на оси ординат откладываем значение коэффициента f и проводим прямую, параллельную оси абсцисс. Разность между максимальным значением динамического фактора Dmax на любой передаче и значением коэффициента f соответствует максимальному подъему, преодолеваемому на выбранной передаче:
Определение максимального ускорения автомобиля при заданном коэффициенте сопротивления дороги у. Для нахождения максимального ускорения jmax, которое может развить автомобиль на любой передаче, необходимо найти разность между максимальным значением динамического фактора на выбранной передаче и
Определение возможности буксования ведущих колес. При решении данной задачи необходимо сопоставить динамические факторы по тяге и сцеплению. С этой целью определяют значение динамического фактора по сцеплению для заданного коэффициента сцепления φх. Найденное значение откладывают на оси ординат и проводят горизонтальную прямую.
В области, расположенной над проведенной прямой, Dcц _______ динамический фактор по тяге при разных нагрузках;———-динамический фактор по сцеплению при разных коэффициентах продольного сцепления
При построении номограммы нагрузок на автомобиль ось абсцисс его динамической характеристики продолжают влево и на ней в произвольном масштабе откладывают значения нагрузки на автомобиль, % (для грузовых автомобилей) или пасс, (для легковых автомобилей и автобусов). Из точки, соответствующей нулевой нагрузке, проводят вертикаль, на которой откладывают значения динамического фактора по тяге D0 для снаряженного автомобиля (без груза или без пассажиров) в масштабе, определяемом по формуле— динамический фактор по тяге для автомобиля с полной нагрузкой;
— вес соответственно снаряженного автомобиля и автомобиля с полной нагрузкой.
Затем сплошными линиями соединяют одинаковые значения динамических факторовна осях ординат снаряженного и полностью груженого автомобилей.
График контроля буксования строят на номограмме нагрузок автомобиля. С помощью этого графика сопоставляют динамические факторы по тяге D и сцеплению D.cц с целью определения возможности буксования ведущих колес при различных нагрузках на автомобиль.
Для построения графика контроля буксования сначала рассчитывают динамические факторы по сцеплению при разных нагрузках на автомобиль. При этом используют следующие выражения:
Лекция «15 Свойства вероятности» также может быть Вам полезна.
(8.3)
где D0cц и Dаcц — динамические факторы по сцеплению соответственно снаряженного автомобиля и автомобиля с полной нагрузкой;— вес соответственно снаряженного и полностью груженого автомобилей;
— вес, приходящийся на ведущие колеса соответственно снаряженного и полностью груженого автомобилей;
φх — коэффициент продольного сцепления (φх = 0,1. 0,8).
Последовательно подставляя значения коэффициента сцепления φх в выражения (8.3), определяют динамические факторы по сцеплению D0cц и Dаcц Найденные значения динамических факторов по сцеплению откладывают на вертикалях D0 и Dа номограммы нагрузок в том же масштабе, что и динамические факторы по тяге, и их одинаковые значения соединяют штриховыми линиями, над которыми указывают соответствующие значения φх.
При решении задач по оценке тягово-скоростных свойств автомобиля из четырех параметров — скорости автомобиля v, нагрузки на автомобиль Н, коэффициентов сопротивления дороги ψ и сцепления колес с дорогой φх — можно определить два любых параметра по двум другим заданным. При этом найденные значения коэффициента сопротивления дороги ψ будут максимально возможными, а значения коэффициента сцепления φх — минимально необходимыми для движения автомобиля при различных нагрузках.