ядерно магнитно резонансная томография мозга магнитно резонансная томография мозга мрт
Чем отличается ЯМТ от МРТ?
Люди на протяжении долгих лет искали одновременно высокоинформативные и безопасные для здоровья методики, позволяющие получать изображения внутренних органов тела, изучать их функциональное состояние, физические, химические характеристики тканей и клеток. В настоящий момент такая диагностика доступна благодаря магнитно-резонансной томографии. О том, что такое МРТ и почему когда-то данное исследование называлось ЯМТ, можно прочитать в данном материале.
Что такое МРТ и при чем здесь ЯМТ
1973 год считается официальным годом основания МРТ-диагностики. Изначально исследование было известно под термином ЯМР-томография или ЯМТ. Однако тяжелая авария, которая произошла в Чернобыле, привела к развитию у населения нашей страны настоящей радиофобии. В результате этого понятие ЯМР-томография, в котором звучало слово “ядерная”, в 1986 году было заменено на МРТ, однако основная суть исследования осталась неизменной.
Так как новый термин избавился от упоминания о «ядерности» собственного происхождения, МРТ диагностика сумела совершенно безболезненно проникнуть в повседневную медицинскую деятельность. Тем не менее изначальное название технологии также остается актуальным, может использоваться специалистами.
Безопасно ли МРТ
Изначальное название магнитно-резонансной томографии до сих пор вызывает беспокойство у пациентов, которым назначается данная процедура. Однако МРТ проходили миллионы людей, среди них не было обнаружено ни единого случая плохого самочувствия, не определено ни малейших признаков вреда организму. МРТ можно назвать более безопасным, чем, к примеру, рентгенологическое исследование, так как электромагнитные волны не несут на человеческий организм лучевой нагрузки.
Следовательно, к назначению МРТ следует относиться спокойно, процедура может проводиться столько раз, сколько это необходимо для корректной диагностики. Кроме того, процедура совершенно не сопровождается болевыми ощущениями, легкий дискомфорт пациенту причиняет разве что необходимость в течение определенного времени сохранять полную неподвижность.
Магнитно-резонансная томография (МРТ)
Магнитно-резонансная томография (МРТ) – это метод медицинской визуализации, который использует магнитное поле и радиоволны для создания детальных изображений органов и тканей вашего тела.
Большинство аппаратов МРТ представляют собой большие магниты в форме кольца или трубки. Когда вы лежите внутри МРТ, магнитное поле временно вызывает отклик молекул воды в вашем теле. Радиоволны заставляют выровненные атомы (чаще всего ядра атомов водорода) генерировать слабые сигналы, которые используются для создания изображений – спиральных или в поперечном сечении (как нарезанный батон хлеба).
Также создаются трехмерные изображения, которые можно просматривать под разными углами.
Зачем проводят магнитно-резонансную томографию
mrt-risk”>Риски магнитно-резонансной томографии
МРТ – неинвазивный способ исследования ваших органов и тканей. Изображения высокого разрешения помогают диагностировать различные проблемы.
МРТ головного и спинного мозга
МРТ является наиболее часто используемым методом визуализации головного и спинного мозга. Это помогает диагностировать:
Особый вид МРТ – это функциональная магнитно-резонансная томография (фМРТ) головного мозга. В процессе процедуры получают изображение кровотока к определенным областям мозга. Используется для выявления различных патологических состояний связаных с функционированием областей головного мозга.
Функциональная МРТ используется при оценке ущерба от травмы головы или от таких расстройств, как болезнь Альцгеймера.
МРТ сердца и сосудов
По МРТ сердца или кровеносных сосудов можно оценить:
МРТ супрааортальных сосудов
МРТ внутренних органов
Позволяет найти опухоли или другие нарушения многих органов в организме:
МРТ костей и суставов
МРТ может помочь оценить:
МРТ молочных желез
МРТ можно использовать для выявления рака молочной железы, особенно у женщин с плотной тканью молочной железы или с высоким риском заболевания.
Риски магнитно-резонансной томографии
Поскольку МРТ использует мощные магниты, присутствие металла в вашем теле может представлять угрозу безопасности. Металлические предметы могут искажать изображение МРТ. Перед МРТ вы, скорее всего, заполните анкету, в которой будет указано, есть ли у вас металлические или электронные устройства в вашем теле.
Если ваше устройство не сертифицировано как безопасное для МРТ, вы не сможете пройти МРТ. Список устройств о которых необходимо сообщить:
Если у вас есть татуировки или перманентный макияж, спросите своего врача, могут ли они повлиять на вашу МРТ. Некоторые типы чернил содержат металл.
Беременность является относительным противопоказанием к МРТ. Влияние магнитных полей на плод недостаточно изучено. Ваш врач может порекомендовать вам альтернативное обследование или отложить МРТ. Также сообщите своему врачу, если вы кормите грудью, особенно если вы хотите проходите процедуру с контрастированием.
Также важно обсудить с врачом и технологом МРТ проблемы с почками или печенью, потому что проблемы с этими органами могут ограничивать использование инъекционных контрастных веществ во время сканирования.
Подготовка к МРТ
Если не указано иное, то перед обследованием МРТ разрешается принимать пищу и лекарства. Обычно вас просят убрать вещи, которые могут повлиять на получаемое изображение, например:
Как проходит МРТ
Во время теста
Вы ложитесь на подвижный стол, который продвигается в аппарат МРТ. Технолог следит за вами из другой комнаты. Вы можете говорить с человеком через микрофон.
Если у вас есть страх замкнутых пространств (клаустрофобия), вам могут дать успокоительное. Большинство людей легко переносят процедуру.
Аппарат МРТ создает сильное магнитное поле вокруг вас, а радиоволны направлены на ваше тело. Процедура безболезненная. Вы не чувствуете магнитное поле или радиоволны, и вокруг вас нет движущихся частей.
Во время МРТ-сканирования внутренняя часть магнита производит повторяющиеся постукивания, удары и другие шумы. Современные апараты обладают встроенной системой шумоподавления.
В некоторых случаях контрастный материал, как правило, гадолиний, будет вводиться внутревенно. Контрастный материал усиливает определенные детали. Гадолиний редко вызывает аллергические реакции.
МРТ может длиться от 15 минут до часа. Вы не должны двигаться, чтобы изображение не получилось размытым.
Во время функциональной МРТ вас могут попросить выполнить ряд небольших задач – например, двигать большим пальцем или отвечать на простые вопросы. Это помогает точно определить части вашего мозга, которые контролируют эти действия.
После теста
Вы можете возобновить свою обычную деятельность сразу после сканирования.
Результаты магнитно-резонансной томография
Подготовленный для интерпретации данных МРТ специалист (рентгенолог), проанализирует полученные при сканировании изображения, и сообщит о результатах. Ваш врач обсудит с вами следующие шаги.
Оглавление
Компьютерная томография – это тип исследования, при котором происходит послойное сканирование органа пациента. Для проведения процедуры используется мультиспиральный компьютерный томограф. В основе принципа его действия лежит отражение рентгеновского излучения от тканей и костей. Результат исследования представляется в виде на мониторе врача и может быть записан на диск.
Аппарат для КТ представляет собой круг вокруг стола с подвижными датчиками, которые, вращаясь в процессе исследования, делают снимки с разных ракурсов.
Так как при использовании этого метода пациент получает определенную дозу облучения, исследование не рекомендуется проходить часто.
Магнитно-резонансная томография – это обследование, в основе которого лежит эффект магнитного резонанса, отражающегося от более или менее плотных тканей.
Для него также используется томограф, но другого, чаще закрытого типа. Он оснащен выдвижным столом, на который укладывают пациента, и трубообразным аппаратом, в который этот стол задвигают.
Это довольно безопасный метод обследования, хотя при его использовании и существует ряд ограничений, в основном связанных с наличием в организме металлических имплантатов.
В каких случаях назначают КТ, а в каких МРТ?
Поскольку в основе обоих типов обследования лежат разные физические и химические явления, эффективность каждого из них варьируется в зависимости от анализируемых тканей.
Когда врач назначает МРТ мозга или КТ, он руководствуется тем, что именно нужно исследовать. Так, КТ считается более эффективной при обследовании твердых тканей, костей черепа и их нарушений, а МРТ – для анализа мягких тканей.
Основные показания для проведения КТ
Исследование назначают в таких случаях:
Основные показания для проведения МРТ
Такое исследование назначают в следующих случаях:
Также МРТ назначают, чтобы оценить:
Ребенку рекомендуют томографию, если:
Противопоказания
Компьютерную томографию не делают в следующих случаях:
С осторожностью применяют ее для кормящих матерей, а если процедура выполнена, еще сутки нельзя кормить ребенка грудью.
Если исследование будет проводиться с контрастным веществом, противопоказаний больше:
МРТ нельзя проходить тем пациентам, у которых:
Исследование применяется с ограничениями, когда:
Также препятствием к обоим исследованиям может стать неспособность пациента пролежать неподвижно в течение нужного времени сильных болей в спине.
Если пациент знает о наличии ограничения (установлена беременность, ранее диагностирован диабет, есть металлические имплантаты и тому подобное), он должен заранее сообщить об этом врачу.
Преимущества каждого вида томографии
Чтобы сделать выбор между МРТ мозга или КТ, необходимо рассмотреть их назначение и преимущества для конкретного диагноза, а также принять во внимание типы тканей, которые нужно изучить.
Компьютерная томография – один из самых точных способов исследования нарушений, связанных с состоянием мозга. Она особенно эффективна, если необходимо определить аномалии, возникшие травмы, а также иные проблемы с костями и плотными тканями черепа.
Это происходит потому, что особым образом отражаются от плотных костных тканей. Однако доза облучения, которую получает пациент, гораздо ниже по сравнению с иными рентгеновскими исследованиями. Таким образом можно диагностировать различные заболевания без использования инвазивных методов, что делает процедуру безболезненной.
При помощи КТ можно диагностировать перенесенный инсульт, нарушения артерий при атеросклерозе, изменения в структуре коры головного мозга и поражения лицевых костей. Она позволяет рассмотреть такие нарушения в мельчайших деталях и выявить причины возникновения заболеваний.
Время проведения процедуры – не более пятнадцати минут. Нет риска искажения результата, если пациент случайно сдвинется.
Пациенты, страдающие клаустрофобией, легко переносят компьютерную томографию, потому что используется открытый аппарат, в который погружается только голова, а не все тело.
Важно, что результат КТ можно рассмотреть сразу же, хотя в некоторых случаях изображение может быть недостаточно контрастным.
томография не менее точна, чем КТ, но область ее применения несколько иная. Она позволяет диагностировать заболевания мягких тканей мозга и показывает результаты в трех плоскостях:
МРТ позволяет очень четко увидеть проблемы с мягкими тканями: доброкачественные и злокачественные (рак) новообразования (их форму, локализацию и объем), нарушения работы гипофиза, нервные и мышечные волокна. Можно увидеть и измерить объемы отеков, опухоли нервной системы и другое. Кости же будут отображаться опосредованно.
Этот метод безопасен, поэтому его можно применять для диагностики беременных пациенток, но только во втором и третьем триместрах. Также его разрешено использовать для диагностики детей с трехлетнего возраста. Ребенку необходимо объяснить, как будет проходить исследование, чтобы он не боялся и постарался не двигаться.
МРТ можно делать несколько раз за небольшой временной отрезок.
Процедура длится около получаса. В этот период требуется, чтобы пациент лежал неподвижно. В противном случае изображение может исказиться и результат получится недостоверным или неточным.
Для больных с боязнью замкнутых пространств исследование может быть проведено в состоянии медикаментозного сна.
Технические параметры
Другой важный момент – количество времени, которое необходимо провести в аппарате. Для КТ оно составляет от 5 до 15 минут, для МРТ – порядка получаса. Пациент должен быть максимально неподвижен. Но для результатов компьютерной томографии не столь критично, если больной немного сдвинется. В данные же исследования такое движение может привнести серьезное искажение.
КТ помогает поставить срочный диагноз, если пациент серьезно травмирован, у него присутствуют симптомы кровоизлияния в мозг.
Для выбора наиболее результативного метода обследования (МРТ мозга или КТ) необходимо обращать внимание на множество факторов. Это способен сделать только квалифицированный врач. Пациент обязан предоставить всю информацию, которая поможет в этом.
Что такое ЯМР-томография?
Сегодня уже стало привычным направлять пациента не на рентгенографию, не на электрокардиограмму, а на ЯМР-томографию. Для того чтобы разобраться, что стоит за этими словами, следует начать издалека, а именно с понимания того, что такое магнетизм атомного ядра. Но еще до этого нам надо ввести важные понятия, которые отсутствуют в основном курсе школьной физики.
Магнитный момент
Магнитные свойства маленького плоского контура с током, помещенного в магнитное поле, определяются магнитным моментом этого тока, равным
где I — ток, S — площадь контура, — вектор нормали к контуру, построенный по правилу буравчика (рис. 1).
В частности, энергия контура в магнитном поле с индукцией равна
(ось z направлена вдоль ).
Для поворота контура с изменением проекции вектора от μz до –μz надо совершить работу А = 2μzB.
Атомный электрон, движущийся по орбите вокруг атомного ядра, можно считать эквивалентным круговому току и приписать ему магнитный момент. Наличие такого «орбитального» магнитного момента у электрона проявляется в изменении его энергии при помещении атома в магнитное поле (формула для W).
При тщательном анализе экспериментальных данных оказалось, что свойства атома во внешнем магнитном поле определяются не только движением электрона вокруг ядра, но и наличием у электрона скрытого «внутреннего вращения», которое назвали спином. Спин есть у всех элементарных частиц (у некоторых спин равен нулю). Интенсивность «вращения» описывается спиновым числом s, которое может быть только целым или полуцелым. Для электрона, протона, нейтрона s = 1/2. «Внутреннее вращение», аналогично орбитальному, приводит к появлению у частицы спинового магнитного момента. Проекция спинового магнитного момента на ось z (направление магнитного поля) принимает значения
Видно, что магнитный момент протона и нейтрона на три порядка (–10 3 ) меньше, чем магнитный момент электрона (их масса примерно в 2000 раз больше). Примерно такой же по порядку величины магнитный момент должен быть у всех остальных атомных ядер, состоящих из протонов и нейтронов. Магнитные моменты всех ядер измерены с большой точностью. Именно наличие у ядер этих маленьких (в сравнении с атомными) магнитных моментов, значения которых различны для разных ядер, и лежит в основе явления ЯМР — ядерного магнитного резонанса, а также ЯМР-томографии. Мы в основном будем говорить о ядрах водорода — протонах, которые имеют наиболее широкое распространение в природе. Изотопом водорода является дейтерий, чье ядро также обладает магнитным моментом.
Рассмотрим ядро атома водорода (протон) во внешнем магнитном поле . Протон может находиться только в двух стационарных квантовых состояниях: в одном из них проекция магнитного момента на направление магнитного поля положительна и равна
а в другом — такая же по модулю, но отрицательная. В первом состоянии энергия ядра в магнитном поле равна –μzB, во втором +μzB. Изначально все ядра находятся в первом состоянии, а для перехода во второе состояние ядру надо сообщить энергию
Нетрудно понять, что заставить ядро изменить направление своего магнитного момента можно, подействовав на него электромагнитным излучением с частотой ω, соответствующей переходу между этими состояниями:
Подставляя сюда магнитный момент протона, получим
откуда для B = 1 Тл находим частоту волны: ν ≈ 4·10 7 Гц и соответствующую длину волны: λ = с/ν ≈ 7 м — типичные частота и длина волны радиовещательного диапазона. Фотоны именно этой длины волны поглощаются ядрами с переворотом магнитных моментов по отношению к направлению поля. При этом их энергия в поле повышается как раз на величину, соответствующую энергии такого кванта.
Отметим, что в экспериментах по ЯМР, т. е. для типичных частот среднего радио-вещательного диапазона, электромагнитные волны используются вовсе не в том виде, к которому мы привыкли при обсуждении распространения света или поглощения и излучения света атомами. В простейшем случае мы имеем дело с катушкой, по которой протекает созданный генератором переменный ток радиочастоты. Образец, содержащий исследуемые ядра, которые мы хотим подвергнуть воздействию электромагнитного поля, помещается на оси катушки. Ось катушки, в свою очередь, направлена перпендикулярно статическому магнитному полю B0 (последнее создается с помощью электромагнита или сверхпроводящего соленоида). При протекании по катушке переменного тока на ее оси индуцируется переменное магнитное поле B1, амплитуда которого выбирается гораздо меньшей величины B0 (обычно в 10000 раз). Это поле осциллирует с той же частотой, что и ток, т. е. с радиочастотой генератора.
Если частота генератора близка к вычисленной частоте, то происходит интенсивное поглощение ядрами водорода квантов света с переходом ядер в состояние с отрицательной проекцией μz (поворот ядер). Если же частота генератора отличается от вычисленной, то поглощения квантов не происходит. Именно в связи с резкой (резонансной) зависимостью от частоты переменного магнитного поля интенсивности процесса передачи энергии от этого поля ядрам атомов, сопровождаемое поворотом их магнитных моментов, явление получило название ядерного магнитного резонанса (ЯМР).
Как же можно заметить такие перевороты ядерных моментов по отношению к статическому магнитному полю? Будучи вооруженными современной техникой ЯМР, это оказывается совсем нетрудно: выключив создающий поле B1 генератор радиочастоты, следует одновременно включить приемник, использующий ту же катушку в качестве антенны. При этом он будет регистрировать радиоволны, излучаемые ядрами по мере их возвращения к первоначальной ориентации вдоль поля B0. Этот сигнал индуцируется в той же катушке, посредством которой ранее возбуждались магнитные моменты. Его временная зависимость обрабатывается компьютером и представляется в виде соответствующего спектрального распределения.
Из этого описания вы можете представить, что ЯМР-спектрометр весьма существенно отличается от привычных спектрометров, проводящих измерения в диапазоне видимого света.
До сих пор мы рассматривали упрощенную картину: поведение в магнитном поле изолированного ядра. В то же время понятно, что в твердых телах или жидкостях ядра совсем изолированными не являются. Они могут взаимодействовать между собой, а также и со всеми другими возбуждениями, распределение по энергиям которых определяется температурой и статистическими свойствами системы. Взаимодействия возбуждений различной природы, их происхождение и динамика являются предметом изучения современной физики конденсированного состояния.
Как был открыт ЯМР
Парселл со своими молодыми сотрудниками тщетно искали подтверждения того, что явление ядерного магнитного резонанса имело место в его экспериментах. После многих дней бесплодных попыток разочарованный и грустный Парселл решает, что ожидаемое им явление ЯМР не наблюдаемо, и дает указание выключить питающий электромагнит ток. Пока магнитное поле уменьшалось, разочарованные экспериментаторы продолжали глядеть на экран осциллографа, где все это время надеялись увидеть желанные сигналы. В некоторый момент магнитное поле достигло необходимой для резонанса величины, и на экране неожиданно появился соответствующий ЯМР сигнал. Если бы не счастливый случай, возможно прошли бы еще многие годы, прежде чем существование этого замечательного явления было бы подтверждено экспериментально.
С этого момента техника ЯМР стала бурно развиваться. Она получила широкое применение в научных исследованиях в областях физики конденсированного состояния, химии, биологии, метрологии и медицины. Наиболее известным применением стало получение с помощью ЯМР изображения внутренних органов.
Как осуществляется визуализация внутренних органов посредством ЯМР
До сих пор мы неявно предполагали, что, в пренебрежении влиянием слабых электронных токов в катушках, магнитное поле, в которое помещаются ядра, однородно, т. е. имеет одну и ту же величину во всех точках. В 1973 году Пол Латербур предложил проводить ЯМР-исследования, помещая образец в магнитное поле, меняющееся от точки к точке. Понятно, что в этом случае и резонансная частота для исследуемых ядер изменяется от точки к точке, что позволяет судить об их пространственном расположении. А поскольку интенсивность сигнала от определенной области пространства пропорциональна числу атомов водорода в этой области, мы получаем информацию о распределении плотности вещества по пространству. Собственно, в этом и заключается принцип техники ЯМР-исследования. Как видите, принцип прост, хотя для получения реальных изображений внутренних органов на практике следовало получить в распоряжение мощные компьютеры для управления радиочастотными импульсами и еще долго совершенствовать методологию создания необходимых профилей магнитного поля и обработки сигналов ЯМР, получаемых с катушек.
Представим себе, что вдоль оси х расположены маленькие заполненные водой сферы (рис. 3). Если магнитное поле не зависит от х, то возникает одиночный сигнал (см. рис. 3, а). Далее предположим, что посредством дополнительных катушек (по отношению к той, которая создает основное, направленное по оси z, магнитное поле) мы создаем дополнительное, меняющееся вдоль оси х, магнитное поле B0, причем его величина возрастает слева направо. При этом понятно, что для сфер с различными координатами сигнал ЯМР теперь будет соответствовать различным частотам и измеряемый спектр будет содержать в себе пять характерных пиков (см. рис. 3, б). Высота этих пиков будет пропорциональна количеству сфер (т. е. массе воды), имеющих соответствующую координату, и, таким образом, в рассматриваемом случае интенсивности пиков будут относиться как 3:1:3:1:1. Зная величину градиента магнитного поля (т. е. скорость его изменения вдоль оси х), можно представить измеряемый частотный спектр в виде зависимости плотности атомов водорода от координаты х. При этом можно будет сказать, что там где пики выше, число атомов водорода больше: в нашем примере числа атомов водорода, соответствующих положениям сфер, действительно соотносятся как 3:1:3:1:1.
Расположим теперь в постоянном магнитном поле B0 некоторую более сложную конфигурацию маленьких заполненных водой сфер и наложим дополнительное магнитное поле, изменяющееся вдоль всех трех осей координат. Измеряя радиочастотные спектры ЯМР и зная величины градиентов магнитного поля вдоль координат, можно создать трехмерную карту распределения сфер (а следовательно, и плотности водорода) в исследуемой конфигурации. Сделать это гораздо сложнее, чем в рассмотренном выше одномерном случае, однако интуитивно понятно, в чем этот процесс заключается.
Техника восстановления образов, сходная с той, которую мы описали, и осуществляется при ЯМР-томографии. Закончив накопление данных, компьютер посредством весьма быстрых алгоритмов начинает «обработку» сигналов и устанавливает связь между интенсивностью измеренных сигналов при определенной частоте и плотностью резонирующих атомов в данной точке тела. В конце этой процедуры компьютер визуализирует на своем экране двумерное (или даже трехмерное) «изображение» определенного органа или части тела пациента.
Поразительные «образы»
Чтобы полностью оценить результаты ЯМР-исследования внутренних органов человека (например, различных сечений головного мозга, которые физик-медик сегодня может получить не дотрагиваясь до черепа!), следует прежде всего понимать, что речь идет о компьютерном воссоздании именно «образов», а не о реальных тенях, возникающих на фоточувствительной пленке при поглощении рентгеновских лучей в процессе получения рентгеновского снимка.
Человеческий глаз является чувствительным датчиком электромагнитного излучения в видимом диапазоне. К счастью или несчастью, излучения, происходящие от внутренних органов, до наших глаз не доходят — мы видим человеческие тела только извне. В то же время, как мы только что обсуждали, в определенных условиях ядра атомов внутренних органов человеческого тела могут излучать электромагнитные волны в диапазоне радиочастот (т. е. частот, гораздо меньших, чем для видимого света), причем частота слегка меняется в зависимости от точки излучения. Глазом его не увидеть, поэтому такое излучение регистрируется с помощью сложной аппаратуры, а затем собирается в единое изображение с помощью специальной компьютерной обработки. И тем не менее, речь идет о совершенно реальном видении внутренней части предмета или человеческого тела.
К такому поразительному успеху человечество пришло благодаря ряду фундаментальных достижений научной мысли: это и квантовая механика с ее теорией магнитного момента, и теория взаимодействия излучения с веществом, и цифровая электроника, и математические алгоритмы преобразования сигналов, и компьютерная техника.
Преимущества ЯМР-томографии по сравнению с другими диагностическими методами многочисленны и значительны. Оператор может легко выбирать, какие сечения тела пациента просканировать, а также может подвергать исследованию одновременно несколько сечений выбранного органа. В частности, выбирая соответствующим образом градиенты магнитного поля, можно получить вертикальные сечения изображения внутренностей нашего черепа. Это может быть центральное сечение или сечения, смещенные вправо или влево. (Такие исследования практически невозможны в рамках рентгеновской радиографии.) Оператор может «сужать» поле наблюдения, визуализируя сигналы ЯМР, происходящие только от одного выбранного органа или только от одной из его частей, увеличивая таким образом разрешение изображения. Важным преимуществом ЯМР-томографии является также и возможность прямого измерения локальной вязкости и направления течения крови, лимфы и других жидкостей внутри человеческого тела. Подбирая необходимое соотношение между соответствующими параметрами, например длительностью и частотой импульсов, для каждой патологии оператор может достигать оптимальных характеристик получаемого изображения, скажем, повышать его контрастность (рис. 4).
Суммируя, можно сказать, что для каждой точки изображения (пикселя), соответствующей крошечному объему исследуемого объекта, оказывается возможным извлечь различную полезную информацию, в некоторых случаях включая и распределение концентрации тех или иных химических элементов в организме. Для повышения чувствительности измерений, т. е. увеличения отношения интенсивности сигнала к шуму, следует накапливать и суммировать большое число сигналов. В этом случае удается получить качественное изображение, адекватно передающее реальность. Именно поэтому времена проведения ЯМР-томографии оказываются довольно большими — пациент должен относительно неподвижно пребывать в камере несколько десятков минут.
В 1977 году английский физик Питер Мэнсфилд придумал такую комбинацию градиентов магнитного поля, которая, не давая особенно хорошего качества изображения, тем не менее позволяет получать его чрезвычайно быстро: для соответствующего построения хватает единственного сигнала (на практике это занимает приблизительно 50 миллисекунд). С помощью такой техники — ее называют планарным эхом — сегодня можно следить за пульсациями сердца в реальном времени: в таком фильме на экране чередуются его сокращения и расширения.
Можно ли было представить себе на заре создания квантовой механики, что через сто лет развитие науки приведет к возможности таких чудес?
Нельзя не отметить, что в 2003 году Пол Лотербур и Питер Мэнсфилд были удостоены Нобелевской премии в области медицины «за изобретение метода магнитно-резонансной томографии».