Vacuum перевод в машине
Vacuum перевод в машине
Откройте возможности нейронного машинного перевода PROMT
PROMT.One (www.translate.ru) – бесплатный онлайн-переводчик на основе нейронных сетей (NMT) для азербайджанского, английского, арабского, греческого, иврита, испанского, итальянского, казахского, китайского, корейского, немецкого, португальского, русского, татарского, турецкого, туркменского, узбекского, украинского, финского, французского, эстонского и японского языков.
Изучайте времена и формы глаголов в английском, немецком, испанском, французском и русском языках в разделе Спряжение и склонение. Учите употребление слов и выражений в разных Контекстах. Мы собрали для вас миллионы примеров перевода на разные языки, которые помогут вам в изучении иностранных языков и подготовке домашних заданий.
Переводите в любом месте и в любое время с помощью мобильного переводчика PROMT.One для iOS и Android. Попробуйте голосовой и фотоперевод, скачайте языковые пакеты для офлайн-перевода.
Поделиться переводом
Но сейчас вы можете переводить только 999 символов за один раз.
Пожалуйста, войдите или зарегистрируйтесь, чтобы переводить до 5 000 символов единовременно. войти / зарегистрироваться
Добавить в избранное
Для добавления в Избранное необходимо авторизоваться
Диагностика двигателя с помощью вакуумметра
Диагностика двигателя с помощью вакуумметра
Одно из средств ранней диагностики, вакуумметр*, сохраняет свою эффективность для выявления технических неисправностей двигателя. Он так же может быть заменен электронным преобразователем давления.
*Вакуумметр – это тот же манометр, измеряющий отрицательное давление внутри какого-то объема, т.е. насколько давление внутри этого объема меньше атмосферного для данной местности в момент измерения, иными словами вакуумметрическое давление. Автор использует термин «вакуум», прекрасно понимая, что никакой это не вакуум, а скорее разрежение. Я буду придерживаться того же. Далее, выделенное курсивом будет означать мою «отсебятину».
Неужели до сих пор находится применение вакуумметрам? Сегодня полно двигателей, которые могут никогда не потребовать регулировки клапанов, которые сами регулируют зажигание, контролируют условия пропусков зажигания и сами корректируют подачу топлива при незначительном падении вакуума (при появлении подсоса воздуха во впускном тракте). Тем не менее, типичная топливная система, контролируемая компьютером, все еще сильно зависит от состояния двигателя и наличия сильных (различимых), надежных вакуумных управляющих сигналов.
Вот почему значения уровня вакуума сегодня важны как никогда. К тому же измерение вакуума с помощью вакуумметра оказывается самым быстрым и самым простым тестом. Не нужно искать специальных переходников для топливного расходомера как, например, для различных тестов по измерению давления топлива. Не нужно выворачивать свечи как при измерении компрессии. Надо просто найти подходящее место для подключения вакуумметра к впускному тракту и подключить его.
Когда мы измеряем давление во впускном тракте, на самом деле мы сравниваем давление внутри впускного тракта с атмосферным давлением снаружи впускного тракта. Разница этих давлений и является причиной поступления воздуха и топлива в камеру сгорания. Мы будем называть меньшее давление внутри впускного коллектора «вакуумом».
Величина созданного в тракте вакуума зависит от оборотов двигателя и положения дроссельной заслонки. Если отключить подачу топлива и зажигание, и затем начать вращать двигатель стартером, то во впускном тракте начнет создаваться вакуум. Чем быстрее вращается двигатель, тем больший вакуум будет создаваться, но до тех пор, пока дроссельная заслонка будет создавать собой препятствие, оставаясь закрытой. Как только заслонка откроется, вакуум будет уменьшаться, но только если скорость вращения будет оставаться постоянной. Перед тем как идти дальше, важно понять эту основную концепцию.
Вероятно, вы уже слышали об использовании вакуумметра для проверки вакуума при запуске. Это полезный тест, т.к. свечи и топливо в процессе не участвуют и, таким образом, мы видим только механическое состояние двигателя. Без топлива и зажигания, понятие вакуума является самым простым для понимания. Оно зависит только от механического состояния двигателя, если мы знаем обороты и положение дроссельной заслонки (ДЗ).
Назовем измерение вакуума при принудительном вращении двигателя стартером при отключенной подаче топлива и зажигании «пусковым тестом», а показания вакуумметра «пусковым вакуумом».
Все усложняется, если мы включаем в процесс подачу топлива и зажигание, т.к.
они напрямую влияют на обороты двигателя. Например, если два одинаковых
двигателя работают при одинаковом положении ДЗ, то обеднение смеси приведет
к более медленному вращению одного из двигателей по сравнению с другим
двигателем, работающем на правильной смеси. Для выравнивания оборотов придется приоткрыть ДЗ первого (медленного) двигателя (уменьшая сопротивление поступающему воздуху), что приведет к снижению вакуума и соответственно показаний вакуумметра.
Таким образом, по вакууму можно достоверно оценить насколько хорошо работает двигатель. Чем выше вакуум при определенных оборотах и открытой заслонке, тем лучше работает двигатель. Понятно, что маленький (низкий по абсолютному значению) вакуум свидетельствует о наличии проблемы, но с чего начать поиск? На самом деле причина низкого вакуума может быть в чем угодно, включая зажигание, подачу топлива или свидетельствовать о механических проблемах.
Ниже мы поговорим об интерпретации показаний вакуумметра при различных тестах и идентификации заболеваний двигателя. Каждый нюанс, который влияет на вакуум, оставляет уникальный след.
Измерение вакуума с помощью вакуумметра
Трудно все запомнить?
Если Вы не обладаете фотографической памятью, запомнить все возможные комбинации показаний вакуумметра и причины их вызвавшие практически невозможно. Для упрощения, мы свели все испытания с помощью вакуумметра к их простым основам. Два следующих простых теста определят наличие хорошего вакуума до того как приступить к следующим проверкам.
1. Пусковой вакуум
2. Показания вакуумметра на прогретом, работающем на холостом ходу двигателе, при частично открытой дроссельной заслонке, без нагрузки на 2000 и 3000 об/мин и во время снижения оборотов с максимума при резком закрытии заслонки.
Во-первых, проверьте пусковой вакуум (обычно проводят на двигателе с отключенными подачей топлива и зажиганием). Подсоедините вакуумметр к источнику вакуума во впускном коллекторе. Убедитесь, что заслонка закрыта и двигатель вращается стартером с нормальной скоростью. Пусковой вакуум должен находиться в пределах по меньшей мере от 0.1 до 0.2 кгс/см2 (3-6 inch Hg).
Во-вторых, проверьте вакуум на прогретом двигателе на холостом ходу, при частично открытой ДЗ и при сбросе газа.
Сначала измерьте вакуум во впускном коллекторе на холостом ходу. Показания вакуумметра должны быть стабильными и находиться в пределах 0.6-0.7 кгс/см2 (17-21 inch Hg).
Теперь увеличьте обороты до примерно 2000 об/мин. Удерживайте их постоянными и наблюдайте за показаниями. После начального уменьшения показаний при открытии дроссельной заслонки они должны вернуться к уровню вакуума ХХ, зафиксированному на предыдущем тесте, или близкому к нему. Некоторые EGR клапана срабатывают без нагрузки. Если вы увидите небольшое снижение вакуума во время теста с неизменным положением дроссельной заслонки, отключите EGR и проведите замеры снова.
Проведите измерения на 3000 об/мин, вы должны получить аналогичный результат.
Позвольте заслонке резко закрыться от ранее резко открытого положения. Показания вакуумметра должны резко увеличиться до более высоких значений, чем получены на холостом ходу, и составить 0.67-0.85 кгс/см2 (20-25 inch Hg), затем медленно опуститься по мере снижения оборотов двигателя. Стрелка вакуумметра должна вернуться на прежнее место, соответствующее показаниям при холостом ходе, полученным в начале этого теста, и оставаться в этом положении.
Если двигатель прошел эти тесты, то все говорит о том, что с механической точки зрения он в порядке — по-крайней мере достаточно исправный, чтобы прокачивать воздух на ХХ, частично открытой ДЗ и сбросе оборотов.
Стабильные показания вакуумметра в диапазоне 0.6-0.7 кгс/см2 (17-21 inch Hg) на холостом ходу — это есть гуд. Показания вакуумметра должны стабилизироваться на этом уровне или более высоком при удержании заслонки в частично открытом положении. Двигатель не смог бы этого сделать, если бы имел одну или две сломанные пружины. И синхронизация клапанов/поршней должна быть правильной, иначе двигатель не смог бы поддерживать прокачку на более высоких оборотах. И наконец, внутренние детали двигателя (клапана и поршневые кольца) должны обеспечивать достаточно хорошую герметичность, чтобы поднять вакуум при сбросе оборотов.
Если вы получили «правильные» показания вакуумметра, а двигатель не работает хорошо, поищите неисправность еще где-либо, например, проверьте давление топлива, вторичное искрообразование и содержание выхлопных газов. Если получены «неправильные» показания, вот Ваши варианты:
Если пусковой вакуум низкий, или ноль, поищите основную проблему, например, заклинивание распредвала или большой подсос воздуха.
Если вакуум холостого хода низкий, но стабильный, проверьте сначала ГРМ.
Объяснения показаниям вакуумметра, которые окажутся внутри указанных пределов, найдете в начале этой статьи, что поможет Вам идентифицировать результаты.
Самое главное преимущество вакуумметра — это его способность выявить проблемы, связанные с низким вакуумом. Другие тесты, такие как баланс мощности, four gas, вторичное зажигание и проверка давления топлива, также помогут Вам локализовать неисправности.
Диагностика состояния двигателя с применением вакуумметра
Попалась на глаза интересная статья о интерпретации результатов вакуумметра. Хочу поделиться.
Но для начала несколько слов о единицах давления. Я понимаю, что исторически так сложилось, что единого стандарта нет. В зависимости от движения небесных светил единицами измерения давления на манометре могут оказаться: бары, паскали (килопаскали, гектопаскали и т.д.), килограммы силы на квадратный сантиметр, физические и технические атмосферы, фунты на квадратный дюйм (psi), единицы (дюймы, сантиметры, миллиметры…) ртутного или водного столба и т.д. и т.п. Как-то, хотя и с трудом, я ещё могу понять, что на одном и том же приборе шкала от нуля вверх пронумерована в psi и кгс/кв.см, а шкала вниз при этом пронумерована в in/Hg и см рт. ст. Но я отказываюсь понимать, как в Torque Pro при одних и тех же настройках (даже более — одномоментно!) информация о вакууме при отображении в виде графика показывается в барах, а при отображении в виде стрелки — в in/Hg, при этом давление давление во впускном коллекторе в килопаскалях, а атмосферное давление в милибарах. Мозг@ёбство какое-то.
Короче, для справки:
1 бар = 100 кПа = 1,02 кгс/кв.см = 0,9869 атм = 1,02 ат = 14,5 psi = 29,53 in Hg = 75,01 см рт. ст. = 750,1 мм рт. ст.
1 килограмм силы на квадратный сантиметр (кгс/кв.см) = 0.9807 бар = 98.07 кПа = 0.9678 атм = 1 ат = 14.22 psi = 28.96 in Hg = 73.56 см рт. ст. = 735.6 мм рт. ст.
1 физическая атмосфера (атм) = 1.013 бар = 101.3 кПа = 1.033 кгс/кв.см = 1.033 ат = 14.7 psi = 29.92 in Hg = 76 см рт. ст. = 760 мм рт. ст.
1 фунт на квадратный дюйм (psi) = 0.06895 бар = 6.895 кПа = 0.07031 кгс/кв.см = 0.06805 атм = 0.07031 ат = 2.036 in Hg = 5.171 см рт. ст. = 51.71 мм рт. ст.
1 дюйм ртутного столба (in/Hg) = 0.03386 бар = 3.386 кПа = 0.03453 кгс/кв.см = 0.03342 атм = 0.03453 ат = 0.4912 psi = = 2.54 см рт. ст. = 25.4 мм рт. ст.
1 сантиметр ртутного столба (см рт. ст.) = 0.01333 бар = 1.333 кПа = 0.0136 кгс/кв.см = 0.01316 атм = 0.0136 ат = 0.1934 psi = 0.3937 in Hg = 10 мм рт. ст.
Использование вакуумметра при сравнительно небольших денежных затратах позволяет получить достаточно емкую информацию о внутреннем состоянии двигателя. По результатам проведенных измерений можно составить представление о степени износа поршневых колец и зеркал цилиндров, выявить признаки выхода из строя прокладок головки цилиндров и впускного трубопровода, нарушения регулировок карбюратора и проходимости системы выпуска отработавших газов, заклинивания или прогара клапанов, проседания клапанных пружин, сбоя установки угла опережения зажигания или фаз газораспределения, отказов системы зажигания, и т.д. и т.п.
К сожалению, результаты снятых при помощи вакуумметра показаний легко неправильно интерпретировать, а потому, они должны анализироваться вкупе с данными, полученными в ходе выполнения других диагностических проверок.
При считывании показаний индикатора вакуумметра следует обращать внимание не только на абсолютную величину отклонения стрелки, но и на скорость ее перемещения. Большинство измерителей импортного производства показывают глубину разрежения в дюймах ртутного столба. При этом следует учитывать, что все нормативные требования приводятся для случая выполнения проверок на нулевой высоте над уровнем моря. Повышение рельефа на каждые 300 метров после отметки в 600 метров н.у.м. приводит к занижению показаний прибора приблизительно на 1 in/Hg.
Подсоедините вакуумметр непосредственно к впускному трубопроводу — не к корпусу дросселя.
Проследите, чтобы в ходе выполнения проверки все шланги оставались подсоединенными, — в противном случае снятое показание нельзя будет считать достоверным.
=== Предосторожности для рукожопов ===
Прежде чем приступать к измерениям, прогрейте двигатель до нормальной рабочей температуры. Подоприте колеса противооткатными башмаками и взведите стояночный тормоз. Переведите трансмиссию в положение “Р”, запустите двигатель и оставьте его работающим на оборотах нормального холостого хода.
Перед запуском двигателя внимательно проверьте лопасти вентилятора на наличие трещин и прочих повреждений. Старайтесь не приближать к крыльчатке руки и измеритель. Также избегайте занимать позицию непосредственно перед автомобилем!
====================================
Считайте показания вакуумметра. В среднем глубина разрежения во впускном трубопроводе исправного двигателя должна быть достаточно стабильной (без рывков стрелки) и составлять около 17-22 in/Hg (43,2-56 см рт. ст., 0,56-0,75 бар)
В нижеследующих параграфах приводится схема интерпретации снимаемых показаний.
1. Низкая стабильность показаний может являться свидетельством утечек через прокладку между впускным трубопроводом и головкой цилиндров, либо же между трубопроводом и корпусом дросселя. Не исключена также вероятность нарушения герметичности вакуумного шланга, сбоя момента зажигания (в сторону отставания), либо нарушения установки фаз газораспределения. Проверьте установку угла опережения зажигания с помощью стробоскопа, затем поочередно исключите все прочие возможные причины, выполняя перечисленные в настоящей Главе проверки, лишь после этого имеет смысл снимать крышку привода ГРМ с целью проверки правильности совмещения установочных меток.
2. Если результат измерения оказывается на 3-8 in/Hg (7,6-20,3 см рт. ст., 0,10-0,27 бар) ниже нормы и при этом имеют место флуктуации, причиной такого отклонения может оказаться нарушение герметичности прокладки впускного трубопровода в районе впускного порта, либо неисправность инжектора впрыска топлива.
3. Регулярное отклонение стрелки измерителя вниз от стабильного показания на 2-4 in/Hg (5,1-10,2 см рт. ст., 0,07-0,14 бар) с высокой степенью вероятности свидетельствует об утечках клапанов. Проверьте компрессионное давление в цилиндрах или проведите тест на утечки.
4. Нерегулярные отклонения или сбросы показаний могут оказаться связаны с заклиниванием клапанов или пропусками зажигания. Измерьте компрессионное давление, проведите тест на утечки, проверьте состояние свечей зажигания.
5. Частая вибрация стрелки индикатора в пределах диапазона в 4 in/Hg (10,2 см рт. ст., 0,14 бар) при холостых оборотах двигателя, сопровождающаяся дымовым выбросом из выпускной трубы, говорит об износе направляющих втулок клапанов. Проведите тест на утечки. Если стрелка начинает вибрировать при повышении оборотов двигателя, проверьте на наличие признаков утечек прокладки впускного трубопровода и головки цилиндров. Оцените степень проседания клапанных пружин, проверьте на наличие следов прогара клапаны и постарайтесь выявить пропуски зажигания.
6. Незначительные флуктуации показаний в пределах диапазона от 1-2 in/Hg (2,5-5,1 см рт. ст., 0,03-0,07 бар) можно рассматривать как свидетельство нарушения исправности функционирования системы зажигания. Проверьте правильность всех обычных настроечных установок, в случае необходимости прибегните к тестированию с применением анализатора параметров зажигания.
7. При наличии флуктуаций стрелки измерителя в широком диапазоне проверьте компрессионное давление или проведите тест на утечки с целью выявления дефектного цилиндра или нарушения герметичности прокладки головки цилиндров.
8. Если стрелка измерителя с медленной скоростью “гуляет” в широком диапазоне шкалы, проверьте проходимость системы PCV и состав смеси холостого хода, также удостоверьтесь в отсутствии утечек через прокладки карбюратора/корпуса дросселя и впускного трубопровода.
9. Оцените скорость возврата показаний вакуумметра к исходному значению при закрывании дроссельной заслонки после подъема частоты вращения двигателя до величины примерно 2500 об/мин за счет быстрого приоткрывания заслонки. Показание сначала должно упасть практически до нуля, затем подняться над значением, характерным для нормальных оборотов холостого хода примерно на 5 in/Hg (13 cм рт. ст., 0,17 бар) и вновь вернуться к показанию холостых оборотов. Если глубина разрежения восстанавливается медленно и не образует пиковый бросок при резком закрывании дроссельной заслонки, следует проверить, не изношены ли поршневые кольца. При долгой задержке возврата показаний проверьте проходимость системы выпуска отработавших газов (часто оказываются заблокированы глушитель или каталитический преобразователь) — проще всего просто отсоединить подозреваемую секцию системы выпуска и повторить проверку.
Что у меня получилось:
В норму укладываюсь. Флуктуации, если это можно считать таковыми, очень незначительны. На более мелком графике их вообще не видно.
Пик (отрицательный, разумеется — это же вакуум) имеется. Но на сколько быстрый возврат к исходным значениям — вопрос.
Так, попутно… Для меня есть и хорошая новость — спустя
200км после чистки кислородного датчика Torque Pro перестал выдавать статус «Incomplete». Так что бежать в магаз за новой Лямбдой мне ещё рано.
Для тех, кто не только лайкнул не глядя, а ещё и осилил много букаф:
Буду безмерно рад, если выложите статистику по своим измерениям.
Вакуумметр – использование данного прибора для диагностика двигателей автомобилей
Вакуумметр является достаточно эффективным средством ранней диагностики двигателя автомобиля. Хотя в настоящее время популярна компьютерная диагностика, вакуумметром по-прежнему можно диагностировать неполадки в работе двигателя, хотя это требует определённых навыков в данной сфере.
Когда применяется диагностика с использованием вакуумметра?
Вакуумметр применяется для диагностики двигателя внутреннего сгорания на предмет его неисправностей. Кроме двигателя, с помощью вакуумметра можно проверить работу клапана, предназначенного для снижения токсичности отработанных газов двигателя. На то, что двигатель начал работать не корректно может косвенно указывать резкое повышение расхода масла или топлива. Кроме того, часто ощущается, что динамика разгона автомобиля значительно уменьшилась, что определённо вызывает логичные вопросы.
Вакуумная диагностика двигателя является быстрым, надёжным и главное недорогим способом провести обследование состояния двигателя и эффективности работы его систем. Если разбираться в данных, которые будет показывать манометр при диагностике, можно получить сведения о следующих системах:
Главное знать, как правильно считывать и интерпретировать показания вакуумметра, которые будут получены в результате проведённой диагностики. Ошибочный анализ результатов приведёт не только к огромному количеству впустую затраченного времени на ремонт двигателя. Это может привести к существенным денежным тратам на те запасные части, которые можно было бы и не менять. Чтобы избежать такой неприятной ситуации, неопытным водителям рекомендуется дублировать метод вакуумной диагностики другими методами анализа.
При анализе показаний вакуумметра нужно учитывать не только абсолютные показания прибора, но и темп, с которым движется стрелка. Темп стрелки называется динамикой показаний вакуумметра. Большинство моделей манометров, которые используются для вакуумной диагностики двигателей, имеют специальную шкалу, которая разделена значениями, измеряемыми в миллиметрах ртутного столба. Чем меньше давление в системе, тем выше значение будет у прибора. При этом нужно помнить, что на возвышенностях вакуумметр показывает немного другие данные. Например, если высота достигает 300 метров над уровнем моря, то прибор увеличивает свои показания на 25 единиц.
Диагностика двигателя вакуумметром, как это происходит?
Для того чтобы провести эффективную диагностику двигателя с помощью вакуумметра, нужно правильно подготовиться к данной процедуре:
После проведения ряда подготовительных процедур, можно подключать вакуумметр к работающему двигателю. Если двигатель в порядке, это должно сразу отразиться на показаниях прибора. При исправности вакуумметра, его стрелка будет находиться на отметке между 450 и 550 миллиметров ртутного столба, причём данный показатель не должен колебаться. Вот по каким показаниям манометра можно определить, что с двигателем не всё в порядке:
На оснований вакуумной диагностики можно принимать решение, как поступить далее. Можно попробовать самостоятельно отремонтировать автомобиль, можно обратиться на станцию технического обслуживания, для подтверждения предварительного диагноза.
Расшифровка показаний вакуумметра при диагностике двигателя
Если ремонт двигателя автомобиля планируется делать самостоятельно, то нужно знать следующие нюансы:
Пользоваться вакуумметром для диагностики двигателя автомобиля достаточно простап. Главное при этом запомнить, что означают показания приборов и соблюдать при работе технику безопасности.
Расшифровка функций программы диагностики Torque
Решил поделится с Вами расшифровкой команд программы Torque. Думаю эта информация будет многим полезна…
Я взял за основу основные функции к нашей модели авто.
Расшифровка функций программы диагностики Torque
O2 1х1 V— Напряжение кислородного датчика1 банк1
STFT1 — Кратковременная балансировка топлива банк1 (от-5 до +5 % норма), («+» бедная смесь; «-» обогащенная смесь)
LTFT1 — Долговременная балансировка топлива банк1 (от-5 до +5 % норма), («+» бедная смесь; «-» обогащенная смесь)
Fuel Raid — Давление в топливной рампе
Fuel Pressure — Давление топлива
MAF — Массовый расход воздуха (около 4 норма)
EGR Err — Ошибка системы рециркуляции отработавших газов
EGR — Управление рециркуляции отработавших газов
Throttle — Положение дроссельной заслонки
Timing Adv — Угол опережения зажигания
A THR2 — Абсолютное положения дроссельной заслонки B
Intake — Давление во впускном коллекторе
AFR© — Соотношение воздух/топливо (заданное)
Coolant — Температура охлаждающей жидкости
Oil Temp — Температура моторного масла
LPK — л/100км (мгновенное)
LPK(avg) — л/100км Среднее долговременное
Trip LPK — Среднее за поездку л/100 км
Boost — Турбо и Манометр
Fuel — Уровень топлива по данным ЭБУ