увеличение массы мышц в результате тренировки может наследоваться
Полнею от тренировок: основные причины набора веса в спортзале
Занимаетесь в спортзале или дома, чтобы сбросить вес, но цифра на весах растет? Это значит, что пришло время пересмотреть свой подход к питанию и питьевому режиму. Впрочем, в некоторых случаях увеличившийся от тренировок вес — радостный повод.
Основные причины набора килограммов в спортзале помогал разбирать Максим Кузнецов, фитнес-тренер.
Набор мышечной массы
«Набор массы при занятиях спортом — явление распространенное, — поясняет тренер. — Причина в том, что на фоне тренировок жировая ткань замещается мышечными волокнами. Мышцы тяжелее жировых отложений, поэтому вес человека растет. Огорчаться по этому поводу не надо. Это тот редкий случай, когда набор веса идет на пользу».
Если у вас нет проблем с лишним жиром, то надо просто отпустить ситуацию, наслаждаться новым телом и появившимся рельефом. Главное, что вы нравитесь себе в зеркале, вес в этом случае неважен.
«Вес — не показатель успеха, — отмечает Максим Кузнецов. — Не ориентируйтесь на цифры при взвешивании, а наблюдайте за изменениями в теле».
Обезвоживание организма и отеки
Во время тренировок можно потерять огромное количество воды. Например, человек весом 80-90 килограммов на 10-километровой пробежке вместе с потом теряет один килограмм веса. Эту потерю обязательно необходимо восполнить (пить во время бега), иначе в будущем такие занятия могут привести к отекам.
«Если вовремя не пополнять организм водой, это приведет к нарушению водно-солевого баланса, — поясняет Максим Кузнецов. — В этом случае уровень антидиуретического гормона, отвечающего за водный баланс, повысится, а это может способствовать набору веса и отекам. Гормон будет стараться сохранять жидкость в теле, т.к. ее поступает недостаточно. Конечно, после одной тренировки вес существенно не увеличится, но после нескольких занятий такое может произойти».
Поэтому у многих спортсменов популярны мочегонные препараты. Они на время нормализируют водный баланс, но дают кратковременный эффект и часто вредят здоровью, особенно, когда человек впадает в зависимость от диуретиков.
«Выход один, надо пить достаточно жидкости на тренировках, — уверен инструктор. — Так выработка гормонов и водно-солевой баланс будут в норме».
Как только почувствуете жажду — сразу сделайте два-три глотка. Пусть вы будете пить воду на занятиях часто, но такой режим лучше, чем залпом выпить пол-литра воды один раз за тренировку.
Сочетание тренировки и низкокалорийной диеты
Тренируетесь для того, чтобы сбросить вес, но при этом еще сидите на диетах, сокращая количество калорий? У вас все шансы набрать лишние килограммы или оставаться в бесконечном плато веса.
Но, казалось бы, диета и тренировка — идеальное сочетание. Однако проблема в том, что после спортивной нагрузки организму не хватает энергии для восстановления и брать ее не откуда, потому что человек недоедает. Появляется сильный голод и ему трудно противостоять.
В этом случае есть два пути. Первый: организм снижает метаболизм в попытке хоть как-то сохранить жизненные силы. В этом случае вес будет стоять на месте в бесконечном плато.
Второй путь: человек сорвется с диеты и тогда организм с лихвой наверстает упущенное, старательно сохраняя съеденное в жировые отложения. Как итог, вес вырастет. И от этих килограммов будет очень сложно избавиться, напуганный голодом организм так просто ничего не отдаст.
Фитнес-тренер напоминает, что процесс избавления от лишнего веса на 70-80 процентов зависит от рациона и только на 20-30 процентов от физических нагрузок.
Злоупотребление белками и углеводами
Многие новички считают, что жир быстрее уйдет, если есть белок. Понятно, что белок — важная часть спортивного рациона, но злоупотреблять им нельзя.
«Много белка в рационе — это нагрузке на почки, через которые выводится и вода, — объясняет Максим Кузнецов. — Сбой в работе этого органа приводит к накоплению жидкости в организме».
Кроме этого, большое количество белка может затруднять работу кишечника. Чтобы это не случилось, включайте в питание клетчатку: цельнозерновые каши и хлеб, орехи, овощи и т.д.
Стандартно для спортсменов потреблять 1,2-1,5 грамма белка на один килограмм массы тела. Если решено увеличить мышечную массу, объем потребления белка должен вырасти на 20-30 процентов.
Еще одна ошибка тренирующихся — налегание на углеводы, например, сладкие батончики, т.к. в них много энергии.
«Такие углеводы действительно нужны, но профессиональным спортсменам, — комментирует Кузнецов. — Если ваша тренировка длится менее часа или она не активная, углеводы не нужны».
Соблюдайте режим питания и питья
Рацион человека при большой физической нагрузке должен быть полноценным. Заниматься спортом на голодный желудок нельзя — обязательно завтрак до тренировки. Далее между приемом пищи и тренировкой должно пройти не менее двух-трех часов.
После занятий важно пить. Желательно выпивать столовую или минеральную (слабой минерализации) воду или специальные спортивные напитки. Это восстановит водно-солевой баланс.
Через 20—30 минут после тренировки можно будет съесть один фрукт. Разрешены яблоки, груши, банана. Основательно поесть можно не ранее, чем через час после занятий.
Максим Кузнецов также советует приобрести гаджеты, которые показывают количество жировой и мышечной ткани, жидкости в организме. Также можно периодически делать биоимпедансный анализ состава тела — это анализ количества жира и жидкости в организме, мышечной и костной массы, определение метаболизма.
Дополнительные источники:
Увеличение массы мышц в результате тренировки может наследоваться
На протяжении многих лет изучение процессов синтеза белков в скелетных мышцах при выполнении различных физических нагрузок остаётся актуальной проблемой биохимии и физиологии. Мышцы и их силовые характеристики очень важная составляющая организма каждого спортсмена, которая позволяет достигать результатов. В связи с прогрессивным развитием спорта и вовлечением большого количества людей в физическую культуру, тема здоровья спортсменов становится все более актуальной, интересной и увлекательной. Учитывая существующую сильную корреляцию между площадью поперечного сечения мышц и мышечной силой, стремление увеличить мышечную массу тела есть у каждого человека, занимающегося спортом. Кроме этого, необходимо помнить, что преобладание мышечной массы в организме благоприятно влияет на метаболические процессы.
Скелетная мышца – одна из наиболее пластичных структур в организме млекопитающих. При повышенной активности и нагрузке часто происходит увеличение её размеров, объёмов миофибриллярного аппарата, повышение сократительных возможностей (силы, мощности). Процесс прироста мышечной массы зависит от различных факторов: наследственных, конституциональных, а также пола, возраста, метаболизма, гормонального фона. Кроме того, с приобретением опыта тренировок становится все труднее увеличить мышечную массу, поэтому важно понимать и активно использовать все возможные механизмы этого процесса.
Клетки поперечно-полосатой мускулатуры отличаются от гладкомышечных миоцитов. Клетки скелетных мышц образуют многоядерный синцитий, основное вещество которого формируют миофибриллы, состоящие из толстых и тонких миофиламентов. Первый тип образуют молекулярные единицы и миозин, а второй тип содержит тропомиозин с тропонином и F-актин. Многие авторы считают скелетную мускулатуру гетерогенной системой относительно устройства и выполняемых функций, несмотря на её строгую организацию. Данное свойство помогает мышцам соответствовать возлагаемой на них функции. Так путём изменения количества саркомеров и миофибрилл обеспечивается их функциональная реорганизация [1].
Работа мышц проявляется их сокращением, которое начинается с появления очага возбуждения на нейромышечных окончаниях. Наружная мембрана деполяризуется, открываются кальциевые каналы, и концентрация кальция внутри клетки возрастает. Ионы кальция связываются с тропонином, при этом конформируется тропониновый комплекс. Участки цепей миозина связываются с актином, что сопровождается высвобождением энергии вследствие расщепления АТФ до АДФ и остатка фосфорной кислоты. Угол между лёгкой и тяжёлой цепями миозина изменяется и актиновый филамент перемещается к центру саркомера, что приводит к изменению длины мышцы, её сокращению [1, 2].
Клетки скелетных мышц подразделяются на два типа:
А) Миосателлиты – взрослые стволовые клетки мышечной ткани. Представляют собой основу для обновления мышц и прироста их массы;
Б) Миосимпласты – формируют многоядерный синцитий. Сами по себе являются мышечными тубами с миофибриллами внутри, по периферии которых располагаются ядра.
Нагрузки, оказываемые на мышцы, и само мышечное сокращение имеют некую зависимость. Предполагается, что первое будет напрямую соответствовать второму. Это достигается за счёт усиления экспрессии генов сократительных белков и энзимов обменных процессов. Мышечная активность сопровождается количественными и качественными изменениями в миоцитах того типа, которые необходимы для наиболее эффективного осуществления выполняемой работы [2].
Мышечные волокна делятся на медленные (I тип) и быстрые (II тип). Оба этих типа имеют различный состав, включающий в себя сократительные белки, ферменты энергетического обмена и внутриклеточный кальций.
Увеличение силы мышц проявляется структурными перестройками, которые затрагивают нервную и мышечные системы. Изменения в нервной системе проявляются трансформацией величины кортикальных полей, которые регулируют выполнение определённого вида движения, влиянием на синхронизацию моторных единиц и на обучение определенных мышц, отвечающих за выполнение данного вида движений. Таким образом, наибольшая активность мышц наблюдается именно тогда, когда она необходима для достижения максимального эффекта (активность мышц агонистов при одновременной пассивности антагонистов). Также наблюдается изменение частоты и устойчивости генерируемых импульсов и порога возбудимости мотонейронов. Изменения в мышечной системе могут быть связаны с гипертрофией скелетных мышц (увеличение размеров мышечного волокна) и с их гиперплазией (увеличение количества миоцитов) [3].
Но прежде чем переходить к последним двум процессам, необходимо разобраться с изменениями, происходящими в самих мышцах. В момент выполнения работы миоцит подвергается действию физических и гуморальных факторов (пассивные механические силы, гипоксемия, факторы роста, и т.д.). Они являются причиной запуска путей передачи сигнала внутри клеток, опосредуя транскрипцию и трансляцию генов, ответственных за синтез белков [2]. Изменения данных путей сопровождаются реорганизацией мышечных волокон, точнее их типов.
Одним из основных исходных сигналов является повышенная концентрация кальция внутри клетки и кальцинейрина. Кальцинейрин дефосфорилирует факторы транскрипции – NFAT (nuclear factor of activated T-cells), которые находятся в фосфорилированном состоянии [4]. Данные факторы в дефосфорилированной форме активируют гены-мишени, что способствует перестроению быстрых волокон в медленные.
По мере приспособления мышц к нагрузкам изменяются и процессы метаболизма в них. Существуют различные параметры, влияющие на формирование адаптивных механизмов в миоцитах при выполнении работы. Важнейшим является гипоксия, которая, в свою очередь активирует ферментные системы (фумараза, цитратсинтаза, ЛДГ) и запускает работу факторов транскрипции (PGC1). При недостатке кислорода происходит активация одной изоформы семейства гипоксия-индуцированных факторов (HIF; hypoxia inducible factor), которая проникает в ядро, связывается с определенным участком ДНК и активирует гены, отвечающие за гликолиз, потребление кислорода и ангиогенез, увеличивая данные процессы. Некоторые гормоны также способны влиять на экспрессию генов в мышечных клетках. Это такие гормоны, как инсулин, гормон роста, которые вместе с кортизолом запускают катаболические реакции в условиях метаболического и энергетического истощения [3].
Стоит напомнить, что мышцы не являются постоянными клетками, а заменяются в течение жизни. Пролиферация необходима для предотвращения апоптоза клеток (регулируемый процесс клеточной гибели) и поддержания массы скелетных мышц. Это осуществляется через динамический баланс между синтезом белков в мышцах и их распадом. Мышечная гипертрофия возникает тогда, когда синтез белков превышает их распад.
Что же наблюдается при гипертрофии и гиперплазии мышечного волокна? При растяжении и сокращении мышц происходит образование факторов роста IGF и MGF, которые могут действовать как паракринно, так и аутокринно. С одной стороны, их действие проявляется в увеличении синтеза сократительных белков мышечных волокон. Основным участником данного механизма является фосфорилированная PKB [5]. Её активация начинается с влияния на мышцу нагрузки, которая приводит к синтезу гена, запускающего путь IGF/PI3K. В ткани имеется несколько изоформ, некоторые из них (IGF-1 и MGF), взаимодействуя с рецепторами приводят к конформационным изменениям. Через фосфорилирование ряда рецепторов и происходит активация PKB, способствующая развитию анаболических реакций [6].
С другой же стороны, происходит усиление пролиферации миосателлитов, их митотическая активность приводит к формированию новых клеток, а также сопровождается слиянием их с имеющимися мышечными волокнами или даёт возможность формировать новые. Миосателлиты расположены между базальной мембраной и сарколеммой. Покоящиеся клетки активируются непосредственно травмированием мышцы и в ответ на это начинают активно делиться и соединяться с частями поврежденного волокна. Под влиянием тяжёлой изнурительной работы происходит также активация данных клеток из-за образования многочисленных микротравм мышечного волокна. Вследствие этого наблюдается явление подобное процессам, происходящим при воспалении. В зону повреждения активно мигрируют нейтрофилы и макрофаги, которые активируют синтез ранее упомянутых факторов роста, регулирующих пролиферацию и дифференцировку миосателлитов. Мышечная гипертрофия отличается от мышечной гиперплазии. При гипертрофии мышц, увеличиваются сократительные элементы, и межклеточный матрикс расширяется для поддержки роста. Гиперплазия приводит к увеличению количества мышечных волокон. Гипертрофия сократительных элементов может происходить путем добавления саркомеров либо последовательно или параллельно.
В отечественной литературе не утихают споры о патогенетических аспектах мышечного роста. Чаще всего гипертрофию скелетных мышц человека рассматривают как их долговременную адаптацию к физическим нагрузкам различной направленности. Но существует понятие о кратковременной гипертрофии скелетных мышц – то есть изменение объема мышцы в результате одной силовой тренировки. Спортсмены, выступающие в соревнованиях по бодибилдингу или бодифитнесу хорошо знают, что объем мышц можно немного увеличить за счет собственной крови и осмотического давления, если использовать специальный метод тренировки – пампинг.
Неоспоримым является факт увеличения объёма мышечных волокон. Это так называемая миофибриллярная гипертрофия, при которой происходит изменение объёма миофибрилл и плотность их укладки. Механизм связан с увеличением количества саркомеров в миофибриллах. Значительная роль при этом отводится активированным клеткам-сателлитам. Миогенные стволовые клетки начинают пролифелировать, а затем сливаются с существующими клетками или взаимодействуют между собой для формирования новых мышечных волокон. Этот механизм актуален при восстановлении травмированных клеток и при спортивной гипертрофии.
Существует множество данных, доказывающих идущий параллельно с этим процесс увеличения объёма несократительной части мышцы – саркоплазматическая гипертрофия. Это тонкие перестройки на биохимическом уровне клетки, а так же увеличение количества митохондрий. Многие авторы считают, что трансформации в саркоплазме повышают выносливость мышц. Ряд исследователей утверждает, что увеличение различных неконтрактильных элементов и жидкости действительно может привести к приросту мышечной массы, но без сопутствующего увеличения силы. Саркоплазматическая гипертрофия достигается специальными тренировками и часто описывается как нефункциональная. Однако ряд специалистов предполагают, что отек мышечных волокон вызывает увеличение синтеза белка и таким образом способствует росту сократительной ткани.
Эти процессы редко бывают сбалансированными и зависят от характера и интенсивности нагрузки. В скелетных мышцах при этом синтез мышечных белков преобладает над их распадом. Причиной такого метаболизма сторонники гипотезы ацидоза считают накопление молочной кислоты. С точки зрения другой теории – временная гипоксия запускает реперфузию мышц и активирует деление клеток-сателлитов. Последнее время широкое распространение получила гипотеза механического повреждения мышечных волокон. Микроразрывы сократительных белков и повреждения саркоплазмы сопровождается увеличением концентрации ионов кальция, что и стимулирует пролиферацию сателлитов.
Из этого следует, что механизмы мышечной гипертрофии известны и неоспоримы. Очень дискутабельным остается вопрос о наличии процесса гиперплазии мышц. Большинство авторов сходится во мнении, что увеличение количества мышечных волокон у человека не доказано, но при этом описывается возможность получения гиперплазии мышц в экспериментальных условиях у животных (млекопитающих и птиц). Некоторые исследователи допускают частичное увеличения числа волокон. На основании проведенного мета-анализа экспериментальных работ отмечено, что количество мышечных элементов увеличилось в экспериментах на птицах значительнее, чем при использовании в качестве подопытных млекопитающих. Примечательно также, что эффект гиперплазии наблюдался там, где использовались постоянные растяжения, а не упражнения, сочетающие его с расслаблением. Ряд исследователей (Kraemer, William J. и MacDougall J.) утверждают, что этот механизм может осуществляться под влиянием силовых тренировок. Однако доказательств увеличения мышечных волокон у людей недостаточно. Длительных исследований (более года) добровольцев и спортсменов не проводилось. Высказывается мнение, что это слишком короткий период для этого процесса. Гиперплазия подтверждается в биопсийном материале, а погрешность этого метода составляет около 10 %, что делает результат очень сомнительным.
Общее число волокон предопределяется генетически и практически не меняется в течение жизни без применения специальных стимуляторов. Российские ученые подтверждают, что вклад гиперплазии в процесс увеличения объема мышц составляет не более 5 % и, как правило, потенцирован использованием анаболических стероидов. Также гиперплазию могут вызывать блокаторы миостатина. Гормон роста при этом не вызывает гиперплазии.
Таким образом, при мышечной работе происходит множество процессов на разных уровнях. Начиная с изменений интенсивности обменных процессов и заканчивая изменениями механизмов нервной и гуморальной регуляции. Реорганизация мышц, лежащая в основе этих процессов, приводит к изменению многочисленных характеристик деятельности спортсменов.
Проанализировав все данные и изучив все возможные гипотезы, становится очевидным, что в увеличении мышечных волокон играют некую роль всё-таки два процесса. Первый – гипертрофия с ёе подвидами для сократительной и несократительной части мышцы (миофибриллярная и саркоплазматическая), которая, по мнению многих исследователей, занимает основополагающую роль. И второй это гиперплазия с её минимальным, но существенным вкладом.
Механизмы мышечной гипертрофии и их связь с силовой тренировкой
В статье рассмотрены типы мышечной гипертрофии, влияние на гипертрофию мышц деления клеток-сателлитов, гормонов, гипоксии, механического напряжения, повреждения мышц, метаболического стресса, а также переменных тренировки: интенсивности, объема, типа упражнений, интервала отдыха, работы «до отказа»и скорости выполнения упражнений.
Schoenfeld B. J. The mechanisms of muscle hypertrophy and their application to resistance training //J Strength Cond Res. 2010. V. 24. N.10 P. 2857-2872.
Бред Шёнфилд
Механизмы мышечной гипертрофии и их связь с силовой тренировкой
Аннотация
Те, кто поднимают тяжести, стремятся увеличить мышечную массу тела. Однако не хватает исследований, каким образом максимизировать рост мышц под воздействием физической нагрузки. Бодибилдеры обычно тренируются с умеренными нагрузками и довольно короткими промежутками отдыха, которые вызывают большое количество метаболического стресса. Пауэрлифтеры, наоборот, обычно тренируются с нагрузками высокой интенсивности и длительными периодами отдыха между подходами. Хотя обе группы, как известно, показывают впечатляющую мускулатуру, не ясно, какой метод лучше для гипертрофии мышц. Было показано, что многие факторы опосредуют гипертрофический процесс и что механическое напряжение, повреждение мышц, а также метаболический стресс могут играть определенную роль в вызванной физической нагрузкой гипертрофии мышц. Таким образом, цель данной работы является двоякой: (а) дать широкий обзор литературы, как о механизмах мышечной гипертрофии, так и их применении для осуществления подготовки и (б) сделать выводы из исследований какой протокол тренировки является оптимальным для максимизации роста мышц.
Ключевые слова: развитие мышц, гипертрофия мышц, рост мышцы, напряжение мышцы, повреждение мышцы, метаболический стресс.
Введение
Стремление увеличить мышечную массу тела широко преследуют те, кто поднимает тяжести. Учитывая сильную корреляцию между площадью поперечного сечения мышц и мышечной силой (111), увеличение мышечной массы является одной из главных целей спортсменов, участвующих в скоростно-силовых и силовых видах спорта, таких как футбол, регби, и пауэрлифтинг. Мышечная масса также является жизненно важной для бодибилдинга, где о соперниках судят по количеству и качеству развития мышц. В общем, гипертрофию мышц развивают также рекреационные лифтеры, которые стремятся развить свое телосложение в полной мере. Таким образом, максимизация мышечной массы имеет далеко идущие последствия для различных групп населения, связанных со спортом и здоровьем.
У нетренированных людей на начальных этапах силовой тренировки гипертрофия мышц практически отсутствует и прирост силы возникает за счет нервных влияний (124). Через пару месяцев тренировок, однако, гипертрофия мышц начинает становиться доминирующим фактором, начиная с верхних конечностей и заканчивая нижними (124, 177). На прирост мышечной массы влияют генетические предпосылки, пол, возраст и другие факторы (93). Кроме того, с приобретением опыта тренировок становится все труднее увеличить мышечную массу, поэтому увеличивается важность правильной организации тренировки.
Хотя гипертрофия мышц может быть достигнута с помощью широкого спектра программ силовой тренировки, принцип специфичности подсказывает, что некоторые программы способствуют большей гипертрофии мышц, чем другие (16). Не хватает исследований, свидетельствующих о наиболее эффективных процедурах тренировки. Бодибилдеры обычно тренируются с умеренными нагрузками и дают довольно короткие промежутки отдыха, которые вызывают большое количество метаболического стресса. Пауэрлифтеры, наоборот, обычно тренируются с большими отягощениями и дают длительный отдых между подходами. Хотя обе группы, как известно, показывают впечатляющий прирост мышечной массы, пока не ясно, какой метод лучше всего подходит для максимизации гипертрофического прироста мышечной массы (149). Таким образом, цель данной работы является двоякой: (а) дать широкий обзор литературы, как о механизмах мышечной гипертрофии и их применении к силовой тренировке (б) сделать выводы из исследований и разработать рекомендации по гипертрофии мышц.
Типы гипертрофии мышц
Мышечная гипертрофия отличается от мышечной гиперплазии. При гипертрофии мышц, увеличиваются сократительные элементы, и межклеточный матрикс расширяется для поддержки роста (187). Гиперплазия приводит к увеличению количества мышечных волокон. Гипертрофия сократительных элементов может происходить путем добавления саркомеров либо последовательно или параллельно.
Наиболее часто при гипертрофии, вызванной упражнениями, саркомеры и миофибриллы добавляются параллельно (135, 179). Когда скелетные мышцы подвергают перегрузкам, это вызывает изменения в мышечных волокнах, а также в соответствующем внеклеточном матриксе. Это устанавливает начало цепи миогенных событий что, в конечном итоге, приводит к увеличению размера и количества миофибриллярных сократительных белков: актина и миозина, и общего количества саркомеров, расположенных параллельно. Это, в свою очередь, увеличивает диаметр отдельных мышечных волокон и тем самым приводит к увеличению площади поперечного сечения мышцы (182).
Увеличение количества саркомеров, расположенных вдоль мышечного волокна, связано с маленькой длиной саркомеров (182). Гипертрофия, возникающая при увеличении количества саркомеров в миофибрилле, возникает в том случае, когда мышца вынуждена адаптироваться к новой функциональной длине. Это видно на примере конечностей, которые помещаются в гипс. Иммобилизация сустава приводит к увеличению числа саркомеров в миофибрилле, если мышца растянута и к уменьшению количества саркомеров в миофибрилле, если мышца сокращена (182). Существует ряд доказательств, что определенные типы упражнений могут повлиять на количество саркомеров в миофибриллах. Lynn и Morgan (107) показали, что, когда крысы бежали по беговой дорожке вверх, они имели меньшее количество саркомеров в миофибриллах по сравнению с теми, кто двигался вниз по дорожке. Это говорит о том, что повторные эксцентричные упражнения приводят к увеличению количества саркомеров в миофибриллах, в то время как двигательные действия в концентрическом режиме приводят к последовательному уменьшению количества саркомеров.
Предполагается, что гипертрофия может быть увеличена за счет увеличения различных неконтрактильных элементов и жидкости (108, 205). Эта концепция получила название “саркоплазматической гипертрофии”’ и может привести к большей мышечной массе без сопутствующего увеличения силы (154). Увеличение мышцы за счет саркоплазматической гипертрофии, как считается, связано со специальной тренировкой. Доказано, что мышечная гипертрофия у бодибилдеров отличается от пауэрлифтеров (179). В частности, у бодибилдеров, как правило, больше соединительно-тканного эндомизия, и большее содержание гликогена по сравнению с пауэрлифтерами (109, 177), по-видимому, из-за различий в методологии подготовки. Хотя саркоплазматическая гипертрофия часто описывается как нефункциональная, однако она вызывает отек мышечных волокон, таким образом, может опосредованно влиять на последующее увеличение синтеза белка, которое приводит к большему росту сократительной ткани.
Некоторые исследователи предполагают, что увеличение площади поперечного сечения мышцы может происходить по крайней мере частично из-за увеличения числа волокон (8). Мета-анализ, проведенный Келли (84) показал, что гиперплазия имеет место в мышцах некоторых видов животных в экспериментальных условиях в результате механической перегрузки. Увеличение числа мышечных волокон было наибольшим среди тех групп исследователей, которые изучали птиц, а не млекопитающих. И перегрузки в виде растягиваний давали более значительное увеличение числа волокон, чем упражнения. Однако последующие исследования показали, что такие наблюдения могут быть ошибочными, из-за того, что удлинение волокон считалось увеличением их количества (135). Доказательств того, что гиперплазия имеет место у людей не хватает и, даже, если это имеет место, эффект воздействия на площадь поперечного сечения мышцы минимален (1,108).
Клетки-сателлиты и гипертрофия мышц
Мышцы – это постмитотические ткани. Это означает, что они не являются постоянными клетками, а заменяются в течение жизни. Эффективный способ для клеточного восстановления нужен для того, чтобы предотвращать апоптоз клеток (регулируемый процесс клеточной гибели) и поддерживать массу скелетных мышц. Это осуществляется через динамический баланс между синтезом белков в мышцах и их распадом (69, 182). Мышечная гипертрофия возникает тогда, когда синтез белков превышает их распад.
Гипертрофия служит связующим звеном между активностью клеток-сателлитов, которые находятся между базальной мембраной и сарколеммой (66, 146). Эти «миогенные стволовые клетки» обычно неподвижны, но становятся активными, когда на скелетные мышцы воздействует достаточное количество механических стимулов (187). Однажды пробужденные, клетки-сателлиты пролифелируют (делятся), после чего или сливаются с существующими клетками или взаимодействуют между собой для создания новых мышечных волокон, что приводит к восстановлению и впоследствии гипертрофии новых мышечных волокон (182).
Клетки-сателлиты могут влиять на гипертрофию мышц несколькими способами. Первый, они жертвуют дополнительные ядра мышечным тканям, увеличивая возможность синтеза новых сократительных белков (123). Поскольку отношение количества ядер к объему мышечного волокна (объем мионуклеарного домена) во время гипертрофии мышц остается постоянным, изменяются требования к необходимому количеству внешних источников митотически активных клеток. Клетки-сателлиты сохраняют способность к делению, и тем самым служат как резерв миоядер, используемый для поддержки мышечного роста (15). Это согласуется с концепцией миоядерного домена, которая предполагает, что миоядра регулируют производство иРНК, соответствующее объему саркоплазмы и любые увеличения в размере мышечных волокон должны сопровождаться пропорциональным увеличением количества миоядер. Учитывая, что мышцы включают в себя множество мионуклеарных доменов, гипертрофия может предположительно возникать, как результат либо увеличения количества доменов (через увеличение количества миоядер) либо посредством увеличения размера существующих доменов. Как полагают, в процессе гипертрофии происходят оба процесса, при этом клетки-сателлиты принимают в них активное участие (182).
Более того, клетки-сателлиты сопровождают различные миогенные регуляторные факторы (включая Myf5, MyoD, myogenin и MRF4) которые помогают в восстановлении мышц, регенерации и росте. Эти регуляторные факторы связываются с последовательностью специфических элементов ДНК, представленных в мышечных генах-промоторах, выполняя распределенные роли в миогенезе (148,155).
Миогенные пути
Вызванная упражнениями мышечная гипертрофия связана с большим количеством сигнальных путей, которые под воздействием механической стимуляции передают вниз сигналы, которые сдвигают баланс или в сторону синтеза или в сторону катаболизма белков. Несколько первичных анаболических путей идентифицированы: Akt-mammalian Target of Rapamycin (mTOR), митоген активируемая протеинкиназа (МАРК) и кальций зависимая протеинкиназа.
Akt-mammalian Target of Rapamycin (Akt/mTOR) путь
Akt/mTOR предполагается действует как регулятор роста скелетных мышц (18, 77, 181). Несмотря на то, что специфический молекулярный механизм выяснен не полностью, Akt считается важной узловой молекулярной точкой, которая так же является активатором анаболического синтеза и главным ингибитором катаболических сигналов. Когда он активирован, Akt подает сигналы mTOR, который затем оказывает влияние на различные нижележащие цели, которые содействуют гипертрофии мышечных тканей.
Митоген Активируемый Протеин Киназный (МАПК) путь
Митоген активируемая протеинкиназа считается главным регулятором экспрессии генов, окислительно-восстановительного процесса и метаболизма (88). Специфичная для вызываемой физическими упражнениями гипертрофии скелетных мышц, МАПК связывает стресс с приспособительными ответами мышечных волокон, модуляцией их роста и дифференциации.
С мышечной гипертрофией связаны три различных МАПК сигнальных модуля: экстраклеточная сигнально-регулирующая киназа (ERK ½), p38 МАПК, и c-Jun NH2 – терминал киназа (JNK). Из этих составляющих, JNK показывается как самая отзывчивая к механическим воздействиям и повреждениям мышц и она частично восприимчива к эксцентрическим упражнениям. Вызываемая физическими упражнениями, JNK связана с быстрым ростом в mRNA транскрипционных факторов, которые модулируют клеточное распространение и восстановление ДНК.
Кальций зависимая протеинкиназа
Различные кальций зависимые протеинкиназные пути причастны к регуляции мышечного роста. Кальцинейрин (Cn), и кальций-регулирующая фосфатаза, предположительно являются частью критического регулятора сигнального каскада кальция. Кальцинейрин (Cn) участвует в кальциевом пути и служит связующим звеном между различными гипертрофическими эффекторами, такими как фактор-2 увеличения мышечных волокон, фактор GATA транскрипции, и внутриклеточный фактор активирования Т клеток (118).
Cn-зависимые пути связаны с гипертрофией всех типов мышечных волокон, и их торможение используется для предотвращения роста мышц даже при условии наличия мышечной перегрузки.
Гормоны и Цитокины[1]
Гормоны и цитокины играют неотъемлемую роль в гипертрофической реакции, выступающей в качестве вышестоящих регуляторов анаболических процессов. Повышенная концентрация анаболического гормона увеличивает вероятность рецепторных взаимодействий, способствующих белковому обмену с последующим ростом мышц (31). Многие также участвуют в пролиферации и дифференциации клеток-сателлитов, и возможно облегчают привязку клеток-сателлитов к поврежденным волокнам при восстановлении мышц (182, 187).
Гормональная регуляция гипертрофии – это комплекс с многочисленными гормонами и цитокинами, приводящий к ответной реакции. Гепато-фактор роста, Интерлейкин-5 (IL-5), Интерлейкин-6 (IL-6), фактор роста фибробластов и ингибирующий лейкоз фактор, все это стимулирует анаболизм. Инсулин, как было показано, обладает анаболическими свойствами, с большим воздействием на протеолиз, чем на усиление синтеза белка. Инсулин также, по мнению ученых, вызывает митоз и дифференциацию клеток-сателлитов. Учитывая, что уровень инсулина уменьшается при физической нагрузке, этот аспект тренировочного режима не будет рассматриваться далее.
Различные виды упражнений, как было показано, вызывают острые и в некоторых случаях хронические перестройки гормонального фона, что играет существенную роль в гипертрофии мышц. Существуют три наиболее широко изученных в этом направлении гормона: инсулино-подобный фактор роста (IGF1), тестостерон и гормон роста (GH). Некоторыми исследователями ставится под сомнение острый гормональный ответ на упражнения, обеспечивающий значительные анаболические эффекты. Однако преобладают фундаментальные и косвенные доказательства обратного, а именно огромной важности гормональной сигнализации при занятиях силовыми упражнениями.
Инсулиноподобный фактор роста (IGF-1)
Инсулиноподобный фактор роста часто упоминается, как самый важный анаболический гормон млекопитающих. Это связано с тем, что этот гормон отвечает за основной анаболический эффект организма и реагирует на механическую нагрузку (19, 63).
Конструктивно, IGF-1 – это пептидный гормон, названный так из-за структурного сходства с инсулином. Рецепторы инсулиноподобного фактора роста находятся в активированных клетках-сателлитах, взрослых миофибриллах и Шванновских клетках (15). Во время тренировки мышцы не только производят более системный IGF-1, чем в печени, но также используют циркулирующий IGF-1 (49). Доступность IGF-1 для мышц контролируется с помощью IGF-1-связывающих белков (IGFBPs), которые либо стимулируют, либо тормозят эффекты IGF-1, после привязки к конкретному связывающему белку IGFBP (182).
Определены три различные изоформы IGF-1: системные формы IGF-1Ea и IGF-1Eb и соединяющий IGF-1Ec. Хотя все три формы выражены в мышечной ткани, только IGF-1 Ec активируется путем механического сигнала (63, 199). Из-за его ответа на механическое раздражение, IGF-1Ec еще называют механическим фактором роста (MGF).
Инсулиноподобный фактор роста, как было показано, вызывает гипертрофию в аутокринной и паракринной системе (34) и оказывает свое действие несколькими способами. Например, IGF-1 непосредственно стимулирует анаболизм за счет увеличения скорости синтеза белка в дифференцированных миофибриллах (15,63). Кроме того, локальная экспрессия MGF активирует клетки-сателлиты и служит связующим звеном их пролиферации и дифференцировки (69, 200). С другой стороны считается, что IGF-1Ea повышает слияние клеток-сателлитов в мышечных волокнах, способствуя отдачи миоядер и помогает поддерживать объем мионуклеарного домена на постоянном уровне (182).
Инсулиноподобный фактор роста также активирует экспрессию генов L-типа калиевых каналов в результате повышения внутриклеточной концентрации ионов кальция. Это приводит к активации нескольких анаболических кальций-зависимых путей, в том числе кальциневрина и его многочисленных нисходящих сигнальных целей.
Тестостерон
Тестостерон является холестерол-производным гормоном, который оказывает значительное анаболическое действие на мышечную ткань (33, 105). В дополнение к его воздействию на мышцы тестостерон также может взаимодействовать с рецепторами на нейронах и тем самым увеличивать количество освобожденных медиаторов, регенерировать нейроны и увеличивать размеры клеточного тела. В основном тестостерон синтезируется и секретируется клетками Лейдига семенников и через гипоталамо-гипофизарно-гонадную ось в небольших количествах из яичников и надпочечников (22). В крови, большая часть тестостерона связывается либо с альбумином (38%) или со стероидным гормоном, связывающим глобулин (60%). Оставшиеся 2% циркулируют в свободном состоянии. Хотя только несвязанная форма биологически активна и доступна для использования тканями, связанный тестостерон может стать активным, быстро отделившись от альбумина (105). Несвязанный тестостерон связывается с андрогенными рецепторами тканей-мишеней, которые расположены в цитоплазме клеток. Это вызывает конформационные изменения, которые способствуют транспортировке тестостерона в клеточное ядро, где он взаимодействует непосредственно с хромосомной ДНК.
Хотя влияние тестостерона на скелетные мышцы видно и в отсутствие нагрузки, его действие усиливается механическими нагрузками, стимулируя анаболизм за счет увеличения скорости синтеза белка и замедления распада белков (22). Тестостерон также может способствовать синтезу белка, косвенно стимулируя выброс других анаболических гормонов, таких как гормон роста (31). Кроме этого, было выявлено, что он способствует репликации клеток-сателлитов и их активации, в результате чего увеличивается количество миогенных клеток-сателлитов (155). Было выявлено, что приостановление действия тестостерона негативно сказывается на устойчивости к силовой тренировке (100).
Было установлено, что силовые упражнения вызывают повышение содержание рецепторов андрогенов в организме человека (13, 80). У грызунов, модуляция содержания андрогенных рецепторов проявляется в типе волокон определённым образом с увеличением быстро сокращающихся мышц (20). Таким образом, увеличивается потенциал для связывания тестостерона на клеточном уровне, что способствует его поступлению в ткани-мишени.
Силовые упражнения могут иметь ощутимый резкий эффект на выделение тестостерона. Ahtianen et al. (2) установили существенную корреляцию между повышением уровня этого гормона под воздействием тренировки и поперечным сечением мышцы, предположив, что повышение уровня тестостерона в мышцах при тренировках может играть существенную роль в их гипертрофии. Однако срочные ответы лимитированы у женщин и у лиц пожилого возраста, что уменьшает гипертрофический потенциал этих групп населения (61,90, 130).
До сих под не ясен кумулятивный эффект влияния силовых тренировок на содержание тестостерона в мышцах. Некоторые исследования показывают достоверный рост его уровня в мышцах в результате силовой тренировки (60, 93, 163), другие – незначительное увеличение (3,142). В связи с этим необходимы дальнейшие исследования этой проблемы.
Гормон роста
Гормон роста (соматотропный гормон, СТГ) представляет собой полипептидный гормон, который, как считается, обладает как анаболическими, так и катаболическими свойствами. В частности, СТГ действует как агент перераспределения, провоцирующий жировой обмен, приводящий к мобилизации триглицеридов и стимулирующий клеточное поглощение и включение аминокислот в различные белки, в том числе мышцы (187). При отсутствии механической нагрузки СТГ преимущественно активирует иРНК системного IGF-1 (инсулиноподобного фактора роста-1) и опосредованную негепатическую экспрессию генов IGF-1 аутокринным/паракринным образом (63).
Гормон роста выделяется передней долей гипофиза и вводится в действие пульсирующим образом с наибольшими выделениями, не вызываемыми выполнением физических упражнений, происходящими во время сна. Было обнаружено более 100 молекулярных изоформ СТГ; однако, большая часть тренировок с отягощениями сосредоточена исключительно на изоформах 22-кДа, что приводит к ограничению его вывода. Новейшие исследования свидетельствуют о преимущественном выделении нескольких изоформ СТГ с пролонгированным периодом полужизни во время выполнения физических упражнений, что создает возможность для пролонгированного действия на ткани-мишени (131).
В дополнение к воздействию, оказываемому на мышечную ткань, СТГ также принимает участие в регуляции иммунной функции, формирования костей и объема тканевой жидкости. В общей сложности, предполагается, что СТГ активизирует свыше 450 действий в 84 типах клеток (190).
Уровень гормона роста резко повышается после выполнения различных типов физических упражнений (96). Повышение уровня СТГ в связи с выполнением физических упражнений высоко коррелирует с величиной гипертрофии мышечных волокон типа I и II (113). Предполагается, что кратковременное повышение СТГ может приводить к усилению взаимодействия с рецепторами мышечных волокон, что облегчает восстановление волокон и стимулирует гипертрофический ответ (134). Считается, что гормон роста также участвует в вызываемом тренировкой повышении локально экспрессируемого IGF-1 (75). В сочетании с интенсивными физическими упражнениями выделение СТГ связано с заметным повышением экспрессии гена IGF-1 в мышцах таким образом, что большее количество превращается в изоформу MGF (механический фактор роста) (63).
Некоторые исследователи подвергают сомнению существенное гипертрофическое влияние СТГ на мышечную ткань (143). Данная точка зрения базируется на результатах нескольких исследований, в ходе которых не удалось обнаружить значительного увеличения мышечной массы при введении СТГ при выполнении тренировки с отягощениями (101, 201-203). С другой стороны, в данных программах тренировки не воспроизводились большие резкие подъемы СТГ, наблюдаемые после выполнения физических упражнений; учитывая время при котором уровень СТГ был повышен в сочетании с травмой мышц. Таким образом из этих исследований, невозможно сделать выводы относительно того, как СТГ связан с физической нагрузкой. Ответ связан с анаболическими процессами в скелетных мышцах и многое до сих пор не ясно. В связи с этим необходимы дальнейшие исследования, чтобы полностью осветить его роль в развитии мышц.
О взаимосвязи гормонов и мышечной массы можно прочесть в моей книге «Гормоны и гипертрофия скелетных мышц человека»
Клеточная гидратация (отек)
Клеточная гидратация (т.е. клеточный отёк) служит регулятором физиологической функции клеток (65), что используется для моделирования анаболических процессов, то есть увеличения синтеза белка и уменьшения его распада (53,120,165). Хотя физиологическую основу, связывающую отек клеток с анаболическими процессами еще предстоит определить, можно предположить, что увеличение давления на мембрану воспринимается как угроза целостности клетки, что в свою очередь заставляет ее подавать сигналы. Это в итоге приводит к укреплению ее ультраструктуры.
Гидратированные клетки, как было показано, инициировали процесс, который включает активацию протеин-киназных сигнальных путей в мышцах, и, возможно, опосредующих аутокринных эффектов факторов роста в передаче сигнала анаболического ответа на участке мембраны (106). Клеточный отек вызывает растяжение участка мембраны, что может напрямую влиять на транспорт аминокислот посредством интегрин-ассоциированных рецепторов объема. Фосфатдилинозитол- 3-киназы, являются важным компонентом связи модуляции глютамина и альфа-(метил) аминоизомасляной кислоты в транспорте в мышцы, потому что клетки отекают (106). Силовые упражнения, как было показано, взывают изменения водного баланса внутри клетки (156), степень которого зависит от типа и интенсивности упражнения. Клеточный отек достигает максимума при использовании физических упражнений гликолитического типа с накоплением лактата, который вносит основной вклад в осмотические изменения в скелетных мышцах (41, 157). Быстросокращающиеся волокна, особенно чувствительны к осмотическим изменениям, связанными с высокой концентрацией воды в транспортных каналах, называемых аквапорин-4. Аквапорин-4 сильно выражен в сарколемме гликолитических и окислительно-гликолитических волокон, что облегчает приток жидкости в клетку. Учитывая, что быстро сокращающиеся волокна являются наиболее чувствительными к гипертрофии, можно предположить, что клеточная гидратация увеличивает гипертрофический ответ во время тренировки с отягощениями, что в значительной мере опирается на анаэробный гликолиз.
Упражнения, которые вызывают повышение гликогена в мышечных волокнах также увеличивают отек клеток. Учитывая, что гликоген притягивает три грамма воды на каждый грамм гликогена (25), это может влиять на увеличение возможностей для синтеза белка в тех мышечных волокнах, которые обладают большими запасами гликогена.
Гипоксия
Гипоксия, как было показано, способствует мышечной гипертрофии. Эти эффекты видны даже в отсутствии физической нагрузки. Takarada et al. (172) обнаружили, что две ежедневные сессии сосудистой окклюзии тормозят мышечную атрофию в группе пациентов, содержащихся на постельном режиме. Подобные эффекты окклюзии наблюдали Kubota et al. (62, 98), что предотвращало падение мышечной силы и уменьшение площади поперечного сечения во время 2-х недельного периода иммобилизации.
В сочетании с физическими упражнениями, гипоксия, кажется, оказывает дополнительный эффект на гипертрофию мышц. Это было продемонстрировано Takarada et al. (173), которые разделили 24 пожилых женщин, выполняющих сгибание руки в локтевом суставе на три подгруппы. Первая группа женщин выполняла упражнение с низкой интенсивностью (50% от максимума [1РМ]) и имела окклюзию сосудов. Вторая группа женщин выполняла упражнение с низкой интенсивностью, как и первая, но без окклюзии. Третья группа выполняла упражнение с высокой интенсивностью (80% от максимума), но без окклюзии. После 16 недель такой тренировки, первая группа показала значительно большую площадь поперечного сечения локтевого сгибателя по сравнению со второй группой. При этом гипертрофия мышц была такой же, как в третьей группе.
Есть несколько теорий, объясняющих влияние гипоксии на гипертрофию мышц. С одной стороны, гипоксия, как было показано, вызывает повышенное накопление лактата и уменьшает его удаление (173). Это увеличивает отек мышечных волокон, что, как было показано, активирует синтез белка. Кроме того, увеличение лактата приводит к увеличению анаболических гормонов и цитокинов. Takarada et al. (172) отметили 290% возрастание уровня гормона роста после низкоинтенсивной гипоксической тренировки и увеличение концентрации миогенного цитокина IL-6, который оставался повышенным в течение 24 часов.
Другой потенциальный механизм влияния гипоксии на гипертрофию скелетных мышц связан с ее влиянием на активность активных форм кислорода (ROS). Производство активных форм кислорода, как было показано, способствует росту, как гладкой мускулатуры, так и сердечной мышцы (170), и предполагается аналогичное гипертрофическое воздействие на скелетные мышцы (171). Оксид азота (ROS), продуцируемый во время физических упражнений, опосредует пролиферацию клеток-сателлитов, которые, предположительно, приводят к большому росту скелетных мышц (81, 174). Активные формы кислорода, возникающие во время тренировки, активируют передачу сигнала MAPK в скелетных миобластах (83) и таким образом модулируют гипертрофический ответ.
Гипоксия также может способствовать гипертрофическому эффекту посредством реперфузии (гиперемии, т.е., возобновлению притока крови) после ишемического упражнения (173). Реперфузия в поврежденной мышце предположительно влияет на поставку анаболических эндокринных агентов и факторов роста в клетках-сателлитах, тем самым регулируя их пролиферацию и последующий синтез мышечных трубок (187).
Начало гипертрофии, индуцированной Упражнениями
Предполагается, что существуют три основных фактора ответственных за инициацию гипертрофической реакции при выполнении силовых упражнений: это механическое напряжение, мышечное повреждение и метаболический стресс. Ниже приводится краткий обзор каждого из вышеперечисленных факторов.
Механическое напряжение
Механически индуцированное напряжение вызывается генерируемой силой и растяжением, что считается необходимым для роста мышц, а сочетание этих стимулов, вызывает дополнительный эффект (48, 72, 185). Более конкретно, механическая нагрузка увеличивает мышечную массу, в то время как при ее отсутствии результат ведет к мышечной атрофии (47). Этот процесс в значительной степени контролирует скорость синтеза белка, посредством инициализации трансляции (11,87). Считается, что напряжение, связанное с силовыми тренировками, нарушает целостность скелетных мышц, вызывая механо-химическим путем изменение молекулярных и клеточных реакций в миофибриллах и клетках-сателлитах (182). Импульс сигнала проходит через ряд различных процессов, которые включают в себя факторы роста, цитокины, каналы, активируемые растягиванием, и комплексы фокальной адгезии (23,48, 162). Опыт показывает, что последующий процесс регулируется с помощью путей AKT/mTOR, либо посредством прямого взаимодействия или путем модуляции производства фосфатной кислоты. На данный момент, однако, исследование не предоставило четкого понимания того, как эти процессы осуществляются.
Во время эксцентрических сокращений, пассивное мышечное напряжение развивается посредством удлинения цитоскелета мышечного волокна и титина (182). Это повышает возможность развития активного мышечного напряжения, развиваемого в сократительных элементах, увеличивая гипертрофическую реакцию. И амплитуда, и продолжительность возбуждения мышц определяется частотой активации ДЕ, кодирующих сигналы различных путей, в том числе Ca 2+ кальмодулина фосфатазы кальцинейрином, CaMKII и CAMKIV, и РКС (26). По этим путям можно определить экспрессию гена, соединение мышечного возбуждения с транскрипцией (182).
Пассивное напряжение дает гипертрофическую реакцию волокон конкретного типа, а именно быстро сокращающихся, но не медленных. Это было продемонстрировано Prado et al. (139), которые обнаружили, что медленно сокращающиеся волокна у кроликов показали низкий уровень содержания титина, зато выявили высокий уровень у быстро сокращающихся волокон. Хотя, механическое напряжение может произвести мышечную гипертрофию, это вряд ли принесет гипертрофическую выгоду в целом (79). На самом деле, тренировки различной мощности и с различной степенью мышечного напряжения, в основном, вызывают лишь адаптацию нервной системы без результирующей гипертрофии (28, 188).
Повреждения мышц
Тренировка может привести к локализованным повреждениям мышечной ткани, которые, при определенных условиях, вызывают гипертрофическую реакцию (38, 69). Повреждение может быть специфическим всего для нескольких макромолекул ткани или привести к большим повреждениям сарколеммы, базальной мембраны и соединительной ткани. Повреждение может индуцировать повреждения сократительной части и цитоскелета (187). Поскольку самые слабые саркомеры могут быть расположены в разных частях миофибрилл, неодинаковое удлинение вызывает сдвиг миофибрилл. Это деформирует мембраны, частично Т-трубочки, что ведет к нарушению гомеостаза кальция и, следовательно, к повреждению от разрыва мембран и /или открытию каналов активируемых посредством растягивания (4). Реакцию на травму мышцы можно сравнить с острой реакцией на воспалительную инфекцию. После того, как повреждение воспринимается организмом, нейтрофилы мигрируют к области поврежденных мышечных волокон, затем удаляются посредством макрофагов и лимфоцитов. Макрофаги удаляют поврежденные части мышечных волокон для поддержания ультраструктуры и вырабатывают цитокины, которые активируют миобласты, макрофаги и лимфоциты. Считается, что это приводит к высвобождению различных факторов роста, которые регулируют пролиферацию клеток-сателлитов и их дифференцировку (182, 187). Высокая концентрация клеток-сателлитов, обеспечивает рост мышц (69, 155). Это приводит к тому, что нервы поврежденного волокна могут стимулировать активность клеток-сателлитов, тем самым способствуя гипертрофии (187).
Метаболический стресс
Многочисленные исследования поддерживают анаболическую роль индуцированного физической нагрузкой метаболического стресса (145, 149, 161) и некоторые полагают, что накопление метаболитов может быть важнее, чем развитие силы в оптимизации гипертрофической реакции при тренировке (153). Хотя метаболический стресс, кажется, не является важным компонентом мышечного роста, большое количество доказательств показывает, что, тем не менее, он может привести к значительному гипертрофическому эффекту, либо первичным, либо вторичным образом. Это можно заметить эмпирическим путем при тренировках умеренной мощности, которые проводились у большого количества бодибилдеров, которые предназначены для повышения метаболического стресса, сохраняя значительное мышечное напряжение. Метаболический стресс проявляется в результате упражнений анаэробного типа, что приводит к последующим накоплениям метаболитов, таких как лактат, ионы водорода, неорганический фосфат, креатин и другие (169, 178). При мышечной ишемии, также был выявлен метаболический стресс, и, возможно, это производит аддитивный гипертрофический эффект при сочетании с гликолитической тренировкой (136, 182). Стресс-индуцированные механизмы теоретически являются посредниками гипертрофической реакции, включают изменения гормональной среды, набухание клеток, производство свободных радикалов, и повышение активности факторов транскрипции, ориентированных на рост (50, 51, 171). Также была выдвинута гипотеза, что повышение кислотности среды, вызванное гликолитической тренировкой может привести к увеличению деградации волокон и большей стимуляции симпатической нервной системы, тем самым способствуя повышению адаптивного гипертрофического ответа (22).
Переменные тренировки и гипертрофия мышц
В соответствии с правилом специфичности, подбор тренировочных переменных имеет большое значение для максимизации гипертрофии мышц, вызванной упражнениями.
Ниже приводится обзор о том, как каждая переменная влияет на гипертрофию мышц относительно физиологических переменных, обсуждавшихся ранее.
Интенсивность
Интенсивность (то есть величина нагрузки), имеет большое влияние на гипертрофию мышц и является, пожалуй, самой важной переменной для стимулирования роста мышц (42). Интенсивность обычно выражают в процентах от массы отягощения, которое спортсмен может поднять один раз, что соответствует количеству повторений, которое может быть выполнено с заданным весом. Повторения классифицируются на три основных диапазона: низкий (1-5), умеренный (6-12) и высокий (15+). Каждый из этих диапазонов будет включать в себя использование различных энергетических систем и напряжения нервно-мышечной системы, по-разному влияя на степень гипертрофии (24, 71). При отсутствии искусственно индуцированной ишемии (то есть тренировки с окклюзией), масса отягощения, меньше, чем 65% от максимума не давала существенной гипертрофии (115). Хотя такая тренировка может вызвать большой метаболический стресс, такое отягощение недостаточно для активирования и утомления больших ДЕ. Вызывает ли низкий или умеренный диапазоны большую гипертрофическую реакцию, был вопрос дебатов. В конечном итоге, пришли к тому, что оба диапазона играют важную роль в увеличении мышц (24). Тем не менее, есть другое мнение, что умеренный диапазон, приблизительно 6-12 повторений, оптимизирует гипертрофическую реакцию (86, 89, 205).
Анаболическое превосходство умеренного диапазона было отнесено к факторам, связанным с метаболическим стрессом. Хотя низкое количество повторений выполняется почти исключительно за счет системы креатинфосфата, а умеренное количество повторения в значительной степени зависит от анаэробного гликолиза (144), это приводит к значительному накоплению метаболитов. Исследования упражнений бодибилдеров, выполняемые несколькими сетами, по 6-12 повторений, показали большое снижение АТФ, креатинфосфата и гликогена, наряду с существенным увеличением лактата в крови, внутримышечного лактата, глюкозы и глюкозы-6-фосфата (37,178). Рост этих метаболитов, как было показано, значительно влияет на анаболический процесс (96). Поэтому возможно, существует максимальный порог гипертрофии мышц, вызванной напряжением, выше которого метаболические факторы становятся более важными, чем дополнительное увеличение нагрузки.
Тренировка в диапазоне от 6 до 12 повторений также максимизирует высокую клеточную гидратацию. Во время этой тренировки, вены, принимающие кровь из работающих мышц сжаты, в то время как артерии по-прежнему поставляют кровь в работающие мышцы, тем самым создавая повышенную концентрацию внутримышечной плазмы крови. Это заставляет плазму просачиваться из капилляров и в пространства между мышечными волокнами. Накопление жидкости в пространстве между мышечными волокнами вызывает внеклеточный градиент давления, что вызывает поток плазмы обратно в мышцы, это явление обычно называют как «пампинг» (насос). Это накопление метаболических побочных продуктов, которые функционируют как осмолиты, приводит к потоку жидкости в мышечные волокна (157). Влияет ли этот отек мышечных волокон на последующую их гипертрофию неизвестно, однако кажется вероятным, что гидратация играет известную роль в регулировании функции мышечных волокон.
Кроме того, напряжение, связанное с умеренным количеством повторений (от 6 до 12 раз) по сравнению с более низким числом повторений, теоретически повысит возможность микротравм и утомления по всему спектру мышечных волокон. Этот вид тренировки наиболее подходит для гипертрофии медленных волокон, которые более выносливы по сравнению с быстросокращающимися волокнами и, таким образом, можно будет извлечь выгоду от увеличения времени, в течение которого мышцы находится под напряжением. Хотя медленно сокращающиеся волокна не так активно демонстрируют рост по сравнению с быстросокращающихся, они, тем не менее гипертрофируются, когда подвергнуты перегрузке. Учитывая, что большинство мышц преимущественно содержит медленные волокна, это может потенциально помочь максимизировать обхват мышц (55, 102).
Некоторые исследователи предположили, что мышцы, содержащие больший процент медленных волокон могут иметь наибольшую гипертрофическую реакцию в более высоком диапазоне повторения, в то время как быстро сокращающиеся мышцы будут лучше реагировать на меньшее количество повторений (138, 192). Хотя эта концепция интригует, это не подтверждается исследованиями. Кроме того, учитывая изменчивость композиции мышечных волокон у людей, было бы невозможно определить соотношение типа волокна без биопсии мышц, что делает приложение непрактичным для подавляющего большинства людей.
Объем
Подход (сет) может быть определен как число повторений, выполненных последовательно без отдыха, в то время как объем упражнений может быть определен как произведение всех повторений, сетов, и нагрузки, выполненной в тренировке. В отношении мышечной гипертрофии большой объем, а также программы множественных сетов предпочтительнее по сравнению с программами в которых используется более чем один сет (96, 197).
Не ясно, что представляет собой гипертрофия мышц при выполнении высокообъемных нагрузок – это продукт, прежде всего напряжения мышц, повреждения мышц, метаболического стресса, или некоторое сочетание этих факторов. Высокие объемы, программы бодибилдинга, которые генерируют значительную гликолитическую активность, как, оказалось, поднимают уровень тестостерона в большей степени, чем низкие объемы программ (92, 94). Schwab et al. (150) показали, что уровень тестостерона существенно не увеличивается во время приседания, до тех пор, пока не завершится четвертый подход, указывая на очевидные преимущества тренировочных программ с использованием множественных подходов.
Высокообъемные тренировки также высвобождают GH, особенно тренировки, предназначенные для усиления метаболического стресса (70). Большое количество исследований показывает, что программы тренировок, использующие большое количество сетов позволяют добиться выхода большего количества GH, чем программы, в которых используются один сет (29, 124). Smilios et al. (158) сравнил уровень GH при программе тренировок, направленных на развитие максимальной силы (MS), состоящей из 5 повторений с отягощением 88% от максимума, тремя минутами отдыха с программой тренировок, направленной на развитие гипертрофии мышц (MH), состоящей из 10 повторений с отягощением 75% от максимума и двумя минутами отдыха (исследуемые – молодые мужчины). После выполнения упражнений GH измерялся после 2, 4, и 6 сета. Уровень GH был значительно больше, после 4 сета по сравнению со вторым только в программе (МН), но не в MS, указывая на превосходство высокообъемных процедур, которые генерируют накопление метаболита.
Упражнения типа «сплит», где несколько упражнений выполняются для конкретной группы мышц в одной сессии, могут помочь в максимизации гипертрофической реакции (86). По сравнению с программой тренировки для всего тела, «сплит-тренировка» позволяет поддерживать общий недельный объем тренировок с меньшим количеством сетов, выполненных за тренировку, и большим восстановлением, предоставляемым в период между сессиями (85).
Это позволяет использовать больше тяжелые ежедневные нагрузки в тренировке и, таким образом, генерировать большее мышечное напряжение. Кроме того, сплит-программы служат для увеличения мышечного метаболического стресса при продлении тренировочных нагрузок в пределах данной группы мышц, потенциально повышая острые анаболические гормональные секреции, отек клеток и мышечную ишемию.
Для максимизации гипертрофии, доказано, что объем должен прогрессивно увеличиваться в течение определенного цикла тренировки, завершаясь в краткий период перегрузки. Перегрузка может быть определена как запланированное, кратковременное увеличение объема и/или интенсивности, предназначенное для повышения производительности. Улучшения считаются полученными путем инициирования «обратного эффекта», когда первоначальное снижение анаболических средств заставляет организм восстанавливаться, значительно увеличивая синтез белков в организме (42, 189 как было показано, влияет на ответ организма от перегрузки, снижая вредное воздействие на эндокринную систему на первом году тренировки (44). Для обеспечения оптимума суперкомпенсации, срок тренировки с перегрузкой должен следовать после краткого отдыха или прекращения тренировки (99).
Если период перегрузки продлен, это приводит к перетренировке (62). Состояние перетренированности приводит к катаболическому эффекту, и характеризуются хроническим снижением концентрации тестостерона и лютеинизирующего гормона, и повышенным уровнем кортизола (43, 58, 140). В цитокиновой гипотезе перетренированности говорится, что основной причиной перетренировки является повторяющиеся травмы опорно-двигательного аппарата в результате высокой интенсивности и высокого объема тренировки (159,160). Однако, исследования, показывают, что перетренированность является больше результатом чрезмерного объема, чем интенсивности (43,59). Учитывая, что рекуперативные способности сильно различаются у людей, необходимо осознавать статус обучения спортсмена и соответственно регулировать объем нагрузки, чтобы избежать негативного влияния на синтез белка.
Кроме того, задача тренировки с большим объемом должна быть сбалансирована сокращениями тренировки. Длинные тренировки, как правило, связанны со снижением интенсивности усилий, снижением мотивации и изменениями в вопросе иммунитета (92). Соответственно, было предложено, что интенсивные тренировки не должны длиться дольше, чем один час для обеспечения максимального потенциала обучения в течение всей сессии (205).
Выбор упражнений
Хорошо известен принцип фитнеса, что вариация параметров упражнения (т. е. угла при котором выполняется упражнение, положения конечностей и т.д.) может вызвать различные модели активации мышечных волокон и вызывать разную активность мышц-синергистов (17). Это особенно важно в программе, ориентированной на гипертрофию мышц, где содействие однородному росту мышечной ткани является важным для максимального увеличения общего обхвата мышцы.
Мышцы могут иметь различные места крепления, что предоставляет больше рычагов для выполнения различных действий. Трапециевидная мышца, например, подразделяется на части таким образом, что верхняя часть поднимает лопатку, средняя часть отводит лопатку, а нижняя часть опускает лопатку (103). Что касается большой грудной мышцы, то грудино-реберная часть значительно более активна, чем ключичная часть в жиме лежа головой вниз (46). Кроме того, ключичная часть грудной мышцы и длинная головка трицепса, как показано, были более активны в узком хвате жима лежа, чем в широком варианте хвата, активность передней дельтовидной мышцы увеличивается с увеличением степени наклона туловища (14).
Региональные различия внутри различных мышц могут повлиять на их реакцию в выборе упражнений. Например, медленные и быстрые двигательные единицы часто разбросаны по всей мышце, таким образом, что могут быть активированы медленно сокращающиеся волокна, в то время как рядом лежащие быстросокращающиеся волокна могут бездействовать и наоборот (7). Кроме того, мышцы иногда делятся на компартменты – отчетливые области мышц, каждая из которых возбуждена собственной веточкой нерва. Например, портняжная, тонкая, двуглавая мышцы бедра и полусухожильная мышца делятся на несколько компартментов (193, 198). Более того, тонкая и портняжная мышцы состоят из относительно коротких волокон, расположенных друг за другом, что опровергает предположение о том, что все мышечные волокна идут от начала до прикрепления мышцы (67).
Эффект мышечных разделений в механической деятельности наблюдается в двуглавой мышце плеча, где и длинные, и короткие головки архитектурно отделены друг от друга и иннервируются отдельными веточками нейронов (151). Исследования, изучающие мышечную активность длинной головки двуглавой мышцы плеча показали, что двигательные единицы в латеральной части предназначены для сгибания локтя, двигательные единицы в медиальной части – для супинации, и расположенные в центре двигательные единицы – для нелинейных комбинаций сгибания и супинации (175, 176, 184).
Далее, короткая головка двуглавой мышцы плеча является более активной в последней части сгибания руки в локтевом суставе, в то время как длинная головка более активна в ранней фазе (21).
Эти архитектурные различия мышцы необходимо учитывать, при планировании тренировки, направленной на гипертрофию скелетных мышц с помощью множества различных упражнений. Кроме того, учитывая необходимость полностью стимулировать все волокна в мышце, по-видимому необходимо часто менять упражнения, чтобы максимизировать гипертрофическую реакцию.
Существует доказательство в поддержку того, что включение базовых (многосуставных) и изолирующих (односуставных) упражнений в тренировке нужно использовать в определенном для гипертрофии порядке. Многосуставные упражнения включают в работу большой объем мышечной массы. Это оказывает влияние на анаболически-гормональный ответ тренировки. В частности, величина посттренировочных гормональных увеличений, как показано, была связана с тем, что вовлечение части мышечной массы с многосуставными движениями производит более значительное увеличение в уровне тестостерона и гормона роста по сравнению с односуставными упражнениями (64, 91).
Кроме того, многосуставные движения, как правило, требуют стабилизации всего тела, тем самым задействуя многочисленные мышцы, что не может быть стимулировано в случае с односуставными упражнениями. Приседание, например, вовлекает в работу не только четырехглавые мышцы бедра и разгибатели тазобедренного сустава, но и другие мышцы нижней части тела, в том числе тазобедренные аддукторы, отводящие мышцы бедра и трехглавые мышцы голени (132). Кроме того, значительная часть изометрической деятельности требует широкого диапазона поддерживающих мышц (в том числе мышц брюшного пресса, мышц, выпрямляющих позвоночник, трапециевидной мышцы, ромбовидной мышцы и многих других) для облегчения стабилизации положения туловища.
Считается, что во время выполнения приседания со штангой на плечах, активируются более 200 мышц (167). Для достижения такой же степени мышечного напряжения потребуется использование десятков изолирующих упражнений – а это стратегия, которая одновременно неэффективна и нецелесообразна.
С другой стороны, односуставные движения позволяют уделять больше внимания отдельным мышцам по сравнению с многосуставными. В ходе выполнения многосуставных движений одни мышцы имеют приоритетное развитие, при этом создается гипертрофический дисбаланс между мышцами. Использование односуставных упражнений позволяет выборочно развивать слаборазвитые мышцы, тем самым повышая мышечную симметрию. Кроме того, уникальное строение отдельных мышц предполагает использование односуставных упражнений, которые могут формировать различные двигательные навыки, усиливающие общее развитие мышц (7).
Исследования, как правило, не подтверждают, что использование неустойчивой опоры приводит к гипертрофии мышц. Силовые упражнения, выполняемые в условиях нестабильной опоры, требуют активации многочисленных мышц (6, 110). Это, в свою очередь, приводит к значительному снижению силы, проявляемой основными мышечными группами. Anderson & Behm (5) обнаружили, что при выполнении жима от груди на неустойчивой поверхности развиваемая сила была на 59,6% ниже чем на устойчивой поверхности. Аналогично, MacBride et al (112) продемонстрировали значительное снижение максимального усилия и скорости нарастания силы (по 45,6 и 40,5 соответственно) при выполнении приседа на неустойчивой поверхности по сравнению с устойчивой. Такие большое уменьшение силы снижает динамическое напряжение основных мышц, уменьшая гипертрофический эффект.
Исключением являются упражнения для основных групп мышц. Эти упражнения даже в условиях неустойчивой опоры приводят к мышечной гипертрофии. Sternlicht et al. (164) обнаружили, что подъем туловища к коленям из положения лежа на спине выполненный на фитнесс-мяче вызвал значительно большую активность мышц брюшного пресса, чем подъем туловища к коленям из положения лежа, выполненный в стабильных условиях. Аналогичные результаты были показаны Vera-Garcia et al. (186), который показал значительное увеличение активности как прямой мышцы живота, так и косых мышц при выполнении их сгибания на неустойчивой поверхности нежели на устойчивой. Эти результаты свидетельствуют о роли нестабильной поверхности в развитии мышц брюшного пресса.
Интервал отдыха
Время между сериями упражнений определяется как интервал отдыха. Интервалы отдыха делятся на три категории: короткий (30 секунд и меньше), средний (60-90 секунд) и длинный (3 минуты и более). Использование каждого из них дает определенный эффект на рост силы и метаболические перестройки и как следствие – гипертрофический эффект (195).
Короткий интервал отдыха создает значительный метаболический стресс, повышая анаболические процессы, ассоциированные с метаболическим стрессом (52). Тем не менее, ограничение отдыха до 30 секунд или менее не позволяет спортсмену восстановить мышечную силу, что значительно ухудшает мышечную производительность при выполнении последующих сетов (137, 141). Таким образом, гипертрофические преимущества, связанные с большим метаболическим стрессом, казалось бы, уравновешивают уменьшение мощности выполнения движения, делая короткие интервалы отдыха неоптимальными для максимизации гипертрофического ответа.
Длительные интервалы отдыха способствуют полному восстановлению силы между сериями упражнений, приводя к возможности тренироваться с максимальной силой (121). De Salles et al. (32) установили, что интервалы отдыха в 3-5 минут позволяют выполнить в тренировке больше подходов при мощности работы от 50 до 90 % от максимальной. Тем не менее, несмотря на то, что механическое напряжение близко к максимуму при использовании длительных периодов отдыха уменьшается метаболический стресс (92, 94). Это может уменьшить анаболизм, ослабляя максимальную гипертрофическую реакцию.
Средние интервалы отдыха являются компромиссом между длительными и короткими периодами отдыха для максимизации гипертрофии мышц. Исследования показывают, что в большинстве случаев мощность спортсмена восстанавливается в течение первой минуты после прекращения упражнения (168). Кроме того, тренировка с более короткими интервалами отдыха приводит к адаптации, которая в конечном счете позволяет атлету значительно превысить уровень в 1RМ во время тренировки. Эти адаптации включают в себя увеличение капиллярной и митохондриальной плотности и увеличение буферной способности преодолевать H+ и выводить его из мышц, тем самым минимизируя уменьшение производительности.
Мышечный отказ (Muscular Failure)
Мышечный отказ может быть определен как точка во время сета, когда мышцы больше не могут производить необходимую силу для того, чтобы в концентрическом режиме выполнить упражнение. Несмотря на то, что достоинства тренировки до отказа все еще являются предметом дискуссий, обычно считается, что тренировка «до отказа» необходима, чтобы максимизировать гипертрофический ответ (196). В поддержку этого утверждения предложено несколько теорий.
С одной стороны, тренировка «до отказа» гипотетически активирует большое количество ДЕ (196). Когда атлет утомляется, прогрессивно активируется большее количество ДЕ для продолжения деятельности, обеспечивая дополнительный стимул для гипертрофии (145). Таким образом, отказ может обеспечить активацию самых высокопороговых ДЕ.
Тренировка «до отказа» также может повысить вызванный физической нагрузкой метаболический стресс, тем самым потенцировать гипертрофический ответ. Продолжая тренироваться в условиях анаэробного гликолиза в мышцах спортсмена усиливается накопление метаболитов, которые в свою очередь усиливают анаболический гормональный фон. Linnamo et al. (104) предполагает, что выполнение силовых упражнений с отягощением 10RM «до отказа» приводит к значительно большей секреции гормона роста по сравнению с той же нагрузкой, но без отказа. Хотя тренировка «до отказа», действительно потенциирует гипертрофический ответ, есть доказательства того, что она также увеличивает перетренированность и психологическое выгорание (43). Izquerdo et al. (76) обнаружили, что тренировка «до отказа» вызвала уменьшение в состоянии покоя концентрации IGF-1 и уменьшение уровня тестостерона в состоянии покоя в течение 16-недельной тренировки. В результате чего было высказано предположение, что субъекты могут быть перетренированными. Таким образом, несмотря на то, что использование тренировки до отказа очень важно для гипертрофии, периоды ее использования должны быть ограничены, чтобы избежать перетренировки.
Скорость выполнения упражнений
Скорость, с которой атлет выполняет повторы, может повлиять на гипертрофический ответ. Несмотря на ограничения, накладываемые количеством исследований и программы исследования, могут быть сделаны определенные выводы по данной теме.
Что касается концентрических повторов, то есть доказательства того, что более быстрые повторы полезны для гипертрофии. Nogueira et al. (133) обнаружили, что выполнение концентрического сокращения за одну секунду вместо трех секунд оказало большее гипертрофическое влияние на мышцы верхних и нижних конечностей у пожилых мужчин. Это может быть связано с активацией высокопороговых ДЕ в связи с утомлением. Другие исследования, однако, показывают, что тренировка при умеренной скорости имеет большее воздействие на гипертрофию (56), возможно, из-за повышения метаболического фона (12). Поддержание непрерывного напряжения мышц при умеренных скоростях повторения вызывает мышечную ишемию и гипоксию, тем самым увеличивая гипертрофический ответ (174). Тренировки на очень медленных скоростях (т.е. сверхмедленные повторения) неоптимальны для развития силы и гипертрофии (82,129) и поэтому они не могут быть использованы, когда целью является максимальная гипертрофия мышц.
В эксцентрическом режиме мышечного сокращения скорость движения имеют большее значение для гипертрофии. Хотя было показано, что концентрические и изометрические сокращения приводят к гипертрофии мышц, больший эффект дают все-таки эксцентрические сокращения. В частности, эксцентрические упражнения связаны с более быстрым ростом синтеза белка (122) и большим увеличением в IGF-1 экспрессии мРНК (152) по сравнению с концентрическим сокращением. Более того, изотоническая и изокинетическая тренировка, которые не включают в себя эксцентрические сокращения приводят к меньшей гипертрофии, чем тренировка, которая включают эксцентрические сокращения (39,68,74). Гипертрофическое превосходство эксцентрического упражнения в значительной степени связано с большим мышечным напряжением под нагрузкой. Возможно это связано с инвертированием принципа размера, что приводит к тому, что быстросокращающиеся волокна активируются выборочно (152, 173). Это было продемонстрировано Nardone и Schieppati (128), которые показали уменьшение активности в медленно сокращающейся камбаловидной мышце и соответствующее увеличение деятельности икроножной мышцы во время эксцентрической подошвенной флексии. Существует также доказательство того, что эксцентрические сокращения приводят к активности ранее неактивных ДЕ (116, 127). В результате чрезмерной нагрузки на небольшое количество активных волокон, упражнение, выполняемое в эксцентрическом режиме, вызывает большие повреждения мышц по сравнению с концентрическим и изометрическим режимами (116). Это проявляется в виде разрушения Z-линии, и ремоделировании миофибрилл (30, 204). Было показано, что экспрессия мРНК в MyoD специфически активируется посредством эксцентрических сокращений (78). Shepstone et al. (152) обнаружили, что быстрое эксцентрическое сокращение (3,66 рад/с) привело к значительно большей гипертрофии МВ II типа волокон по сравнению с медленным (0,35 рад/с). Это согласуется с удлинением части кривой «сила-скорость», которая показывает увеличение силы при высоких скоростях сокращения. Однако эти исследования лимитированы, так как исследуемые тренировались на изокинетическом тренажере, в котором силы сопротивления возникали в связи с деятельностью антагониста, а не гравитации. Традиционные динамические упражнения (например, со свободными весами) не дают таких преимуществ. Эксцентрическое сокращение происходит в гравитационном поле, заставляя спортсмена напрягать мышцы, противодействуя гравитации. Поэтому медленная скорость необходима, чтобы увеличить гипертрофический эффект тренировки (45).
Практическое применение
Современные исследования показывают, что максимальная гипертрофия мышц достигается с помощью программ тренировок, в которых возникает значительный метаболический стресс при сохранении умеренной степени напряжения мышц. Программа тренировок, ориентированная на гипертрофию-должна использовать диапазон повторений от 6-12 в сете с интервалами отдыха между сетами в 60-90 секунд. Упражнения должны варьироваться, чтобы обеспечить максимальную стимуляцию всех мышечных волокон. В программе сплит-тренировки необходимо использовать несколько сетов, чтобы увеличить анаболический эффект. По крайней мере, некоторые из сетов необходимо выполнять «до отказа», возможно, чередуя микроциклы с работой «до отказа» с теми, в которых работа «до отказа» не выполняется для снижения вероятности возникновения перетренировки. Концентрические повторы должны быть выполнены на быстрых или умеренных скоростях (1-3 секунды) в то время как эксцентрические повторы следует проводить при несколько более медленных скоростях (2-4 секунды). Тренировка должна быть построена таким образом, чтобы фаза гипертрофии приходилась на короткий период, в течение которого достигается большой объем мышечной работы, который затем должен снижаться для обеспечения оптимальной суперкомпенсации мышечной ткани.
Автор хотел бы поблагодарить Dr. William Kraemer, Dr. James Eldridg, и Dr. Sue Mottinger за их помощь и рекомендации при подготовке этого обзора.
References
Перевод осуществляли магистры:
М. А. Красильникова (Типы мышечной гипертрофии)
Н.В. Вострикова (Клетки-сателлиты и мышечная гипертрофия)
М.А. Аглицкая (Гормоны и цитокины)
К.Д. Реентович (Тестостерон и гормон роста)
А.А. Совкова (Клеточная гидратация (отек), гипоксия)
А.Ю. Маркова (Начало гипертрофии, индуцированной Упражнениями)
О.С. Корягина (Интенсивность)
А.Ж. Бисалиева А.Ж. (Объем)
Е. Лапсакова Е. (Выбор упражнений)
Аль-Бутхбахак (Интервалы отдыха, мышечный отказ)