В электрических машинах большого размера плиты снабжаются пальцами которые изготавливаются
Щетки и щеткодержатели электрических машин постоянного тока: назначение, материал, виды и устройство
В электрических двигателях и генераторах часто необходимо установить электрическое соединение между неподвижной и вращающейся частью устройства.
В случае статорной (т. е. неподвижной) основной обмотки электрической машины устройство от нее ответвлений для присоединения внешней неподвижной электрической системы осуществляется легко, в случае же роторной (т. е. вращающейся) основной обмотки возникает необходимость в устройстве скользящего электрического контакта, так как иначе роторная обмотка недоступна.
В первых электрических машинах щетки представляли собой пакет, собранный из медных пластинок или тонких проволочек, откуда они и получили свое название.
Щетки современных машин — это кубики, спрессованные из угольных, графитных или медных порошков, и поэтому не соответствуют своему названию, которое, однако, сохранилось за ними.
Медные, железные и бронзовые щетки, которые очень хорошо выполняли свою работу в первых машинах постоянного тока в конце XIX века, оказались не очень хорошими материалами в отношении трения. Они быстро изнашивались и в новых конструкциях машин были заменены на угольные и графитовые.
В настоящее время для машин постоянного тока применяют почти исключительно угольные щетки с примесью графита, носящие, в зависимости от процентного содержания графита и от способа изготовления щеток, названия угольно-графитовых, графитовых, либо электрографитовых. Лишь для машин на небольшие напряжения, до 30 В, применяют металло-угольные щетки, дающие меньшее падение напряжения в контактном (переходном) слое на коллекторе.
Графитовые щетки изготовляются из чистого природного графита. Графит измельчается в мелкий порошок, который затем прессуется под очень большим давлением в бруски нужных размеров. Уголь и графит являются отличными проводниками электрического тока.
Электрографитовые щетки — это, по существу, угольные щетки, но подвергнутые воздействию высокой температуры в электрической печи и превращенные таким образом в графитовые. Эти щетки обладают свойством очень хорошо пришлифовываться.
Металло-угольные щетки изготовляются из угля и меди, измельченной в мелкий порошок, иногда с прибавкой другого измельченного металла (чаще всего олова).
Изготовление этих щеток ведется таким образом, чтобы щетка обладала возможно лучшей проводимостью в осевом направлении, в котором проходит рабочий ток машины, и плохой проводимостью (большое электрическое сопротивление) в поперечном направлении, в котором происходит при коммутации замыкание добавочных токов коммутируемых секций.
Щетки для электрических машин стандартизованы. Они характеризуются твердостью, переходным падением напряжения в контакте и допустимой плотностью тока.
Эта технология передачи энергии, которой уже более ста лет, широко используется и сегодня. Угольные щетки до сих пор можно найти во многих электродвигателях. Начиная с небольших двигателей в игрушках, электрических кухонных приборов, электрических стеклоподъемников, бритв, стиральных машин, фенов, пылесосов или электроинструментов (электродрелей, угловых шлифовальных машин, кусторезов, циркулярных пил и т. д.).
Щетки также применяются в бильших машинах постоянного тока в электровозах, подводных лодках и генераторах электростанций, а также в ветряных турбинах. Соответственно разнообразны геометрические и электрические характеристики угольных щеток.
Число зон (образующих цилиндрической поверхности коллектора) установки щеток на коллекторе обычно равно числу полюсов машины. Число щеток в каждой зоне зависит от величины тока и допустимой для данного сорта щетки плотности тока под щеткой, однако меньше двух щеток на зону можно встретить только в очень маленьких машинах, так как при одной щетке на зону трудно обеспечить надежность щеточного контакта.
Щетки, стоящие в одной и той же зоне, называются зонным комплектом щеток, а совокупность всех зонных комплектов данной машины — полным комплектом щеток.
Торцевую поверхность щеток со стороны, противоположной соприкосновению с коллектором, обычно обмедняют, иногда лудят. При небольшом токе отводимом щеткой, достаточно удовлетворительные условия отвода тока обеспечиваются поверхностью соприкосновения щетки со щеткодержателем и нажимной пружиной.
Щетки больших размеров снабжают плотно надетыми на них колпачками из листовой меди и прикрепленными к ним поводками из медных гибких канатиков соответствующих сечений, с наконечниками для присоединения под винтик к щеткодержателю или к детали, предназначенной для отвода от щетки тока. Колпачок щетки с канатиком называют арматурой щетки.
Щетки удерживаются в фиксированном относительно коллектора положении щеткодержателями, конструкции которых весьма разнообразны.
Если электрическая машина предназначается для обоих направлений вращения, то применяют радиальные щеткодержатели, обеспечивающие расположение щетки по радиусу коллектора. В машинах с одним определенным направлением вращения часто применяют щеткодержатели с некоторым наклоном щетки к радиусу.
Щеткодержатель для машин постоянного тока малой и средней мощности
Щеткодержатель крупной машины постоянного тока
Щеткодержатели одной зоны укрепляют на щеточных пальцах круглого или квадратного сечения либо на щеточных бракетах. Щеточные пальцы или бракеты разных зон установки щеток укрепляют на щеточных суппортах или щеточных траверсах, от которых они должны быть надежно изолированы.
В свою очередь, щеточные траверсы крепят либо к подшипникам, либо к подшипниковым щитам, либо к ярму или, наконец, устанавливают независимо на фундаментную плиту машины (при больших длинах коллектора).
Важными условиями, которым должны удовлетворять щеточный суппорт или щеточная траверса, являются, безусловное отсутствие вибраций, доступность осмотра щеток и их регулировки, легкий съем отдельных щеткодержателей для ремонта и возможность одновременного поворота всей системы щеток для точной установки их в надлежащем для коммутации положении при сохранении полной концентричности щеткодержателей и коллектора.
Щетки, щеткодержатели, пальцы (или бракеты) и траверса (или суппорт) составляют так называемый токособирательный аппарат машины постоянного тока. В него входят также соединения между собой зонных комплектов щеток одной и той же полярности.
Для отвода тока щеточные пальцы и бракеты одноименных зон (т. е. одной и той же полярности, положительные или отрицательные) соединяют электрически друг с другом изолированным проводом соответствующего сечения.
Таким образом, получают два собирательных полных или неполных кольца, которые затем присоединяют посредством гибких кабелей соответствующего сечения к внешним зажимам машины. Последние крепят на особой доске зажимов либо к ярму, либо к фундаментной плите машины. Прикрытая защитной крышкой доска зажимов образует коробку зажимов.
Правильное применение и выбор щеток вместе с надлежащим техническим обслуживанием приводят к повышению производительности машины и снижению затрат на время простоя.
Поскольку трение, вызванное вращением устройства, вызывает абразивный износ, щетки необходимо периодически заменять. По этой причине были изобретены бесщеточные электродвигатели.
Промышленные электрические плиты: особенности и виды
Основные характеристики промышленных электроплит
От того, насколько будет правильно подобрано технологическое оборудование, во многом зависит работа всей кухни. Например, если производительности электрических плит будет недостаточно для обслуживания большого потока посетителей, то тут же возникнут заминки с выполнением заказов и проявится недовольство клиентов. Мощность больших плит, установленных на кухне маленьких ресторанов и кафе, останется невостребованной, а перерасход электроэнергии приведет к неоправданным затратам. Поэтому в процессе выбора оснащения нужно учесть многие факторы. Лучше всего этот вопрос, конечно же, доверить специалистам, но иногда знание даже общих параметров может помочь сделать правильный выбор.
Профессиональные электроплиты классифицируют по многим признакам. Они выпускаются таких видов:
По типу монтажа электроплиты бывают отдельно стоящими, пристенными или модульными. Выбор зависит от особенностей организации рабочего пространства на кухне, устройства системы вентиляции, расположения вытяжек и других факторов. Также при выборе следует учесть высоту, длину и глубину оборудования. Например, две 4-конфорочных промышленных электроплиты могут иметь совершенно разную конфигурацию.
Немаловажным фактором, влияющим на выбор оснащения, является вид конфорок. Они бывают такой формы:
Конфорки изготавливаются из чугуна, стеклокерамики и других материалов, а также отличаются мощностью. В последнее время популярностью пользуются индукционные электроплиты, на которых зона нагрева определяется автоматически в зависимости от размера посуды. Такое оборудование зарекомендовало себя как очень энергоэффективное и безопасное (поверхность плиты не нагревается).
Дополнительные опции промышленных электрических плит
Особенность промышленного оборудования – его высокая функциональность. Электрические плиты также снабжаются дополнительными функциями, а их конструкцией может предусматриваться использование вспомогательного оборудования. Если вы планируете купить электрическую плиту для ресторана, то обратите внимание на наличие таких особенностей:
Покупая плиту для столовой или ресторана, важно учесть ее мощность и производительность. Как сами плиты в целом отличаются по таким характеристикам, так и каждая конфорка может иметь свои показатели мощности.
Преимущества использования профессиональных электрических плит
В интернет-магазине DSTO вы можете купить промышленные электрические плиты, которые имеют такие преимущества:
Заказать доставку и монтаж оборудования можно по Харькову, а также в Киев и другие города Украины. Мы предоставляем гарантию на мебель и оснащение, а также информационную поддержку в случае необходимости.
Термопластавтоматы: Разновидности и принцип действия
Пластиковые изделия пользуются спросом не только потому, что они делаются из легкого и практичного материала со стороны потребителя, а скорее по причине того, что предприятиям выгодно выпускать продукцию из этого материала, так как такой шаг существенно снижает затраты на производство.
Современные технологии позволяют создавать из пластмассы сложные конструкции практически любой формы.
При желании сырье можно повторно переработать с помощью специальных шредеров или измельчителей.
При этом детали изготавливаются с высочайшей точностью.
Именно поэтому пластик используется при конструировании компонентов для сложнейшей техники: самолетов, автомобилей, ракет и т. д.
6.1. Устройство и работа литьевых машин
Не менее чем в течение полувека метод литья под давлением для получения изделий из термо- и реактопластов — один из самых распространенных в промышленности. Суть метода состоит в том, что полимер, поступающий в гранулированном (реже в порошкообразном) виде в специальный инжекционный цилиндр, нагревается до вязкотекучего состояния, пластицируется, гомогенизируется, а затем под высоким давлением и с большой скоростью впрыскивается в сомкнутую литьевую форму. В форме полимер охлаждается (при литье термопластов) или отверждается (при литье реактопластов), переходит в твердое состояние, после чего готовое изделие извлекается из формы.
В настоящее время в промышленности реализуются различные технологические схемы процесса литья под давлением, что, естественно, не может не влиять на разнообразие конструкций литьевого оборудования.
Остановимся на классической схеме работы литьевого оборудования. Перерабатываемый материал вручную или специальными транспортными устройствами подается в бункер 1
(рис. 6.1), установленный над загрузочным отверстием инжек- ционного (материального) цилиндра
2.
Предпочтение отдается гранулированным материалам, так как по сравнению с порошкообразными они лучше транспортируются, не прилипают к стенкам бункера, не склонны к сводообразованию, менее гигроскопичны и легче дозируются.
Рис. 6.1. Схема литьевой машины с пластикатором шнекового типа
В ряде случаев в бункере устанавливается ворошитель, улучшающий подачу материала в материальный цилиндр; устройство для подсушки материала; датчики заполнения и другие устройства.
Из бункера материал через загрузочное отверстие поступает в материальный цилиндр. Современные машины в подавляющем числе случаев оборудованы шнековыми пластикаторами: в материальном цилиндре 2
находится шнек
3,
имеющий приводы как для вращательного 7, так и для возвратно-поступательного
8
движений. В момент загрузки материала шнек вращается и обеспечивает продвижение полимера вдоль своей оси к соплу
4,
находящемуся в конце материального цилиндра. Во время транспортировки от загрузочного отверстия к соплу материал нагревается за счет подвода тепла от нагревателей, установленных на внешней поверхности материального цилиндра, плавится, гомогенизируется и пластицируется. Нагреватели (чаще всего это нагреватели сопротивления, реже — индукционные) распределяются вдоль материального цилиндра по зонам обогрева, причем каждая из зон имеет свои датчики и систему независимого регулирования температуры. Во избежание залипания материала на стенках загрузочного отверстия и вблизи его в области соединения материального цилиндра с бункером предусматривается зона водяного охлаждения.
Сопло материального цилиндра при переработке материалов с большой вязкостью, обладая значительным гидравлическим сопротивлением (сопло открытого типа), препятствует выходу расплава полимера, подаваемого шнеком, наружу В области перед соплом начинает скапливаться доза полимера, а так как шнек продолжает вращаться, то в этой области создается давление (давление пластикации), которое, воздействуя на шнек, стремится отодвинуть его и таким образом расширить объем для набираемой дозы. Устройство машины позволяет перемещение шнека вдоль своей оси. Так продолжается до тех пор, пока не будет набран необходимый объем дозы. В случае переработки полимеров с низкой вязкостью расплава на время набора дозы сопло запирается специальным клапаном (сопло закрытого типа).
После того как в шнековом пластикаторе набралась необходимая доза полимера, сопло материального цилиндра подводится с помощью привода 9
к предварительно сомкнутой форме
5.
Создается осевое усилие на шнек, направленное в сторону сопла. В накопленном объеме полимера создается высокое давление (давление впрыска) и полимер, преодолевая гидравлическое сопротивление сопла открытого типа, или через открывшийся клапан сопла закрытого типа устремляется через литниковую систему 6 формы в ее оформляющую полость. После заполнения формы полимер в течение некоторого времени выдерживается под давлением, а затем происходит либо его охлаждение (при переработке термопластов), либо отверждение (при переработке реактопластов). Затем форма размыкается и из нее извлекается готовое изделие.
Что представляет собой термопластавтомат. |
По сути, термопластавтомат – это машина для литья под давлением изделий из термопластов. Сами термопласты – это особые полимерные материалы, которые под воздействием температуры из твердого состояния переходят в эластичное, вязкотекучее, что позволяет многократно придавать им нужную форму.
Принцип работы термопластавтомата
Есть несколько разновидностей этих машин. Каждый вид имеет свою специфику и преимущества. Например, вертикальный термопластавтомат очень легко обслуживать, а горизонтальный позволяет изготовить более габаритные изделия. Однако конструкция несущественно влияет на принцип работы такой машины.
Принцип действия заключается в следующем.
Главной особенностью работы таких литьевых машин является цикличность, а также возможность частичной и полной автоматизации процесса, вплоть до подачи термопласта. Каждая из них позволяет менять внешний вид получаемых изделий путем замены пресс-формы. В каждом конкретном случае при необходимости в производстве совершенно нового типа изделий новые формы. Изготовление пресс-форм – процесс, требующий особой точности и высокой квалификации ответственного персонала.
Особенности и параметры выбора
Основные характеристики термопластов и являются критериями их выбора, тем, на что необходимо обратить особое внимание.
Часто имеют большое значение и другие показатели, например, производительность, называемая в этом случае пластикационной способностью, быстроходность и площадь литья.
Принцип работы литьевых машин
Процесс литья пластмасс под давлением на литьевых машинах у упрощенном виде сводится к следующему (рис. 1): сырье засыпается в бункер 1, дозируется в приспособлен 2 и в количестве, необходимом для каждой отливки, поступает в приемную камеру 3.
Ходом поршня 4 пластмасса подается в обогревательный цилиндр 5 с электрическим нагревателем 6; в обогревательном цилиндре происходит ее пластикация (размягчение, плавление).
Обогревательный цилиндр вмещает пластмассу в количестве достаточном для 8-10 отливок. Поэтому при подаче поршнем в обогревательный цилиндр очередной дозы пластика, такое же количество уже расплавленного материала продавливается через мундштук (сопло) машины и литниковые каналы формы в ее полость 8.
Материал, поступающий в обогревательный цилиндр, обычно имеет температуру окружающего воздуха t1, материал, поступающий в литьевую форму, уже нагрет до температуры пластичности t2 и продавливается из обогревательного цилиндра под давлением от 800 до 2500 кг/кВ. см.
Форма состоит из двух основных частей – передней 9 и задней 10 – и охлаждается обычно водой, протекающей по каналам 11.
Так как температура формы в большинстве случаев примерно на 100-160° ниже, чем температура заливаемой массы, то в форме происходит быстрое охлаждение и отверждение пластмассы, причем оба процесса ведут к уменьшению ее объема.
Вследствие этого в форме образуется незаполненное пространство, и для восполнения его массой, а также для предотвращения возможности вытекания материала обратно из формы требуется поддержание давлений поршня на некоторое время, называемое выдержкой под давлением.
Затем поршень начинает движение в исходное положение (назад).
В форме пластик охлаждается еще некоторое время до температуры t3 (выдержка для охлаждения), при которой пластмасса сохраняет форму изделия. После этого изделие сбрасывается из гнезда толкателями при раскрытии формы. Теперь может быть начат новый цикл литья. Однако возможно, что к этому моменту очередная доза заливаемого материала не успевает прогреться в цилиндре; в таком случае перед началом нового цикла дается выдержка (пауза) при раскрытой форме.
Машины для литья под давлением
Высокое качество отливок легче обеспечить при использовании машин для литья под давлением с горизонтальной камерой прессования, имеющих меньшие потери тепла и давления в литниковой системе. Кроме того, машины с горизонтальной камерой имеют более высокую производительность, чем машины с вертикальной камерой, вследствие отсутствия операции отрезки литника от прессостатка.
Для отливок из цинковых и магниевых сплавов можно применять машины с горячей камерой прессования, причем машины, предназначенные для литья магниевых сплавов, должны иметь мощные насосы и аккумуляторы, которые могут обеспечить скорость прессования до 3 м/сек.
При установке емкости заливочной камеры следует стремиться к уменьшению диаметра прессующего поршня и камеры прессования, так как при этом снижается объем прессостатка, повышаются давление на металл и стойкость деталей прессующего узла.
В то же время диаметр прессующего поршня Dпp не должен быть меньше минимально допустимого значения, определяемого из условий раскрытая формы:
где n — коэффициент, зависящий от степени открытия запорного вентиля; Рпр — усилие прессования машины в н; Рзап — запирающее усилие машины в н; ΣFпр — сумма площадей проекций отливки и литниковой системы на плоскость разъема формы в см2.
Для машин типа Рид—Прентис 1½G и 515 значения коэффициента n приведены в табл. 8. Для машин с вертикальной камерой прессования и для других типов машин с горизонтальными камерами можно принимать эти же значения n в зависимости от величины скорости прессования.
Таблица 8. Значения коэффициента n
Степень открытия запорного вентиля (обороты) | Максимальная скорость прессования в м/сек | р* | n | |
в Мн/м2 | в кГ/см2 | |||
½ 1 2 5½ | 0,43 0,73 1,00 1,30 | 7.0 8,4 11.2 12,6 | 70 84 112 126 | 1.0 1.2 1.6 1,8 |
*p — давление рабочей жидкости в аккумуляторе и гидравлической системе в момент остановки поршня
Например, для отливки массой 8,9 кг при диаметре камеры прессования 100 мм и суммарной площади проекций ΣFпр = 1200 см2 допускаемое усилие прессования составляет 528 кн (52,8 т). Одновременно по номограмме определяется величина давления на металл в камере прессования, которая для рассматриваемого примера равна 65 Мн/м2 (650 кГ/см2).
Рис. 99. Паспортная номограмма для машины OL800 (номограмма приведена в системе СИ)
Необходимую величину скорости прессования vпр можно установить в зависимости от объема отливки Уотл и времени заполнения формы τзап. определяемого формулой (92), формулой (94), формулой (97) и формулой (98):
Усилие прессования рассчитывается для второй фазы заполнения, т. е. когда в форме действует гидростатическое давление и скорость движения прессующего порпшя можно считать равной нулю. Следовательно, на величину усилия прессования не влияют гидродинамические сопротивления в литниковой системе и форме, действующие только в процессе заполнения.
Усилие прессования зависит от теплового состояния формы и особенно литниковой системы. Чем меньше площадь поперечного сечения питателя и температура стенок формы, тем большее требуется усилие прессования при литье.
Если заранее созданы такие условия, что гидростатическое давление из камеры прессования будет передаваться в форму через литниковую систему, то усилие прессования можно рассчитать по методу, разработанному А. И. Вейником.
Для обеспечения непрерывного питания отливки жидким металлом необходимо, чтобы усилие прессования Рпр превышало сопротивление, оказываемое затвердевшей корочкой, образующейся в камере прессования,
где n — коэффициент запаса, принимаемый равным 1,2—1,5; η — к. п. д. прессующего механизма, равный для машин с горизонтальной камерой прессования 0,8 и с вертикальной 0,7; ƒпр — площадь сечения корки, затвердевшей в камере прессования к моменту полного затвердевания отливки, в м2; σt — предел прочности заливаемого сплава при температуре затвердевания в н/м2.
Величина затвердевшей корочки зависит от условий охлаждения металла в камере прессования и от времени полного затвердевания отливки. Площадь сечения затвердевшей корочки ƒпр определяется из уравнения теплопередачи, составленного для охлажденного металла в камере прессования,
где λсм — коэффициент теплопроводности смазки в камере прессования в вт/мсС; Хсм — толщина слоя смазки в м; Ппр — длина контура сечения камеры в м; tкр — температура кристаллизации металла в °С; tпр — температура стенок камеры в °С; ρм— плотность затвердевшего металла в кг/м; r — удельная теплота кристаллизации металла в дж/кг; τ1 — время, прошедшее от момента начала затвердевания металла в камере прессования до момента полного затвердевания всей отливки, в сек.
Предельное расчетное условие ƒпр = Fпр означает, что в момент полного затвердевания отливки полностью затвердевает металл в камере прессования.
Классификация литьевых машин
Литьевые машины классифицируются:
Наибольшее распространение получили машины с электромеханическим и гидравлическим приводом, с полуавтоматическим и автоматическим управлением, мощностью 30 и 50г; машины больших мощностей применяются реже.
Пластиковые изделия пользуются спросом не только потому, что они делаются из легкого и практичного материала со стороны потребителя, а скорее по причине того, что предприятиям выгодно выпускать продукцию из этого материала, так как такой шаг существенно снижает затраты на производство.
Современные технологии позволяют создавать из пластмассы сложные конструкции практически любой формы.
Производство изделий из пластмассы
Наиболее эффективным способом для производства изделий из пластика является метод литья под давлением.
Литье осуществляется на специальных установках – термопластавтоматах (альтернативное название: инжекционные литьевые машины), о которых и пойдет речь в данной статье.
Процесс литья осуществляется следующим образом: сырье в виде гранул полимеров поступает в термопластавтомат, где нагревается до температуры плавления и впрыскивается в пресс-форму, пластмасса остывает, материал становится твердым, далее литьевая форма размыкается, выталкивая содержимое, так и получается готовое пластиковое изделие.
Термопластавтомат — Википедия
Материал из Википедии — свободной энциклопедии
Двухкомпонентный горизонтальный термопластавтомат Технологическая схема работы термопластавтомата: 1 — шнек 2 — дозировочное устройство гранулята 3 — сопло 4 и 6: — две половины пресс-формы 5 — (красным) полость формы с каналами 5 — (жёлтым) готовый отливок
— инжекционно-литьевая машина, применяемая для изготовления деталей из термопластов методом литья под давлением. В настоящее время более трети штучных изделий из полимерных материалов в мире производится с использованием термопластавтоматов. Более половины номенклатуры оборудования, применяемого в переработке полимеров, предназначено для литья под давлением. Технология литья идеально соответствует массовому производству изделий сложной формы, важным требованием к которым является точное соответствие размерам. Промышленное литье (промлитье) осуществляется по ГОСТам.
В 1865 году компания Phelan & Collendar, производившая бильярдные шары, объявила о вознаграждении в 10000 долларов тому, кто найдёт новый материал, способный заменить слоновую кость. Приз в 10000 привлёк внимание Хайата, и в 1869 году у него возникла идея использовать нитроцеллюлозу, материал, над которым ранее работали Паркс и Шонбейн. Он добился необходимых свойств и качества материала, но вместо того, чтобы получить обещанное вознаграждение в 10000 долларов, Джон Хайат вместе со своим братом Исайей основал компанию Albany Billiard Ball, ставшую конкурентом Phelan & Collendar, — этот момент можно считать началом промышленного производства пластмасс.
На основе патента на метод изготовления под давлением металлических отливок, п
Устройство термопластавтомата
Термопластавтомат состоит из множества сложных механизмов, поэтому мы рассмотрим только его основные части.
- Автосалоны с подержанными авто в уфе
- что посмотреть в егорьевском районе московской области