Вентиляторное колесо на асинхронной машине закреплено на
Большая Энциклопедия Нефти и Газа
Вентиляторное колесо
Вентиляторные колеса приводятся в действие специальным приводом ( фиг. На горизонтальном валу насажено коническое зубчатое колесо 4, входящее в зацепление с другим таким же коническим зубчатым колесом 5, насаженным на вертикальном валу. Горизонтальный вал опирается на два шариковых подшипника 6 и 7; на обоих концах вала насажены на шпонках трехлепестковые муфты 8 и 9, при помощи которых горизонтальный вал соединяется с общим валопрово-дом от редуктора турбины вентиляторов. [3]
Уплотнение вентиляторного колеса обеспечивается дополнительным цилиндрическим щитом из листовой стали, положение этого щита по оси машины можно регулировать. При необходимости входные отверстия могут быть закрыты сетками. После вентиляторов воздух попадает к полюсам ротора и охлаждает обмотку возбуждения. Под влиянием вращающихся выступающих полюсов воздух получает радиальную составляющую скорости и частично направляется к лобовым соединениям обмотки статора, а затем в кольцевые камеры 2 станины. Из кольцевых камер воздух выходит наружу через жалюзи 3 с обоих боков машины. [4]
Привод вентиляторного колеса осуществляется через гидроредуктор, который в свою очередь получает вращение от вала отбора мощности дизеля. [6]
Крылья вентиляторного колеса образуют поток воздуха, циркулирующего из внешней камеры обеспыливания через жалюзи во внутреннюю камеру и обратно. [7]
Внешний диаметр вентиляторного колеса выбирают в соответствии с типом вентиляционной системы и конструкции машины. При аксиальной вентиляции внешний диаметр рабочего колеса Z) 2 ( рис. 7.7) выбирают максимально возможным. [9]
Внешний диаметр вентиляторного колеса выбирают в соответствии с типом вентиляционной системы и конструкции машины. При аксиальной вентиляции внешний диаметр рабочего колеса D2 ( рис. 7.7) выбирают максимально возможным. [11]
Внешний диаметр вентиляторного колеса выбирается в соответствии с типом вентиляции и конструкции машины. При аксиальной вентиляции D2 выбирают обычно максимально возможным. [12]
При вращении вентиляторных колес образуются рециркуляционные потоки воздуха, направление которых показано на рисунке стрелками. Свежий воздух входит через отверстие в нижней части камеры, а отработанный удаляется через выхлопную трубу в верхней части камеры. [15]
Устройство асинхронных двигателей
Асинхронным называется электрический двигатель переменного тока, частота вращения ротора которого меньше частоты магнитного поля статора.
Статор асинхронного двигателя состоит из литой чугунной или алюминиевого сплава станины, сердечника и обмотки. Воздушный зазор между статором и ротором асинхронного двигателя должен быть предельно малым. Это необходимо, в частности, для уменьшения реактивной мощности, потребляемой двигателем из сети. Устройство ротора асинхронного двигателя принципиально отличается от устройства роторов синхронных машин. По типу ротора асинхронные двигатели разделяются на двигатели с короткозамкнутым (рис. 82) и фазным ротором.
Рис. 82. Асинхронный двигатель с короткозамкнутым ротором единой серии 4А:
1 — передний щит; 2 — вал; 3 — шпонка; 4 — кольцевая установочная пружина; 5 — подшипник; 6 — крыльчатка; 7 — короткозамыкаюшее кольцо; 8 — катушки обмотки статора; 9 — станина; 10 — сердечник статора; 11 — сердечник ротора; 12 — кожух вентилятора; 13 — задний щит; 14 — вентилятор; 15 — балансировочный грузик; 16 — коробка выводов; 17 — охладительные ребра.
В станине 9 электродвигателя с короткозамкнутым ротором размещен сердечник 10 из магнитной электротехнической стали. В пазах сердечника уложены катушки 8 обмоток и заклинены деревянными клиньями. Станина асинхронного электродвигателя отлита из чугуна или алюминиевого сплава и имеет на наружной поверхности продольные ребра 17 для увеличения площади охлаждения. В верхнее ребро станины ввернуто грузовое кольцо для подъема электродвигателя.
На валу 2 короткозамкнутого асинхронного двигателя расположен сердечник ротора 11 из листов стали с пазами, залитыми алюминием. С помощью заливки пазов алюминием образуется обмотка ротора «беличья клетка» с замыкающими кольцами 7 на торцах. Одновременно отливаются и лопасти вентилятора 6. В процессе заливки пазов алюминием пакет сердечника сжимают прессом. Сердечник ротора электродвигателей небольшой мощности закрепляют на рифленой поверхности вала прессовой плотной посадкой, а сердечники более мощных электродвигателей — дополнительно шпонкой.
На шейке вала насажены одинакового размера шарикоподшипники 5, имеющие установочные пружины 4 и защитные шайбы, исключающие попадание смазки внутрь двигателя. Опорой для подшипников являются два подшипниковых щита 1 ч 13 одинаковой формы и размеров.
В более крупных асинхронных электродвигателях на валу ротора устанавливают алюминиевый вентилятор 14 для забора воздуха из окружающей среды и подачи его к наружным поверхностям двигателя. В некоторых сериях электродвигателей (например, А02) установлен второй вентилятор для перемещения воздуха внутри станины и отвода теплоты от ее внутренних частей. Для защиты лопастей вентилятора установлен кожух 12. Вал соединяется с полумуфтой шпонкой 3. Для балансировки ротора применяют грузики 15, установленные на короткозамыкающем кольце 7. Подсоединение вводных проводов от электросети производят с помощью зажимов, установленных в коробке выводов 16, к которым подводят концы обмоток статора.
Рис. 83. Асинхронный двигатель с фазным ротором в защищенном исполнении:
1 — стопорное кольцо; 2 — жалюзи; 3 — бандаж обмотки ротора; 4 — сердечник статора; 5 — сердечник ротора: 6 — фиксирующая скоба; 7 — нажимная шайба; 8 — опорное кольцо; 9 — аксиальный вентилятор; 10 — подшипник; 11 — щеткодержатель; 12 — контактное кольцо; 13 — изоляционная втулка; 14 — соединительная перемычка; 15 — паз ротора; 16 — паз статора.
Асинхронный двигатель с фазным ротором (рис. 83) отличается от двигателя с короткозамкнутым ротором наличием обмотки в роторе и контактных колец 12, к которым подсоединены концы роторной обмотки. Контактные кольца изолированы от вала и друг друга. В пазы сердечника ротора 5 вложены стержни обмотки, которые удерживаются в пазах клиньями из дерева или текстолита. Лобовые части стержней не выгибаются под действием центробежных сил благодаря бандажам 3.
Фазные обмотки ротора выполняют по тем же схемам, что и обмотки статора. Число витков в катушках обмоток статора и ротора асинхронной машины не зависят друг от друга, так как обмотки ротора к сети не присоединяются и их напряжение может изменяться в широких пределах. В этой связи стержневые обмотки ротора крупных машин выполняют с одновитковыми катушками. Высокая жесткость стержневой обмотки в этом случае обеспечивает необходимую прочность лобовых частей. Роторные обмотки двигателей до 3 кВт делают мягкими всыпными из провода круглого сечения, при мощности 3 — 10 кВт — жесткими катушечными из провода прямоугольного сечения или стержневыми из голой шинной меди. При мощности выше 100 кВт роторные обмотки делают только стержневыми.
Три фазные обмотки концами соединяются между собой, образуют звезду, а начала обмоток сквозь полый конец вала выводятся к контактным кольцам. На контактные кольца наложены щетки, позволяющие присоединить к фазным обмоткам провода от пускового реостата для управления. Пуск двигателей с фазным ротором (серии АК2) проводят с помощью реостата. Тем самым достигается плавный запуск и увеличивается пусковой момент электродвигателя.
Другие части электродвигателя с фазным ротором конструктивно аналогичны соответствующим частям электродвигателя с короткозамкнутым ротором.
Принцип работы асинхронного двигателя
Асинхронные двигатели, подключаемые к однофазной или трехфазной сети переменного тока, используются для привода механизмов бытовой техники и промышленного оборудования. Установленный на подшипниковых опорах ротор вращается с частотой, отличной от количества оборотов магнитного поля, создаваемого зафиксированными обмотками статора.
Что такое асинхронный двигатель
Асинхронный электродвигатель представляет собой машину, преобразующую электрическую энергию в механическую. Агрегат состоит из металлического немагнитного корпуса цилиндрической конфигурации, на внешней поверхности которого расположены ребра для охлаждения. Внутри кожуха находится обмотка, подключаемая к бытовой или промышленной сети переменного тока. С торцов корпус закрыт крышками, в которых предусмотрены постели для подшипниковых опор. Могут использоваться подшипники качения или скольжения с ручной или автоматической подачей масла.
Ротор, изготовленный из электротехнической стали установлен на подшипниках, обеспечивающих снижение трения и поддерживающих равномерный интервал между внешней поверхностью детали и внутренней плоскостью статора. В схеме узла предусмотрена обмотка (короткозамкнутого или фазного типа). В короткозамкнутых конструкциях отсутствуют коллектор и щетки, что увеличило надежность мотора. В фазных предусмотрено использование коллекторного узла, что позволяет повысить пусковой вращающий момент.
История создания
Теоретическая база асинхронной электрической установки была разработана в 1888 г. итальянским техником Г. Феррарисом и ученым Николой Тесла, причем специалисты вели исследования параллельно. Изначальные расчеты показали низкий КПД устройства, но российский инженер М.О. Доливо-Добровольский опроверг это предположение. Уже в 1889-90 гг. изобретатель из России получает несколько патентов на асинхронные силовые установки, а в 1903 г. в Новороссийске начинает работать элеватор с механизмами, оснащенными трехфазными асинхронными моторами.
Область применения
Основные сферы применения электромоторов асинхронного типа:
Типы двигателей
Основные типы двигателей асинхронного типа:
Существуют моторы с питанием роторных катушек при помощи несимметричного раствора щеток. В конструкции подвижного элемента установлены 2 катушки, которые подключены к внешней сети и к вторичной неподвижной намотке на статоре. Конструкция позволяет регулировать частоту вращения, но отличается повышенной сложностью и требует регулярного обслуживания.
Изделия использовались в 30-40-х гг. прошлого столетия для привода промышленного оборудования, но затем были вытеснены стандартными электродвигателями с фазными роторами.
Принцип работы
При подведении напряжения к неподвижным обмоткам трехфазного мотора асинхронного типа в фазах формируется магнитное переменное поле. Поток изменяется в соответствии с частотой подведенного тока. Поскольку в конструкции узла использованы 3 катушки, то сформированные потоки имеют смещение по времени и пространству на 120°. Итоговый индукционный поток вращается, пересекая центральный подвижный сердечник и обеспечивая наводку разницы потенциалов в коротко замкнутых проводниках, расположенных в теле ротора.
Поскольку цепи замкнуты, то электродвижущая сила формирует ток, вступающий во взаимодействие с подвижным магнитным полем от намотки статора. В результате искажения поля формируется крутящий момент, стремящийся провернуть вал в сторону движения магнитной индукции от неподвижной обмотки. Нарастающий крутящий момент преодолевает силы торможения ротора (из-за веса детали, приложенной внешней нагрузки и силы трения в подшипниковых опорах), что приводит к началу раскрутки вала двигателя.
Устройство асинхронного двигателя
Корпус мотора отличается из серого чугуна или алюминиевого сплава, встречаются стальные конструкции сварного типа. Поскольку при прохождении тока через катушки происходит нагрев деталей, то на поверхности кожуха предусматриваются продольные ребра, обеспечивающие повышенный теплообмен. Внутренняя поверхность корпуса предназначена для установки сердечника статора, который установлен с натягом и дополнительно закреплен резьбовыми соединениями.
Сердечник собирается из деталей, полученных методом штамповки из листов электротехнической стали толщиной до 0,5 мм. Заготовки покрываются слоем специального лака, а затем соединяются в пакеты. Для фиксации элементов используются заклепки, скобы или сварка. Конструкция сердечника обеспечивает снижение вихревых токов, формирующихся при перемагничивании узла вращающимся магнитным полем. В конструкции пакета предусмотрены пазы, в которые укладываются витки провода, соединенные между собой на торцевых кромках (за пределами сердечника).
Ротор собран из элементов, отштампованных из стали (шихтованная схема), которые надеты на вал из конструкционной стали.
Элементы не имеют диэлектрического покрытия, поскольку генерируемые вихревые токи имеют небольшую частоту. Ось имеет поверхности, предназначенные для установки внутренних колец подшипников качения. Внешние концы вала нужны для установки шкивов или иных приспособлений для передачи крутящего момента. На тыловой части оси устанавливается вентилятор, обеспечивающий дополнительное охлаждение двигателя.
Процессы в асинхронной машине
Основные процессы, протекающие в электродвигателе асинхронного типа:
Понятие скольжения
Скольжением асинхронного устройства называется соотношение числа оборотов магнитного поля, сформированного неподвижными катушками, к частоте вращения ротора электродвигателя.
Параметр выражается в процентном соотношении и используется при оценке эффективности работы силового привода. В момент пуска значение равно 100%, но по мере раскручивания вала параметр начинает снижаться. Одновременно уменьшаются значения электродвижущей силы и тока, наводимых в витках ротора, что ведет к падению кривой крутящего момента.
На холостом ходу (без приложения нагрузки) значение скольжения достигает минимального значения, но по мере приложения статической нагрузки параметр увеличивается (из-за замедления периодичности вращения вала электромотора). При превышении критического значения возникает эффект опрокидывания мотора, приводящий к нестабильной работе устройства. Процесс изменения скольжения прекращается при уравновешивании электромагнитного момента статора тормозным усилием, приложенным к валу машины.
Условия для получения вращающегося магнитного поля
В пособиях по теории электродвигателей указываются следующие условия для получения магнитного поля:
Угол смещения зависит от количества пар полюсов. В простейшей трехфазной машине с единой парой контактов угол сдвига составляет 120°. Введение дополнительной пары полюсов обеспечивает уменьшение угла до 60°. Каждая последующая пара контактных элементов приводит к корректировке значения угла в 2 раза.
Когда возникает электромагнитный момент
Электромагнитный вращающий момент создается в результате взаимодействия тока, наведенного в подвижной части асинхронной машины, с совершающим вращательное движением магнитным полем от неподвижных катушек. Значения момента находится в пропорциональной зависимости от мощности электрических потерь в роторе. При расчете момента учитывается ряд параметров (например, напряжение в цепи питания и частота тока), которые не меняются в процессе работы электрической машины. В формуле присутствует коэффициент скольжения, оказывающий влияние на момент.
Его зависимость от скольжения
Кривая зависимости момента от коэффициента скольжения называется механической характеристикой асинхронного электродвигателя. Кривая состоит из участка генераторного режима, двигательного сектора и тормозного участка. Пик крутящего момента соответствует критическому значению скольжения, причем значение момента в режиме генератора выше аналогичного параметра в двигательном состоянии.
Пуск в ход асинхронного двигателя и регулирование частоты вращения
Методика прямого пуска используется на машинах с короткозамкнутой обмоткой ротора. При расчете оборудования обеспечивается пониженная сила тока в цепи, что позволяет избегать повышения температуры и электродинамического усилия. Способ непосредственного запуска используется на установках с низкой или средней мощностью (не требующих высокого стартового момента). Для раскрутки мощных электродвигателей методика не применяется, поскольку прямая коммутация приводит к временному падению напряжения во внешней сети на 10-15%.
Способ запуска при пониженном напряжении применяется при использовании моторов средней и высокой мощности в сетях с недостаточным ресурсом.
Стартовая обмотка переводится в схему “звезда”, а после раскрутки ротора катушки в “треугольник”. Допускается введение в цепи пуска сопротивлений или автоматических трансформаторов. Недостатком методики является падение значения момента (снижение прямо пропорционально квадрату напряжения на входе), пуск производится только без внешней нагрузки.
Пусковой реостат используется в цепях возбуждения устройств с фазной обмоткой на подвижном элементе. По мере увеличения частоты вращения происходит снижение сопротивления, что позволяет постепенно перевести двигатель в штатный режим работы. Способ используется при повышенной нагрузке на электромотор или при необходимости плавной регулировки частоты вращения.
Для регулировки частоты вращения применяются методики:
Тормозные режимы
При работе асинхронной силовой машины существует 4 режима торможения. Рекуперативное замедление возможно при частоте вращения вала двигателя больше скорости вращения электромагнитного поля. Ситуация разгона вала происходит при спуске груза на лебедке, образующиеся излишки электромагнитной мощности возвращаются во внешнюю сеть. Динамическое торможение осуществляется путем подачи постоянного напряжения на неподвижные катушки, которое вызывает формирование неподвижного поля, замедляющего вращение вала.
Конденсаторное замедление осуществляется путем подключения емкостей к неподвижным обмоткам. Излишки энергии преобразуются в электричество, теряющееся в подвижном элементе двигателя. Методика применяется для установок мощностью до 5 кВт. Замедление противовключением подразумевает изменение чередования фаз, что позволяет резко остановить ротор. Магнитные потоки вращаются в противоположных направлениях, что приводит к увеличению коэффициента скольжения до значения более единицы.
Маневровые локомотивы
Вентиляторы охлаждения электрических машин и их привод
Охлаждение тяговых электрических машин может осуществляться индивидуальными вентиляторами, групповыми, а также одним вентилятором при централизованной системе подачи охлаждающего воздуха ко всем электрическим машинам и аппаратам. На тепловозах, как правило, применяют вентиляторы центробежного типа. При централизованной системе воздухо-снабжения применяют осевые вентиляторы.
Вентиляторы центробежного типа. Вентилятор (рис. 164) состоит из сварного корпуса 6 с всасывающим центральным боковым отверстием и нагнетательным каналом, соединенным воздухопроводом с вентиляционными полостями электрических машин. Внутри корпуса вращается вентиляторное колесо, состоящее из двух дисков 4, 11, соединенных между собой прикрепленными к иим лопатками 5. Лопатки изготовлены штамповкой из плакированного дюралевого листа и подвергнуты специальной термообработке. Один диск вентиляторного колеса соединен заклепками с фланцем ступицы 1, вал 2 которой приводится во вращение.
Редуктор центробежного вентилятора охлаждения тягового генератора тепловоза 2ТЭ10В. Центробежный вентилятор охлаждения тягового генератора приводится во вращение от редуктора, вал которого соединен с верхним коленчатым валом дизеля. В чугунном корпусе 1 редуктора (рис. 165) установлены ведущий 7 и ведомый 8 валы с коническими шестерня-
Рис. 164. Центробежный вентилятор охлаждения тяговых электродвигателей:
Рис. 165. Редуктор вентилятора охлаждения тягового генератора:
8 ведомый вал в ступице, напрессованной на вал, в кольцевую проточку на валу, тем самым снижается усилие распрессовки.
Ведомый вал 8 установлен в продольную расточку корпуса редуктора и опирается на роликовый и шариковый подшипники. Ведомый вал имеет аналогичное, как у ведущего вала, лабиринтное уплотнение с войлочными кольцами. На коническом хвостовике ведомого вала закреплена ступица вентиляторного колеса, взаимозаменяемого с колесами вентиляторов охлаждения двигателей передней и задней тележек. Шестерни и подшипники смазываются разбрызгиванием масла при работе редуктора.
Централизованная система воздушного охлаждения электрических машин и аппаратов тепловоза ТЭП70. Централизованная система воздушного охлаждения (рис. 166) обеспечивает подачу охлаждающего воздуха к тяговому генератору, тяговым электродвигателям, выпрямительной установке, а также в аппаратную камеру для поддержания в ней избыточного давления воздуха, препятствующего проникновению в камеру пыли. Осевой вентилятор засасывает воздух из атмосферы через кассеты блока фильтров и нагнетает его к потребителям по системе каналов, расположенных в раме тепловоза.
Вентилятор с входным коллектором, установленным в крыше тепловоза, соединяется брезентовым рукавом, закрепляемым на корпусе вентилятора и входном коллекторе металлическими хомутами. С нижней частью диффузора, выполненной в раме тепловоза и являющейся силовым элементом конструкции рамы, вентилятор соединен болтами через регулировочные прокладки и уплотнение из губчатой резины.
Воздушные каналы к тяговому генератору, выпрямительной установке, тяговым электродвигателям передней и задней тележек также включены в силовую конструкцию рамы. Все воздуховоды коробчатой формы, сварные и выполнены из листовой стали. Воздушные каналы к тяговым электродвигателям, тяговому генератору и выпрямительной установке подсоединены через брезентовые рукава.
Рис. 166. Централизованная система охлаждения тяговых электрических машин и аппаратов:
Вентилятор (рис. 167) имеет два корпуса. В верхнем корпусе расположена проточная часть вентилятора. Прототипом проточной части является модель осевого вентилятора ЦАГИ-К-42. Вентилятор выполнен по схеме: направляющий аппарат, рабочее колесо, спрямляющий аппарат. Диаметр проточной части 780 мм. Диск и лопатки рабочего колеса 4 изготовлены из алюминиевого сплава АК.-6. Лопатки (16 шт.) установлены на диске под углом 40° и закреплены при помощи замка типа «ласточкин хвост» и стопорных пластин. Направляющий аппарат 5 имеет тринадцать лопаток. Лопатки состоят из двух частей: неподвижной, выполненной заодно с литым корпусом, и поворотного закрылка, изготовленного из фенопласта У2-301-07. Поворот одновременно всех закрылков лопаток осуществляется при помощи поворотного устройства 3, смонтированного на корпусе вентилятора. Ис-
ходное положение закрылков направляющего аппарата 90°. Изменением угла установки закрылков регулируется напор и подача вентилятора.
Смазка конического редуктора принудительная. Ведущий вал через поводок приводит во вращение масляный иасос 10 лопастного типа, вмонтированный в корпус вентилятора. Масло из картера редуктора через сетчатый фильтр по каналам в корпусе через сопла и жиклеры подается к шестерням и подшипниковым узлам.
Уровень масла в картере вентилятора проверяется щупом. Давление масла контролируется манометром и должно быть в пределах 0,15- 0,6 МПа. В редукторе вентилятора применены резиновые (круглого сечения) и лабиринтные бесконтактные уплотнения подшипниковых узлов.
Воздухоочиститель системы централизованного воздухоснабжения. Воздухоочиститель (рис. 168) представляет собой часть крыши кузова, в которой расположены двадцать две кассеты 3. Через кассеты проходит воздух, засасываемый осевым вентилятором. Кассеты устанавливаются внутри, каркаса крыши и в поперечном сечении тепловоза образуют собой арку, внутри которой находится всасывающий патрубок 5 вентилятора и люк 6, служащий для проведения работ по обдуву кассет сжатым воздухом для очистки при их загрязнении в процессе эксплуатации тепловоза. Для постановки и выемки кассет имеется специальный люк. Кассеты вставляются в пазы и прижимаются от руки винтами 4. От самопроизвольного вывинчивания винты стопорят контргайками.
Все кассеты в каждом ряду вынимают через посадочное место одной кассеты данного ряда. Люки, через которые вставляются кассеты в воздухоочиститель, выполнены на петлях и открываются внутрь. Каждый люк в открытом состоянии фиксируется двумя пружинными защелками, расположенными на стенке кузова тепловоза. Загрязнение кассет контролируется дифференциальным манометром, закрепленным на наружной стенке воздухоочистителя.
Кассета воздухоочистителя (рис. 168, б) состоит из наружного 12 и внутреннего 10 корпусов, сеток 8, 9, набивки 7 и уплотнения 11. К наружному корпусу кассеты прикреплена сетка 9, которая вместе с сеткой 8 предохраняет набивку от выдувания и повреждения.
Муфта вентилятора. Вращающий момент от вала дизеля к вентилятору системы централизованного воздухоснабжения передается посредством эластичной муфты (рис. 169). Упругим
Рис. 169. Муфта осевого вентилятора: